Skip to main content
Log in

A survey of the standard location-routing problem

  • Original-Survey or Exposition
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we define the standard LRP as a deterministic, static, discrete, single-echelon, single-objective location-routing problem in which each customer (vertex) must be visited exactly once for the delivery of a good from a facility, and in which no inventory decisions are relevant. We review the literature on the standard LRP published since the survey by Nagy and Salhi appeared in 2006. We provide concise paper excerpts that convey the central ideas of each work, discuss recent developments in the field, provide a numerical comparison of the most successful heuristic algorithms, and list promising topics for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja, R., & Orlin, J. (1996). Use of representative operation counts in computational testing of algorithms. INFORMS Journal on Computing, 8(3), 318–330.

    Article  Google Scholar 

  • Akca, Z., Berger, R., & Ralphs, T. (2009). A branch-and-price algorithm for combined location and routing problems under capacity restrictions. In J. Chinneck, B. Kristjansson & M. Saltzman (Eds.), Operations research and cyber-infrastructure, vol. 47 of operations research/computer science interfaces (pp. 309–330). Springer.

  • Albareda-Sambola, M. (2015). Location-routing and location-arc routing. In G. Laporte, S. Nickel, F. Saldanha da Gama & M. Albareda-Sambola (Eds.), Location Science (Chapter 15, pp. 399–418). Springer.

  • Albareda-Sambola, M., Díaz, J., & Fernández, E. (2005). A compact model and tight bounds for a combined location-routing problem. Computers & Operations Research, 32(3), 407–428.

    Article  Google Scholar 

  • Alvim, A., & Taillard, E. (2013). POPMUSIC for the world location-routing problem. EURO Journal on Transportation and Logistics, 2(3), 231–254.

    Article  Google Scholar 

  • Balakrishnan, A., Ward, J., & Wong, R. (1987). Integrated facility location and vehicle routing models: Recent work and future prospects. American Journal of Mathematical and Management Sciences, 7(1), 35–61.

    Article  Google Scholar 

  • Baldacci, R., & Mingozzi, A. (2009). A unified exact method for solving different classes of vehicle routing problems. Mathematical Programming, 120(2), 347–380.

    Article  Google Scholar 

  • Baldacci, R., Mingozzi, A., & Wolfler Calvo, R. (2011). An exact method for the capacitated location-routing problem. Operations Research, 59(5), 1284–1296.

    Article  Google Scholar 

  • Barreto, S., Ferreira, C., Paixão, J., & Santos, B. (2007). Using clustering analysis in a capacitated location-routing problem. European Journal of Operational Research, 179(3), 968–977.

    Article  Google Scholar 

  • Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.). (2010). Experimental methods for the analysis of optimization algorithms. Berlin: Springer.

  • Belenguer, J.-M., Benavent, E., Prins, C., Prodhon, C., & Wolfler Calvo, R. (2011). A branch-and-cut method for the capacitated location-routing problem. Computers & Operations Research, 38(6), 931–941.

    Article  Google Scholar 

  • Berger, R., Coullard, C., & Daskin, M. (2007). Location-routing problems with distance constraints. Transportation Science, 41(1), 29–43.

    Article  Google Scholar 

  • Berman, O., Jaillet, P., & Simchi-Levi, D. (1995). Location-routing problems with uncertainty. In Z. Drezner (Ed.), Facility location: A survey of applications and methods (pp. 427–452). New York: Springer.

    Chapter  Google Scholar 

  • Bouhafs, L., Hajjam, A., & Koukam, A. (2006). A combination of simulated annealing and ant colony system for the capacitated location-routing problem. In B. Gabrys, R. Howlett & L. Jain (Eds.), Knowledge-based intelligent information and engineering systems, Vol. 4251 of lecture notes in computer science (pp. 409–416). Springer.

  • Branco, I., & Coelho, J. (1990). The hamiltonian \(p\)-median problem. European Journal of Operational Research, 47(1), 86–95.

    Article  Google Scholar 

  • Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, Part I: Route construction and local search algorithms. Transportation Science, 39(1), 104–118.

    Article  Google Scholar 

  • Chan, Y., & Baker, S. (2005). The multiple depot, multiple traveling salesmen facility-location problem: Vehicle range, service frequency, and heuristic implementations. Mathematical and Computer Modelling, 41(8–9), 1035–1053.

    Article  Google Scholar 

  • Chen, C., & Ting, C. (2007). A hybrid Lagrangian heuristic/simulated annealing algorithm for the multi-depot location routing problem. Proceedings of the Eastern Asia Society for Transportation Studies, 6, 137–150.

    Google Scholar 

  • Chen, X., & Chen, B. (2009). Cost-effective designs of fault-tolerant access networks in communication systems. Networks, 53(4), 382–391.

    Article  Google Scholar 

  • Contardo, C., Cordeau, J.-F., & Gendron, B. (2013a). A computational comparison of flow formulations for the capacitated location-routing problem. Discrete Optimization, 10(4), 263–295.

    Article  Google Scholar 

  • Contardo, C., Cordeau, J.-F., & Gendron, B. (2013b). An exact algorithm based on cut-and-column generation for the capacitated location-routing problem. INFORMS Journal on Computing, 26(1), 88–102.

  • Contardo, C., Cordeau, J.-F., & Gendron, B. (2014). A GRASP+ ILP-based metaheuristic for the capacitated location-routing problem. Journal of Heuristics, 20, 1–38.

    Article  Google Scholar 

  • Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30(2), 105–119.

    Article  Google Scholar 

  • Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J., & Semet, F. (2002). A guide to vehicle routing heuristics. Journal of the Operational Research Society, 53(5), 512–522.

    Article  Google Scholar 

  • Crainic, T. G., & Kim, K. (2007). Intermodal transportation. In C. Barnhart & G. Laporte (Eds.), Transportation. Handbooks in Operations Research and Management Science (Vol. 14, pp. 467–537). Amsterdam: Elsevier.

  • Cuda, R., Guastaroba, G., & Speranza, M. G. (2015). A survey on two-echelon routing problems. Computers & Operations Research, 55, 185–199.

    Article  Google Scholar 

  • Daskin, M. (1995). Network and discrete location. New York: Wiley.

    Book  Google Scholar 

  • Derbel, H., Jarboui, B., Chabchoub, B., Hanafi, S., & Mladenović, N. (2011). A variable neighborhood search for the capacitated location-routing problem. In LOGISTIQUA, 4th international conference on logistics (pp. 514—519).

  • Derbel, H., Jarboui, B., Hanafi, S., & Chabchoub, H. (2010). An iterated local search for solving a location-routing problem. Electronic Notes in Discrete Mathematics, 36, 875–882.

    Article  Google Scholar 

  • Derbel, H., Jarboui, B., Hanafi, S., & Chabchoub, H. (2012). Genetic algorithm with iterated local search for solving a location-routing problem. Expert Systems with Applications, 39(3), 2865–2871.

    Article  Google Scholar 

  • Drexl, M. (2012). Synchronization in vehicle routing—A survey of VRPs with multiple synchronization constraints. Transportation Science, 46(3), 297–316.

    Article  Google Scholar 

  • Drexl, M., & Schneider, M. (2015). A survey of variants and extensions of the location-routing problem. European Journal of Operational Research, 241(2), 283–308.

    Article  Google Scholar 

  • Duhamel, C., Lacomme, P., Prins, C., & Prodhon, C. (2008). A memetic approach for the capacitated location routing problem. In International workshop on metaheuristics for logistics and vehicle routing (EU/Meeting).

  • Duhamel, C., Lacomme, P., Prins, C., & Prodhon, C. (2010). A GRASP\(\times \) ELS approach for the capacitated location routing problem. Computers & Operations Research, 37(11), 1912–1923.

    Article  Google Scholar 

  • Escobar, J., Linfati, R., & Toth, P. (2013). A two-phase hybrid heuristic algorithm for the capacitated location-routing problem. Computers & Operations Research, 40(1), 70–79.

    Article  Google Scholar 

  • Escobar, J. W., Linfati, R., Baldoquin, M. G., & Toth, P. (2014). A granular variable tabu neighborhood search for the capacitated location-routing problem. Transportation Research Part B: Methodological, 67, 344–356.

    Article  Google Scholar 

  • Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2004). An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3), 216–229.

    Article  Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability. New York: Freeman.

    Google Scholar 

  • Gendreau, M., & Potvin, J.-Y. (Eds). (2010). Handbook of Metaheuristics, Vol. 146 of international series in operations research & management science. Springer.

  • Ghiani, G., Improta, G., & Laporte, G. (2001). The capacitated arc routing problem with intermediate facilities. Networks, 37(3), 134–143.

    Article  Google Scholar 

  • Goemans, M., & Williamson, D. (1994). Approximating minimum-cost graph problems with spanning tree edges. Operations Research Letters, 16(4), 183–189.

    Article  Google Scholar 

  • Goemans, M., & Williamson, D. (1995). A general approximation technique for constrained forest problems. SIAM Journal on Computing, 24(2), 296–317.

    Article  Google Scholar 

  • Golden, B., Raghavan, S., & Wasil, E. (Eds). (2008). The vehicle routing problem: Latest advances and new challenges, Vol. 43 of operations research/computer science interfaces. Berlin: Springer.

  • Groër, C., Golden, B., & Wasil, E. (2010). A library of local search heuristics for the vehicle routing problem. Mathematical Programming Computation, 2(2), 79–101.

    Article  Google Scholar 

  • Hansen, P., Hegedahl, B., Hjortkjær, S., & Obel, B. (1994). A heuristic solution to the warehouse location-routing problem. European Journal of Operational Research, 76(1), 111–127.

    Article  Google Scholar 

  • Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.

    Article  Google Scholar 

  • Hemmelmayr, V., Cordeau, J.-F., & Crainic, T. G. (2012). An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Computers & Operations Research, 39(12), 3215–3228.

    Article  Google Scholar 

  • Jabal-Amelia, M., Aryanezhada, M., & Ghaffari-Nasaba, N. (2011). A variable neighborhood descent based heuristic to solve the capacitated location-routing problem. International Journal of Industrial Engineering Computations, 2(1), 141–154.

    Article  Google Scholar 

  • Jarboui, B., Derbel, H., Hanafi, S., & Mladenović, N. (2013). Variable neighborhood search for location routing. Computers & Operations Research, 40(1), 47–57.

    Article  Google Scholar 

  • Johnson, D. (2002). A theoretician’s guide to the experimental analysis of algorithms. In M. Goldwasser, D. Johnson, & C. McGeoch (Eds.), Data structures, near neighbor searches, and methodology: Proceedings of the fifth and sixth DIMACS implementation challenges (pp. 215–250). Providence: American Mathematical Society.

    Chapter  Google Scholar 

  • Jokar, A., & Sahraeian, R. (2011). An iterative two phase search based heuristic to solve the capacitated location-routing problem. Australian Journal of Basic and Applied Sciences, 5(12), 1613–1621.

    Google Scholar 

  • Jokar, A., & Sahraeian, R. (2012). A heuristic based approach to solve a capacitated location-routing problem. Journal of Management and Sustainability, 2(2), 219–226.

    Article  Google Scholar 

  • Lam, M., & Mittenthal, J. (2013). Capacitated hierarchical clustering heuristic for multi depot location-routing problems. International Journal of Logistics Research and Applications, 16(5), 433–444.

    Article  Google Scholar 

  • Lam, M., Mittenthal, J., & Gray, B. (2009). The impact of stopping rules on hierarchical capacitated clustering in location routing problems. Academy of Information and Management Sciences Journal, 12(1), 13–28.

    Google Scholar 

  • Laporte, G. (1988). Location-routing problems. In B. Golden & A. Assad (Eds.), Vehicle routing: Methods and studies (pp. 163–198). Amsterdam: North-Holland.

    Google Scholar 

  • Laporte, G. (1989). A survey of algorithms for location-routing problems. Investigación Operativa, 1(1), 93–123.

    Google Scholar 

  • Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: new test problems, algorithms, and results. Computers & Operations Research, 32(5), 1165–1179.

    Article  Google Scholar 

  • Lin, S., & Kernighan, B. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2), 498–516.

    Article  Google Scholar 

  • Lopes, R. B., Ferreira, C., & Santos, B. S. (2016). A simple and effective evolutionary algorithm for the capacitated location-routing problem. Computers & Operations Research, 70, 155–162.

    Article  Google Scholar 

  • Lopes, R. B., Ferreira, C., Santos, B. S., & Barreto, S. (2013). A taxonomical analysis, current methods and objectives on location-routing problems. International Transactions in Operational Research, 20(6), 795–822.

    Google Scholar 

  • Lopes, R., Barreto, S., Ferreira, C., & Santos, B. (2008). A decision-support tool for a capacitated location-routing problem. Decision Support Systems, 46(1), 366–375.

    Article  Google Scholar 

  • Maniezzo, V., Stützle, T., & Voß, S. (Eds). (2010). Matheuristics, Vol. 10 of annals of information systems. New York: Springer.

  • Marinakis, Y., & Marinaki, M. (2008a). A bilevel genetic algorithm for a real life location routing problem. International Journal of Logistics Research and Applications, 11(1), 49–65.

    Article  Google Scholar 

  • Marinakis, Y., & Marinaki, M. (2008b). A particle swarm optimization algorithm with path relinking for the location routing problem. Journal of Mathematical Modelling and Algorithms, 7(1), 59–78.

    Article  Google Scholar 

  • Marinakis, Y., Migdalas, A., & Pardalos, P. (2005). Expanding neighborhood GRASP for the traveling salesman problem. Computational Optimization and Applications, 32(3), 231–257.

    Article  Google Scholar 

  • Min, H., Jayaraman, V., & Srivastava, R. (1998). Combined location-routing problems: A synthesis and future research directions. European Journal of Operational Research, 108(1), 1–15.

    Article  Google Scholar 

  • Mitrović-Minić, S., & Laporte, G. (2006). The pickup and delivery problem with time windows and transshipment. INFOR, 40(3), 217–227.

    Google Scholar 

  • Montgomery, D. (2012). Design and analysis of experiments. New York: Wiley.

    Google Scholar 

  • Nadizadeh, A., Sahraeian, R., Zadeh, A., & Homayouni, S. (2011). Using greedy clustering method to solve capacitated location-routing problem. African Journal of Business Management, 5(21), 8470–8477.

    Article  Google Scholar 

  • Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649–672.

    Article  Google Scholar 

  • Özyurt, Z., & Aksen, D. (2007). Solving the multi-depot location-routing problem with Lagrangian relaxation. In E. Baker, A. Joseph, A. Mehrotra & M. Trick (Eds.), Extending the horizons: Advances in computing, optimization, and decision technologies, Vol. 37 of operations research/computer science interfaces (pp. 125–144). Springer.

  • Perl, J., & Daskin, M. (1984). A unified warehouse location-routing methodology. Journal of Business Logistics, 5(1), 92–111.

    Google Scholar 

  • Pirkwieser, S., & Raidl, G. (2010). Variable neighborhood search coupled with ILP-based very large neighborhood searches for the (periodic) location-routing problem. In M. Blesa, C. Blum, G. Raidl, A. Roli & M. Sampels (Eds.), Hybrid metaheuristics, Vol. 6373 of lecture notes in computer science (pp. 174–189). Springer.

  • Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research, 31(12), 1985–2002.

    Article  Google Scholar 

  • Prins, C., Prodhon, C., Ruiz, A., Soriano, P., & Wolfler Calvo, R. (2007). Solving the capacitated location-routing problem by a cooperative Lagrangean relaxation-granular tabu search heuristic. Transportation Science, 41(4), 470–483.

    Article  Google Scholar 

  • Prins, C., Prodhon, C., & Wolfler Calvo, R. (2004). Nouveaux algorithmes pour le problème de localisation et routage sous contraintes de capacité. In A. Dolgui & S. Dauzère-Pérèz (Eds.), MOSIM’ 04 (Vol. 2, pp. 1115–1122).

  • Prins, C., Prodhon, C., & Wolfler Calvo, R. (2006a). A memetic algorithm with population management (MA\(|\)PM) for the capacitated location-routing problem. In J. Gottlieb & G. Raidl (Eds.), Evolutionary computation in combinatorial optimisation (EvoCOP) Proceedings 2006, Vol. 3906 of lecture notes in computer science (pp. 183–194). Springer.

  • Prins, C., Prodhon, C., & Wolfler Calvo, R. (2006b). Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking, 4OR - A Quarterly Journal of. Operations Research, 4(3), 221–238.

    Google Scholar 

  • Prodhon, C., & Prins, C. (2008). A memetic algorithm with population management (MA\(|\)PM) for the periodic location-routing problem. In M. Blesa, C. Blum, C. Cotta, A. Fernández, J. Gallardo, A. Roli & M. Sampels (Eds.), 5th international workshop on hybrid metaheuristics, Vol. 5296 of lecture notes in computer science (pp. 43–57). Springer.

  • Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems. European Journal of Operational Research, 238(1), 1–17.

    Article  Google Scholar 

  • Quiroz Castellanos, M., Cruz Reyes, L., Torres-Jiménez, J., Gómez Santillán, C., López Locés, M., Carrillo Ibarra, J., et al. (2011). Improving the performance of heuristic algorithms based on causal inference. In I. Batyrshin & G. Sidorov (Eds.), Advances in Artificial Intelligence. Lecture Notes in Computer Science (Vol. 7094, pp. 137–148). Heidelberg: Springer.

  • Renaud, J., Boctor, F., & Laporte, G. (2004). Efficient heuristics for median cycle problems. The Journal of the Operational Research Society, 55(2), 179–186.

    Article  Google Scholar 

  • Ryan, D., & Foster, B. (1981). An integer programming approach to scheduling. In A. Wren (Ed.), Computer scheduling of public transport (pp. 269–280). Amsterdam: North-Holland.

    Google Scholar 

  • Sahraeian, R., & Nadizadeh, A. (2009). Using greedy clustering method to solve capacitated location-routing problem. Dirección y Organización, 39, 79–85.

    Google Scholar 

  • Salhi, S., & Nagy, G. (1999). A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. Journal of the Operational Research Society, 50(10), 1034–1042.

    Article  Google Scholar 

  • Salhi, S., & Rand, G. (1989). The effect of ignoring routes when locating depots. European Journal of Operational Research, 39(2), 150–156.

    Article  Google Scholar 

  • Schneider, M., & Löffler, M. (2017). Large composite neighborhoods for the capacitated location-routing problem. Forthcoming in Transportation Science.

  • Silberholz, J., & Golden, B. (2010). Comparison of metaheuristics. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of metaheuristics (2nd ed., pp. 625–640). New York: Springer.

  • Taillard, E. (1993). Parallel iterative search methods for vehicle routing problems. Networks, 23(8), 661–673.

    Article  Google Scholar 

  • Taillard, E., Gambardella, L., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive memory programming: A unified view of metaheuristics. European Journal of Operational Research, 135(1), 1–16.

    Article  Google Scholar 

  • Taillard, E., & Voß, S. (2001). Popmusic—Partial optimization metaheuristic under special intensification conditions. In C. Ribeiro & P. Hansen (Eds.), Essays and surveys in metaheuristics (pp. 613–629). New York: Kluwer Academic Publishers.

    Google Scholar 

  • Ting, C.-J., & Chen, C.-H. (2013). A multiple ant colony optimization algorithm for the capacitated location routing problem. International Journal of Production Economics, 141(1), 34–44.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal on Computing, 15(4), 333–346.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications, MOS-SIAM Series on Optimization (2nd ed.). Philadelphia, PA: SIAM.

  • Tuzun, D., & Burke, L. (1999). A two-phase tabu search approach to the location routing problem. European Journal of Operational Research, 116(1), 87–99.

    Article  Google Scholar 

  • Wang, X., Sun, X., & Fang, Y. (2005). A two-phase hybrid heuristic search approach to the location-routing problem. IEEE International Conference on Systems, Man and Cybernetics, 4, 3338–3343.

    Google Scholar 

  • Watson, J.-P. (2010). An introduction to fitness landscape analysis and cost models for local search. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (2nd ed., pp. 599–623). New York: Springer.

  • Wolsey, L. (1998). Integer Programming. New York: Wiley.

    Google Scholar 

  • Wu, T.-H., Low, C., & Bai, J.-W. (2002). Heuristic solutions to multi-depot location-routing problems. Computers & Operations Research, 29(10), 1393–1415.

    Article  Google Scholar 

  • Yu, V., Lin, S.-W., Lee, W., & Ting, C.-J. (2010). A simulated annealing heuristic for the capacitated location routing problem. Computers & Industrial Engineering, 58(2), 288–299.

    Article  Google Scholar 

  • Zachariadis, E., & Kiranoudis, C. (2010). A strategy for reducing the computational complexity of local search-based methods for the vehicle routing problem. Computers & Operations Research, 37(12), 2089–2105.

    Article  Google Scholar 

Download references

Acknowledgements

The second author was partially funded by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. DR 963/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schneider.

Appendices

Appendix 1: Summary of abbreviations

BKS:

Best known solution

CFLP:

Capacitated FLP

ELS:

Evolutionary LS

ENS:

Expanding neighborhood search

ESPPRC:

Elementary shortest path problem with resource constraints

FLP:

Facility location problem

GA:

Genetic algorithm

GRASP:

Greedy randomized adaptive search procedure

GTS:

Granular TS

ILS:

Iterated LS

IP:

Integer program(ming)

LARP:

Location arc-routing problem

LP:

Linear program(ming)

LR:

Lagrangian relaxation

LRP:

Location-routing problem

LS:

Local search

M(C)DVRP:

Multi-depot VRP (with capacitated depots)

MIP:

Mixed IP

PR:

Path relinking

RECWA:

Randomized extended Clarke and Wright algorithm

SA:

Simulated annealing

SSCFLP:

Single-source CFLP

TS:

Tabu search

TSP:

Traveling salesman problem

VND:

Variable neighborhood descent

VNS:

Variable neighborhood search

VRP:

Vehicle routing problem

Appendix 2: BKS for popular benchmark sets

Table 3 Best known solutions as of spring 2017 for the benchmark sets TB, PPW, and B

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, M., Drexl, M. A survey of the standard location-routing problem. Ann Oper Res 259, 389–414 (2017). https://doi.org/10.1007/s10479-017-2509-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2509-0

Keywords

Navigation