Skip to main content
Log in

Pre-positioning of relief inventories for non-profit organizations: a newsvendor approach

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Developing an efficient policy to determine the inventory a non-profit organization (NPO) should stockpile to respond to potential disasters plays a vital role in humanitarian relief. Incorporating social donation and emergency spot purchasing, this paper develops a (generalized) two-stage delivery process model to characterize relief materials’ delivery after a disaster. We propose an analytical model that aims to minimize the total costs when all demands incurred by an unexpected disaster need to be fully satisfied. Moreover, we determine that the optimal solution uniquely exists and characterize the effects of key parameters. Last, this paper also develops a risk-sharing scheme, in which the NPO and the supplier jointly stockpile relief materials. Under some mild conditions, we show that implementing the scheme could increase the storage quantity and decrease the total costs simultaneously. Several numerical examples are employed to validate the model, as well as the value of the proposed risk-sharing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The data is collected from international business times; see Website http://www.ibtimes.com.cn for details.

  2. See Website http://news.xinhuanet.com/newscenter/2008-05/23/content_8237343.htm for details.

  3. As many extant literature noted (Day et al. 2012; Kovács and Spens 2007; Tatham and Spens 2011), we here consider the donation resources flow after a disaster has taken place.

  4. See Website: http://www.sznews.com/news/content/2013-04/22/content_7965172_2.htm for details.

  5. Note that in this transformation, we use the relation \(\left( {a-b} \right) ^{+}=a-\hbox {min}\left( {a,b} \right) \).

  6. We acknowledge that the real demand or donation distributions of a disaster will show more complexities, rather than a uniform distribution. The assumption offers more conveniences for providing a closed-form solution.

  7. The subscript i is omitted because we here only consider a single disaster event, i.e., \(n=1\).

References

  • Altay, N., & Green, W. G, I. I. I. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175, 475–493.

    Article  Google Scholar 

  • Balcik, B., & Ak, D. (2014). Supplier selection for framework agreements in humanitarian relief. Production and Operations Management, 23, 1028–1041.

    Article  Google Scholar 

  • Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of Logistics, 11, 101–121.

    Article  Google Scholar 

  • Beamon, B. M., & Kotleba, S. A. (2006a). Inventory management support systems for emergency humanitarian relief operations in South Sudan. The International Journal of Logistics Management, 17, 187–212.

    Article  Google Scholar 

  • Beamon, B. M., & Kotleba, S. A. (2006b). Inventory modelling for complex emergencies in humanitarian relief operations. International Journal of Logistics: Research and Applications, 9, 1–18.

    Article  Google Scholar 

  • Boswell, M. R., Deyle, R. E., Smith, R. A., & Baker, E. J. (1999). A quantitative method for estimating probable public costs of hurricanes. Environmental Management, 23, 359–372.

    Article  Google Scholar 

  • Campbell, A. M., & Jones, P. C. (2011). Prepositioning supplies in preparation for disasters. European Journal of Operational Research, 209, 156–165.

    Article  Google Scholar 

  • Chakravarty, A. K. (2011). A contingent plan for disaster response. International Journal of Production Economics, 134, 3–15.

    Article  Google Scholar 

  • Chakravarty, A. K. (2014). Humanitarian relief chain: Rapid response under uncertainty. International Journal of Production Economics, 151, 146–157.

    Article  Google Scholar 

  • Day, J. M., Melnyk, S. A., Larson, P. D., Davis, E. W., & Whybark, D. C. (2012). Humanitarian and disaster relief supply chains: A matter of life and death. Journal of Supply Chain Management, 48, 21–36.

    Article  Google Scholar 

  • Duran, S., Gutierrez, M. A., & Keskinocak, P. (2011). Pre-positioning of emergency items for CARE international. Interfaces, 41, 223–237.

    Article  Google Scholar 

  • Ertem, M. A., Buyurgan, N., & Rossetti, M. D. (2010). Multiple-buyer procurement auctions framework for humanitarian supply chain management. International Journal of Physical Distribution & Logistics Management, 40, 202–227.

    Article  Google Scholar 

  • Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in disaster operations management. European Journal of Operational Research, 230, 201–211.

    Article  Google Scholar 

  • Gao, J., Jia, Y., Li, B., & Li, C. (2005). The historical and present situation of the state reserve system of rescue goods and materials. Recent Developments in World Seismology, 35, 5–12.

    Google Scholar 

  • Guha-Sapir, D., Hoyois, P., Below, R. (2015). Annual disaster statistical review 2014: The numbers and trends. Centre for Research on the Epidemiology of Disasters (CRED), Université catholique de Louvain.

  • Hwang, H.-S. (1999). A food distribution model for famine relief. Computers & Industrial Engineering, 37, 335–338.

    Article  Google Scholar 

  • Khouja, M. (1996). A note on the Newsboy problem with an emergency supply option. Journal of the Operational Research Society, 47, 1530–1534.

    Article  Google Scholar 

  • Khouja, M. (1999). The single-period (news-vendor) problem: Literature review and suggestions for future research. Omega, 27, 537–553.

    Article  Google Scholar 

  • Kovács, G., & Spens, K. M. (2011). Trends and developments in humanitarian logistics-a gap analysis. International Journal of Physical Distribution & Logistics Management, 41, 32–45.

    Article  Google Scholar 

  • Kovács, G., & Spens, K. M. (2007). Humanitarian logistics in disaster relief operations. International Journal of Physical Distribution and Logistics Management, 37, 99–114.

    Article  Google Scholar 

  • Liang, L., Wang, X., & Gao, J. (2012). An option contract pricing model of relief material supply chain. Omega, 40, 594–600.

    Article  Google Scholar 

  • Lodree, E. J, Jr. (2011). Pre-storm emergency supplies inventory planning. Journal of Humanitarian Logistics and Supply Chain Management, 1, 50–77.

    Article  Google Scholar 

  • Lodree, E. J, Jr., & Taskin, S. (2008). An insurance risk management framework for disaster relief and supply chain disruption inventory planning. Journal of the Operational Research Society, 59, 674–684.

    Article  Google Scholar 

  • Ma, M., & Malik, S. (2016). Bundling of vertically differentiated products in a supply chain. Decision Sciences, Article in Advance, doi:10.1111/deci.12238.

  • Müller, A., & Stoyan, D. (2002). Comparison methods for stochastic models and risks. Hoboken, NJ: Wiley.

    Google Scholar 

  • Özdamar, L., Ekinci, E., & Küçükyazici, B. (2004). Emergency logistics planning in natural disasters. Annals of Operations Research, 129, 217–245.

    Article  Google Scholar 

  • Pando, V., San-José, L. A., García-Laguna, J., & Sicilia, J. (2013). A newsboy problem with an emergency order under a general backorder rate function. Omega, 2013, 1020–1028.

    Article  Google Scholar 

  • Porteus, E. L. (1990). Stochastic inventory theory. In Handbooks in operations research and management science (pp. 605–652). Amsterdam: Elsevier.

  • Tatham, P., & Spens, K. M. (2011). Towards a humanitarian logistics knowledge management system. Disaster Prevention and Management, 20, 6–26.

    Article  Google Scholar 

  • Tomasini, R. M., & Van Wassenhove, L. N. (2009). From preparedness to partnerships: Case study research on humanitarian logistics. International Transactions in Operational Research, 16, 549–559.

    Article  Google Scholar 

  • Van Wassenhove, L. N., & Martinez, A. J. P. (2012). Using OR to adapt supply chain management best practices to humanitarian logistics. International Transactions in Operational Research, 19, 307–322.

    Article  Google Scholar 

  • Wang, W. (2013). Several problems in the acceptance of social donation when major disasters occured, Web of the Red Cross Society of China Jiangsu Branch.

  • Wang, X., Li, F., Liang, L., Huang, Z., & Ashley, A. (2015). Pre-purchasing with option contract and coordination in a relief supply chain. International Journal of Production Economics, 167, 170–176.

    Article  Google Scholar 

  • Wang, X., Wu, Y., Liang, L., & Huang, Z. (2016). Service outsourcing and disaster response methods in a relief supply chain. Annals of Operations Research, 240, 471–487.

    Article  Google Scholar 

  • Whybark, D. C. (2007). Issues in managing disaster relief inventories. International Journal of Production Economics, 108, 228–235.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and two anonymous referees for their constructive suggestions that helped improve the paper significantly. This work was supported by the National Natural Science Foundation of China (Nos. 71401082, 71501084, 71671078, and 71110107024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Qing Yao.

Appendix 1: Mathematical proofs

Appendix 1: Mathematical proofs

Proof of Theorem 1

We first present the proof of the convexity of \(TC\left( Q \right) \). Differentiating the expected total costs with respect to Q, we have the following

$$\begin{aligned} \frac{\partial TC(Q)}{\partial Q}= & {} c-v+\sum _{i=1}^n {[\pi _i (t_i +v-p_i )\Pr (\xi _i>Q)]} \nonumber \\&{-\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )\Pr (\xi _i -Q<D_i ,\xi _i>Q)]} } \nonumber \\&{-\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{s}+t_i^s )\Pr (\xi _i -Q>D_i ,\xi _i>Q)]} } \nonumber \\&{-\sum _{e_i \in \mathbf{e}_{\bar{\mathbf{d}}} } {[\pi _i (c^{s}+t_i^s )\Pr (\xi _i >Q)]} }, \end{aligned}$$
(15)
$$\begin{aligned} \frac{\partial ^{2}TC(Q)}{\partial Q^{2}}= & {} \sum _{i=1}^n {[\pi _i (p_i -t_i -v)f_{\xi _i } (Q)]} +\sum _{e_i \in \mathbf{e}_{\bar{\mathbf{d}}} } {[\pi _i (c^{s}+t_i^s )f_{\xi _i } (Q)]} \nonumber \\&{+\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{s}+t_i^s -c^{d}-t_i^d )\Pr (\xi _i>Q)f_{\xi _i -D_i |\xi _i>Q} (Q)]} } \nonumber \\&{+\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )\Pr (\xi _i -D_i <Q|\xi _i>Q)f_{\xi _i } (Q)]} } \nonumber \\&{+\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{s}+t_i^s )\Pr (\xi _i -D_i>Q|\xi _i >Q)f_{\xi _i } (Q)]} } \nonumber \\&-\, \sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )f_{\xi _i } (Q)]} . \end{aligned}$$
(16)

Rearranging condition (1) yields \(\mathop \sum \nolimits _{i=1}^n \pi _i \left( {p_i -t_i -v} \right)>c-v>0\). Thus, the first term of the RHS of Eq. (16) is positive. Recall in the subset \(e_{\mathbf{d}}\), the relation \(c^{d}+t_i^d \le c^{s}+t_i^s \) holds. Together with the conditions showed in Eq. (2), we have the following:

$$\begin{aligned}&\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )\Pr (\xi _i -D_i <Q|\xi _i>Q)f_{\xi _i } (Q)]} \nonumber \\&\quad {+\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{s}+t_i^s )\Pr (\xi _i -D_i>Q|\xi _i >Q)f_{\xi _i } (Q)]} } \nonumber \\&\quad -\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )f_{\xi _i } (Q)]} \nonumber \\&\quad {\ge \sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )f_{\xi _i } (Q)]} -} \sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )f_{\xi _i } (Q)]} =0. \end{aligned}$$
(17)

Substituting Eqs. (17) into (16), we have the result \(\partial ^{2}TC\left( Q \right) /\partial Q^{2}>0\), which means that \(TC\left( Q \right) \) is strictly convex in Q. Thus, we can employ the first order condition (FOC) to determine the optimal pre-positioning inventory, as Eq. (3) shows. Moreover, from Eq. (15), we have \(\mathop {\lim }\nolimits _{Q\rightarrow 0} \partial TC\left( Q \right) /\partial Q<0\) and \(\mathop {\lim }\nolimits _{Q\rightarrow +\infty } \partial TC\left( Q \right) /\partial Q>0\). Together with the property that \(\partial TC\left( Q \right) /\partial Q\) is increasing in Q, we determine that the optimal solution showed in Eq. (3) uniquely exist. \(\square \)

Proof of Proposition  1

Employing the implicit function theorem, we differentiate Eq. (5) w.r.t L and derive

$$\begin{aligned}&\sum _{i=1}^n {[\pi _i C_i f_{\xi _i } (Q^{*})]} \frac{\partial Q^{*}}{\partial L}-\sum _{e_i \in \mathbf{e}_{\mathbf{d}}} {[\pi _i (C_i^s -C_i^d )f_{\xi _i -D_i |\xi _i>Q^{*}} (Q^{*})]} \frac{\partial Q^{*}}{\partial L} \nonumber \\&\quad {-\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i C_i^d \Pr (\xi _i -Q^{*}<D_i |\xi _i>Q^{*})f_{\xi _i } (Q^{*})]} \frac{\partial Q^{*}}{\partial L}} \nonumber \\&\quad {-\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i C_i^s \Pr (\xi _i -Q^{*}>D_i |\xi _i >Q^{*})f_{\xi _i } (Q^{*})]} \frac{\partial Q^{*}}{\partial L}} \nonumber \\&\quad + \sum _{e_i \in \mathbf{e}_{\bar{\mathbf{d}}} } {[\pi _i C_i^d f_{\xi _i } (Q^{*})]} \frac{\partial Q^{*}}{\partial L}-\sum _{e_i \in \mathbf{e}_{\bar{\mathbf{d}}} } {[\pi _i C_i^s f_{\xi _i } (Q^{*})]} \frac{\partial Q^{*}}{\partial L}=1. \end{aligned}$$
(18)

Note that \(\mathop \sum \nolimits _{i=1}^n \left[ {\pi _i C_i f_{\xi _i } \left( {Q^{*}} \right) } \right] =\mathop \sum \nolimits _{e_i \in \mathbf{e}_{\mathbf{d}} } \left[ {\pi _i C_i f_{\xi _i } \left( {Q^{*}} \right) } \right] +\mathop \sum \nolimits _{e_i \in \mathbf{e}_{\bar{\mathbf{d}}} } \left[ {\pi _i C_i f_{\xi _i } \left( {Q^{*}} \right) } \right] \). Using the relations established in Eqs. (3) and (17), we know that the coefficient of \(\partial Q^{*}/\partial L\) on the LHS of Eq. (18) is negative, which means that \(\partial Q^{*}/\partial L\le 0\) is established. Similarly, we can derive the results \(\partial Q^{*}/\partial C_i \le 0\), \(\partial Q^{*}/\partial C_i^d \ge 0\), and \(\partial Q^{*}/\partial C_i^s \ge 0\). Moreover, for the effects of parameter L on the expected total cost, we using the following equation:

$$\begin{aligned} \frac{dTC(Q^{*})}{dL}=\frac{\partial TC(Q^{*})}{\partial L}+\frac{\partial TC(Q^{*})}{\partial Q^{*}}\frac{dQ^{*}}{dL}. \end{aligned}$$
(19)

Recognizing \(\partial TC\left( {Q^{*}} \right) /\partial Q^{*}=0\), we have \(\hbox {d}TC\left( {Q^{*}} \right) /\hbox {d}L\ge 0\). Using the similar methods, we have the other relations in Proposition 1. \(\square \)

Proof of Proposition 2

Consider the case of \(\mathbf{e}_{\bar{\mathbf{d}}} =\emptyset \), the relation \(C^{s}\ge C^{d}\) can be established. Hence, for a fixed denotation quantity D, we can reformulate Eq. (5) as

$$\begin{aligned}&-\pi C\bar{{F}}_{\xi _1 } (Q^{*})-(1-\pi -\bar{\pi })C\bar{{F}}_{\xi _2 } (Q^{*})+\pi C^{d}[F_{\xi _1 } (D+Q^{*})-F_{\xi _1 } (Q^{*})]\nonumber \\&\quad +\,{(1-\pi -\bar{\pi })C^{d}[F_{\xi _2 } (D+Q^{*})-F_{\xi _2 } (Q^{*})]} +\pi C^{s}\bar{{F}}_{\xi _1 } (D+Q^{*})\nonumber \\&\quad + \,(1-\pi -\bar{\pi })C^{s}\bar{{F}}_{\xi _2 } (D+Q^{*})=L. \end{aligned}$$
(20)

Differentiating Eq. (20) w.r.t \(\pi \), we have

$$\begin{aligned} \frac{\partial Q^{*}}{\partial \pi }=\frac{\left( {C-C^{d}} \right) \left[ {\bar{{F}}_{\xi _2 } \left( {Q^{*}} \right) -\bar{{F}}_{\xi _1 } \left( {Q^{*}} \right) } \right] -\left( {C^{s}-C^{d}} \right) \left[ {\bar{{F}}_{\xi _2 } \left( {Q^{*}+D} \right) -\bar{{F}}_{\xi _1 } \left( {D+Q^{*}} \right) } \right] }{\left( {{\begin{array}{c} {\pi \left( {C^{d}-C} \right) f_{\xi _1 } \left( {Q^{*}} \right) +\left( {1-\pi -\bar{\pi }} \right) \left( {C^{d}-C} \right) f_{\xi _2 } \left( {Q^{*}} \right) } \\ {+\pi \left( {C^{s}-C^{d}} \right) f_{\xi _1 } \left( {D+Q^{*}} \right) +\left( {1-\pi -\bar{\pi }} \right) \left( {C^{s}-C^{d}} \right) f_{\xi _2 } \left( {D+Q^{*}} \right) } \\ \end{array} }} \right) }. \end{aligned}$$

Note that \(\bar{{F}}_{\xi _2 } (\cdot )\ge \bar{{F}}_{\xi _1 } (\cdot )\) when \(\xi _1 \le _{st} \xi _2 \), \(C\le C^{d}\), and \(C^{s}\ge C^{d}\) for \(\mathbf{e}_{\bar{\mathbf{d}}} =\emptyset \). Therefore, we have \(\partial Q^{*}/\partial \pi \le 0\).

Employing Eq. (19) with respect to parameter \(\pi \), we derive the partial derivative \(dTC\left( {Q^{*}} \right) /d\pi \) for the case of \(\mathbf{e}_{\bar{\mathbf{d}}} =\emptyset \):

$$\begin{aligned} \frac{dTC(Q^{*})}{d\pi }= & {} C\hbox {E}\min (\xi _1 ,Q)-C\hbox {E}\min (\xi _2 ,Q) \nonumber \\&{+\,C^{d}\hbox {E}\min (D,(\xi _1 -Q)^{+})-C^{d}\hbox {E}\min (D,(\xi _2 -Q)^{+})} \nonumber \\&{+\,C^{s}\hbox {E}((\xi _1 -Q)^{+}-D)^{+}-} C^{s}\hbox {E}((\xi _2 -Q)^{+}-D)^{+}. \end{aligned}$$
(21)

Note that if \(\xi _1 \le _{st} \xi _2\), then the inequality \(\hbox {E}f\left( {\xi _1 } \right) \le \hbox {E}f\left( {\xi _2 } \right) \) holds for all increasing functions f (Müller and Stoyan 2002). Since the functions \(\hbox {min}\left( {\cdot ,Q} \right) \), \(\hbox {min}\left( {D,\left( {\cdot -Q} \right) ^{+}} \right) \), and \(\left( {\left( {\cdot -Q} \right) ^{+}-D} \right) ^{+}\) are increasing in variable, thus we have \(\hbox {Emin}\left( {\xi _1 ,Q} \right) \le \hbox {Emin}\left( {\xi _2 ,Q} \right) \), \(\hbox {Emin}\left( {D,\left( {\xi _1 -Q} \right) ^{+}} \right) \le \hbox {Emin}\left( {D,\left( {\xi _2 -Q} \right) ^{+}} \right) \), and \(\hbox {E}\left( {\left( {\xi _1 -Q} \right) ^{+}-D} \right) ^{+}\le \hbox {E}\big ( \big ( {\xi _2 -Q} \big )^{+}-D \big )^{+}\). Therefore, we have \(dTC\left( {Q^{*}} \right) /d\pi \le 0\). Moreover, one can use the similar approach to prove the case of \(\mathbf{e}_{\mathbf{d}} =\emptyset \). \(\square \)

Proof of Theorem 2

We here only show the convexity of \(TC\left( {\hat{Q}} \right) \). The other parts of Theorem  rm 2 can be proved by employing a similar approach of the proof of Theorem 1. Differentiating the expected total costs with respect to \(\hat{Q}\) twice, we have the following:

$$\begin{aligned} \frac{\partial ^{2}TC(\hat{Q})}{\partial \hat{Q}^{2}}= & {} \sum _{i=1}^n {\lambda ^{2}\pi _i [(\hat{v}-v)-(\hat{{t}}_i -t)]f_{\xi _i } (\lambda \hat{Q})} \nonumber \\&{+\sum _{i=1}^n {\pi _i [p_i -\hat{v}-\hat{{t}}_i )]f_{\xi _i } (\hat{Q})} } +\sum _{e_i \in \mathbf{e}_{\bar{\mathbf{d}}} } {[\pi _i (c^{s}+t_i^s )f_{\xi _i } (\hat{Q})]} \nonumber \\&{+\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{s}+t_i^s -c^{d}-t_i^d )\Pr (\xi _i>\hat{Q})f_{\xi _i -D_i |\xi _i>\hat{Q}} (\hat{Q})]} } \nonumber \\&{+\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )\Pr (\xi _i -D_i <\hat{Q}|\xi _i>\hat{Q})f_{\xi _i } (\hat{Q})]} } \nonumber \\&{+\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{s}+t_i^s )\Pr (\xi _i -D_i>\hat{Q}|\xi _i >\hat{Q})f_{\xi _i } (\hat{Q})]} } \nonumber \\&{-\sum _{e_i \in \mathbf{e}_{\mathbf{d}} } {[\pi _i (c^{d}+t_i^d )f_{\xi _i } (\hat{Q})]} }. \end{aligned}$$
(22)

From the relations \(\hat{v}-v>\hat{{t}}_i -t_i\) and \(p_i >\hat{v}+\hat{{t}}_i\), we can derive the result \(\partial ^{2}TC\left( {\hat{Q}} \right) /\partial \hat{Q}^{2}>0\) based on Eq. (17). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liang, L. & Yao, DQ. Pre-positioning of relief inventories for non-profit organizations: a newsvendor approach. Ann Oper Res 259, 35–63 (2017). https://doi.org/10.1007/s10479-017-2521-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2521-4

Keywords

Navigation