Skip to main content
Log in

A carrier–shipper contract under asymmetric information in the ocean transport industry

  • OR in Transportation
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study the carrier–shipper contracting issue in a single time period (i.e., 1 year) consisting of a low demand season followed by a high demand season under asymmetric information arising from the ocean freight industry. In order to address the contract default problem that is prominent in this industry, we propose a proportion requirement policy in which the capacity allocated to the shipper at the contract price in the high demand season is proportional to his quantity commitment in the low demand season. The shipper has private information about the low season demand while the carrier does not. To induce truthful information revelation, the carrier offers a bundle consisting of two two-part tariff contracts, each of which targets for one market state. In our model, the carrier determines the contract bundle to maximize her expected profit in both seasons. The shipper decides which contract to sign after observing the market state, and then determines the optimal shipping quantity to minimize his total expected cost. We characterize the carriers optimal contract bundle under asymmetric information and the shippers optimal strategy for each market state. The analytical results show that both the carrier and the shipper can be better off with an appropriately designed contract bundle compared with replying solely on the spot market under certain conditions. We also investigate how the outcomes of the system (e.g., the shippers optimal commitment quantity, the optimal contract price, the information rent and the carriers expected profit) are affected by the proportion requirement parameter, the degree of information asymmetry, and the uncertainty of the market state type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Again, we emphasize that the current paper only considers the information asymmetry exists in the low season due to the technical difficulties. Assuming that the information asymmetry of shipping demand exists in both the low and the high season, it will be much difficult when trying to analyze the tightness of the constraints due to the mathematical complexities. Evidently, this will prevent from converting the constrained optimization problem into the unconstrained one. In this scenario, we fails to derive the optimal solution to the carrier’s problem (4).

References

  • Alizadeh, A. H. (2013). Trade volume and volatility in the shipping forward freight market. Transportation Research Part E, 49, 250–265.

    Article  Google Scholar 

  • Amaruchkul, K., Cooper, W. L., & Gupta, D. (2011). A note on air-cargo capacity contracts. Production and Operations Management, 20(1), 152–162.

    Article  Google Scholar 

  • Bu, X., Xu, L., & Su, L. (2008). International pricing and allotment of sea-cargo capacity under reference effect. Journal of Service Science and Management, 3(1), 206–214.

    Article  Google Scholar 

  • Fransoo, J. C., & Lee, C.-Y. (2013). The critical role of ocean container transport in global supply chain performance. Productions and Operations Management, 22(2), 253–268.

    Article  Google Scholar 

  • Garrido, R. A. (2007). Procurement of transportation services in spot markets under a double-auction scheme with elastic demand. Transportation Research Part B, 41, 1067–1078.

    Article  Google Scholar 

  • Gorman, M. (2001). International pricing model creates a network pricing perspective at BNSF. Interfaces, 31(4), 37–49.

    Article  Google Scholar 

  • Gorman, M. (2002). Pricing and market mix optimization in freight transportation. Transportation Quarterly, 56(1), 135–148.

    Google Scholar 

  • Hellermann, R. (2006). Capacity options for revenue management: Theory and applications in the air cargo industry. New York: Springer.

    Google Scholar 

  • Hueley, W. J., & Petersen, E. R. (1994). Nonlinear tariffs and freight network equilibrium. Transportation Science, 28(3), 236–245.

    Article  Google Scholar 

  • Kavussanos, M. G., Visvikes, I. D., & Batchelor, R. A. (2004). Over the counter forward contracts and spot price volatility in shipping. Transportation Research Part E, 40, 272–296.

    Google Scholar 

  • Laffont, J.-J., & Martimort, D. (2002). The theory of incentives. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lee, C. Y., Tang, C. S., Yin, R., & An, J. (2015). Fractional price matching policies arising from the ocean freight service industry. Production and Operations Management, 24(7), 1118–1134.

  • Lee, L. H., Chew, E. P., & Sim, M. S. (2007). A heuristic to solve a sea cargo revenue management problem. OR Spectrum, 29, 123–136.

    Article  Google Scholar 

  • Li, & Fung. (2014). China Trade Quatterly-Domestic and Foreign. Global Economic Analysis & Reports. 1–2.

  • Lim, A., Rodrigues, B., & Xu, Z. (2008). Transportation procurement with seasonally varying customer demand and volume guarantees. Operations Research, 56(3), 758–771.

    Article  Google Scholar 

  • Merge, G. (2008). Insomnia: Why challenges facing the world container industry make for more nightmares than they should. American Customer, 6, 68–85.

    Google Scholar 

  • Nielsen, P., Jiang, L., Rytter, N., & Chen, G. (2014). An investigation of forecast horizon and observation fit’s influence on an econometric rate forecast model in the liner shipping industry. Maritime Policy and Management, 41(7), 667–682.

    Article  Google Scholar 

  • Pachon, J., Erkoc, M., & Iakovou, E. (2007). Contract optimization with front-end fare discounts for airline corporate deals. Transportation Research Part E, 43, 425–441.

    Article  Google Scholar 

  • Wan, K., & Levary, R. (1995). A linear-programming-based price negotiation procedure for contracting shipping companies. Transportation Research, 29(3), 173–186.

    Google Scholar 

  • Xu, L., Bu, X., & Tian, L. (2010). Study on marine shipping contract allocation and pricing policy on shipper’s loss aversion. In The proceeding of 2010 international conference on service sciences.

  • Yang, R., Gao, X., & Lee, C. Y. (2016). A novel floating price contract for the ocean freight industry. To appear in IIE Transactions.

  • Yang, R., Yu, M., & Lee, C. Y. (2015). Contracting in ocean shipping market under asymmetric information (working paper).

Download references

Acknowledgements

The first author is supported by National Natural Science Foundation of China (NSFC) under project no. 71390333 and 71501154, and the Hong Kong Research Grants Council Theme-based Research Project No. T32-620/11. The second, the third and the fourth authors are fully supported by a grant from the Research Grants Council of the HKSAR, China, T32-620/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruina Yang.

Appendix

Appendix

1.1 Proof of Proposition 1

Proof

We claim that the shipper’s expected cost function (2) is convex in q. As the first and the second derivatives of \(\pi _\theta (B^d)\) with respect to q are given by

$$\begin{aligned} \frac{\partial {\pi _\theta (B^d)}}{\partial {q}}= & {} w^d +\frac{\eta \left( q-\overline{D}^{\theta }_{L}\right) }{2}-\frac{\left( \eta \mu _{H}-w^d\right) \left( \alpha \overline{D}_{H}-\alpha ^2 q\right) }{\overline{D}_{H}-\underline{D}_{H}}. \end{aligned}$$
(A.1)

And

$$\begin{aligned} \frac{\partial {\pi _\theta (B^d)}^{2}}{\partial ^{2}{q}}= & {} \frac{\eta }{2}+\frac{\left( \eta \mu _{H}-w^d\right) \alpha ^2}{\overline{D}_{H}-\underline{D}_{H}}>0. \end{aligned}$$
(A.2)

Obviously, the shipper’s optimal commitment quantity at the low season is determined by the first order condition. That is

$$\begin{aligned} q= & {} \frac{\left( \eta \mu ^{\theta }_{L}-w^d\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \overline{D}_{H}\left( \eta \mu _{H}-w^d\right) }{\frac{\eta }{2}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) }. \end{aligned}$$
(A.3)

Moreover, considering that the shipper’s commitment quantity should be non-negative and the proportion requirement parameter \(\alpha \) is no less than 1, hence we draw the following conclusion.

When the market state is \(\theta \), and the shipper selects the contract type d, the shipper’s optimal commitment quantity at the contract price in the low demand season, denoted by \(q^{d*}_{\theta }\), is uniquely determined by

$$\begin{aligned} q^{d*}_\theta =\left\{ \begin{array}{ll} \frac{\left( \eta \mu ^{\theta }_{L}-w^d\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \overline{D}_{H}\left( \eta \mu _{H}-w^d\right) }{\frac{\eta }{2}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) }, &{} \hbox {if } \alpha \ge \max \bigg \{1,\left( 1-\frac{\underline{D}_{H}}{\overline{D}_{H}}\right) \frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}\bigg \} ; \\ 0, &{} \hbox {if } \alpha <\max \bigg \{1, \left( 1-\frac{\underline{D}_{H}}{\overline{D}_{H}}\right) \frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}\bigg \}. \end{array} \right. \end{aligned}$$

\(\square \)

1.2 Proof of Proposition 2

Proof

\((\text {i})\) As \(\overline{D}_{H}-\underline{D}_{H}>0\), we may quickly get that \(\frac{\partial {q_\theta ^d}}{\partial {\mu ^{\theta }_{L}}}>0\).

\((\text {ii})\) From Proposition 1, we may easily derive the first derivative of \(q_\theta ^d\) with respect to \(\eta \),

$$\begin{aligned}&\frac{\partial {q_\theta ^d}}{\partial {\eta }} =\frac{\left[ \mu ^{\theta }_{L}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \mu _{H}\overline{D}_{H}\right] \left[ \frac{\eta }{2}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] }{\left[ \frac{\eta }{2}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] ^2}\nonumber \\&\quad -\frac{\left[ \frac{1}{2}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2 \mu _H\right] \left[ \left( \eta \mu ^{\theta }_{L}-w^d\right) \left( \overline{D}_{H} -\underline{D}_{H}\right) +\alpha \overline{D}_{H} \left( \eta \mu _{H}-w^d\right) \right] }{\left[ \frac{\eta }{2} \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] ^2}\nonumber \\&\quad =\frac{\frac{w^d\left( \overline{D}_{H}-\underline{D}_{H}\right) ^2}{2}+\frac{\alpha w^d\overline{D}_{H}\left( \overline{D}_{H}-\underline{D}_{H}\right) }{2} +\alpha ^2\left( \mu ^{\theta }_{L}-\mu _{H}\right) w^d\left( \overline{D}_{H} -\underline{D}_{H}\right) }{\left[ \frac{\eta }{2}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] ^2}>0. \end{aligned}$$
(A.4)

\((\text {iii})\) From Proposition 1, the first derivative of \(q_\theta ^d\) with respect to \(\alpha \) is given by

$$\begin{aligned} \frac{\partial {q_\theta ^d}}{\partial {\alpha }}= & {} \frac{\overline{D}_{H}\left( \eta \mu _{H}-w^d\right) \left[ \frac{\eta }{2}\left( \overline{D}_{H} -\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] }{\left[ \frac{\eta }{2}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] ^2}\\&-\frac{2\alpha \left( \eta \mu _{H}-w^d\right) \left[ \left( \eta \mu _{L}-w^d\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \overline{D}_{H}\left( \eta \mu _{H}-w^d\right) \right] }{\left[ \frac{\eta }{2} \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] ^2}\\= & {} \frac{\left( \eta \mu _{H}-w^d\right) \left[ \frac{\eta }{2}\overline{D}_{H}\left( \overline{D}_{H} -\underline{D}_{H}\right) -\alpha ^2\overline{D}_{H}\left( \eta \mu _{H}-w^d\right) -2\alpha \left( \eta \mu _{L}-w^d\right) \left( \overline{D}_{H} -\underline{D}_{H}\right) \right] }{\left[ \frac{\eta }{2}\left( \overline{D}_{H} -\underline{D}_{H}\right) +\alpha ^2\left( \eta \mu _{H}-w^d\right) \right] ^2}. \end{aligned}$$

Clearly, if \((1-\frac{\underline{D}_{H}}{\overline{D}_{H}})\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}<\alpha \le (1-\frac{\underline{D}_{H}}{\overline{D}_{H}})\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}+\sqrt{(1-\frac{\underline{D}_{H}}{\overline{D}_{H}})^2(\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d})^2+\frac{\eta (\overline{D}_{H}-\underline{D}_{H})}{2(\eta \mu _H-w^d)}}\), we get \(\frac{\partial {q_\theta ^d}}{\partial {\alpha }}\ge 0\). Otherwise, if \(\alpha > (1-\frac{\underline{D}_{H}}{\overline{D}_{H}})\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}+\sqrt{(1-\frac{\underline{D}_{H}}{\overline{D}_{H}})^2(\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d})^2+\frac{\eta (\overline{D}_{H}-\underline{D}_{H})}{2(\eta \mu _H-w^d)}}\), we derive \(\frac{\partial {q_\theta ^d}}{\partial {\alpha }}<0\).

As \(\alpha \ge 1\), we conclude that the optimal commitment quantity \(q_\theta ^d\) is increasing with \(\alpha \) if \( \max \left\{ 1, (1{-}\frac{\underline{D}_{H}}{\overline{D}_{H}})\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}\right\} {\le }\alpha {\le } (1-\frac{\underline{D}_{H}}{\overline{D}_{H}})\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}+\sqrt{(1{-}\frac{\underline{D}_{H}}{\overline{D}_{H}})^2(\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d})^2{+}\frac{\eta (\overline{D}_{H}-\underline{D}_{H})}{2(\eta \mu _H-w^d)}}\). While the optimal commitment quantity \(q_\theta ^d\) is decreasing with \(\alpha \) if \(\alpha \le (1-\frac{\underline{D}_{H}}{\overline{D}_{H}})\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d}+\sqrt{(1-\frac{\underline{D}_{H}}{\overline{D}_{H}})^2(\frac{w^d-\eta \mu ^{\theta }_L}{\eta \mu _H-w^d})^2+\frac{\eta (\overline{D}_{H}-\underline{D}_{H})}{2(\eta \mu _H-w^d)}}\). \(\square \)

1.3 Proof of Theorem 1

Proof

Note that when the state type \(\theta \), where \(\theta =B\) or G, is also know to the carrier, the contract design problem for the carrier is actually a special case of problem (4). Hence, the proof of Theorem 1 follows directly from Theorem 2 by setting \(B^B=B^G=B^\theta \), that is \(w^B=w^G=w^\theta \) and \(T^B=T^G=T^\theta \).

Next, we turn to justify the assumptions that the contract price is higher than the spot market price in the low season, while it is lower than the spot price in the high season.

$$\begin{aligned} \eta \mu _H-w^\theta _S= & {} \eta \mu _H-\frac{\eta \mu _{H} \alpha \left( \overline{D}_{H}-2\alpha \mu ^{\theta }_{L}\right) }{\overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H} -2\alpha \mu ^{\theta }_{L}\right) }\nonumber \\= & {} \frac{\eta \mu _H\left( \overline{D}_{H}-\underline{D}_{H}\right) }{\overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H} -2\alpha \mu ^{\theta }_{L}\right) }>0. \end{aligned}$$
(A.5)
$$\begin{aligned} \eta \mu ^{\theta }_L-w^\theta _S= & {} \eta \mu ^{\theta }_L-\frac{\eta \mu _{H} \alpha \left( \overline{D}_{H}-2\alpha \mu ^{\theta }_{L}\right) }{\overline{D}_{H} -\underline{D}_{H}+\alpha \left( \overline{D}_{H}-2\alpha \mu ^{\theta }_{L}\right) }\nonumber \\= & {} \frac{\eta \mu ^{\theta }_L\left( \overline{D}_{H}-\underline{D}_{H}\right) -\eta \alpha \left( \mu _H-\mu ^{\theta }_{L}\right) \left( \overline{D}_{H} -2\alpha \mu ^{\theta }_{L}\right) }{\overline{D}_{H}-\underline{D}_{H} +\alpha \left( \overline{D}_{H}-2\alpha \mu ^{\theta }_{L}\right) }. \end{aligned}$$
(A.6)

Obviously, only when \(\frac{\mu ^{\theta }_{L}}{\alpha (\mu _H-\mu ^{\theta }_{L})}\le \frac{\overline{D}_{H}-2\alpha \mu ^{\theta }_{L}}{\overline{D}_{H}-\underline{D}_{H}}\), we may get \(\eta \mu ^{\theta }_L-w^\theta _S<0\).

Finally, we claim that the reservation fee \(T^{\theta }_{S}\) is decreasing with the contract price \(w^{\theta }_{S}\),

$$\begin{aligned}&\frac{\partial {T^{\theta }_{S}}}{\partial {w^{\theta }_{S}}} =\frac{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2} \left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] \{2\overline{D}_{H}(-\alpha -1) \left[ \alpha \left( \eta \mu _{H}-w^{\theta }_{S}\right) +\left( \eta \mu ^{\theta }_{L}-w^{\theta }_{S}\right) \right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2} \left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] ^2}\\&\quad \frac{-\underline{D}_{H}\left[ -\frac{\eta }{2}\underline{D}_{H} +2\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) -2\left( \eta \mu ^{\theta }_{L}-w^{\theta }_{S}\right) \right] \}}{\left[ \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] ^2}\\&\quad +\frac{2\alpha ^{2}\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{\theta }_{S}\right) +\left( \eta \mu ^{\theta }_{L}-w^{\theta }_{S}\right) \right] ^{2}-2\alpha ^{2} \underline{D}_{H}\left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^{\theta }_{S}\right) -\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) ^{2} +\left( \eta \mu ^{\theta }_{L}-w^{\theta }_{S}\right) ^{2}\right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H} -w^{\theta }_{S}\right) \right] ^2}\\&\quad =\frac{2\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{\theta }_{S}\right) +\left( \eta \mu ^{\theta }_{L}-w^{\theta }_{S}\right) \right] \left[ -(1+\alpha )\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) -\alpha {^3}\left( \eta \mu _{H}-w^{\theta }_{S}\right) -2\alpha {^2}\eta \mu _{H}+\alpha ^2\left( \eta \mu ^{\theta }_{L}+w^{\theta }_{S}\right) \right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H} -w^{\theta }_{S}\right) \right] ^2}\\&\quad -\frac{2\alpha ^2\underline{D}_{H}\left[ \alpha ^2\left( \eta \mu _{H}-w^{\theta }_{S}\right) ^2 +\left( \eta \mu _{L}^{\theta }-w^{\theta }_{S}\right) ^2 -2\left( \eta \mu _{H}-w^{\theta }_{S}\right) \left( \eta \mu _{L}^{\theta }-w^{\theta }_{S}\right) \right] }{\left[ \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] ^2}\\&\quad -\frac{\underline{D}_{H}\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) \left[ -\frac{\eta }{2}\underline{D}_{H}+2\alpha ^2\left( \eta \mu _{H}-w^{\theta }_{S}\right) -2\left( \eta \mu _{L}^{\theta }-w^{\theta }_{S}\right) \right] }{\left[ \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] ^2}\\&\quad<\frac{2\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{\theta }_{S}\right) +\left( \eta \mu ^{\theta }_{L}-w^{\theta }_{S}\right) \right] \left[ -(1+\alpha )\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) -\alpha {^3}\left( \eta \mu _{H}-w^{\theta }_{S}\right) -2\alpha {^2}\eta \mu _{H}+\alpha ^2\left( \eta \mu _{L}^{\theta }+\eta \mu _H\right) \right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H} -w^{\theta }_{S}\right) \right] ^2}\\&\quad -\frac{2\alpha ^2\underline{D}_{H}\left( \eta \mu _H-\eta \mu _L^\theta \right) ^2}{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H} -w^{\theta }_{S}\right) \right] ^2}-\frac{\underline{D}_{H}\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) \left[ 2\alpha ^2\left( \eta \mu _{H}-w^{\theta }_{S}\right) -2\left( \eta \mu _{L}^{\theta } -w^{\theta }_{S}\right) -\frac{\eta }{2}\underline{D}_{H}\right] }{\left[ \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] ^2}\\&\quad<\frac{2\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{\theta }_{S}\right) +\left( \eta \mu ^{\theta }_{L}-w^{\theta }_{S}\right) \right] \left[ -(1+\alpha )\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) -\alpha {^3}\left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H} -w^{\theta }_{S}\right) \right] ^2}\\&\quad -\frac{2\alpha ^2\underline{D}_{H}\left( \eta \mu _H-\eta \mu _L^\theta \right) ^2}{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] ^2}-\frac{\underline{D}_{H}\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) \left[ 2\alpha ^2\left( \eta \mu _{H}-w^{\theta }_{S}\right) -2\left( \eta \mu _{L}^{\theta }-w^{\theta }_{S}\right) -\frac{\eta }{2} \underline{D}_{H}\right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{\theta }_{S}\right) \right] ^2}\\&\quad <0. \end{aligned}$$

\(\square \)

1.4 Proof of Proposition 3

Proof

\((\text {i})\) From Theorem 1, we may quickly derive that the optimal contract price under symmetric information is increasing with \(\eta \).

\((\text {ii})\) From Theorem 1, we may also get

$$\begin{aligned} \frac{\partial {w^{\theta }_{S}}}{\partial \mu ^{\theta }_L}= & {} \frac{-2\eta \mu _H\alpha ^{2} \left[ \overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H} -2\alpha \mu ^{\theta }_L\right) \right] +2\alpha ^2\alpha \eta \mu _H\left( \overline{D}_{H} -2\alpha \mu ^{\theta }_L\right) }{\left[ \overline{D}_{H}-\underline{D}_{H} +\alpha \left( \overline{D}_{H}-2\alpha \mu ^{\theta }_L\right) \right] ^{2}}\\= & {} -\frac{\alpha ^{2}\eta \mu _H\left( \overline{D}_{H}-\underline{D}_{H}\right) }{\left[ \overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H} -2\alpha \mu ^{\theta }_L\right) \right] ^{2}}<0. \end{aligned}$$

\((\text {iii})\) By Theorem 1, we obtain

$$\begin{aligned} \frac{\partial {w^{\theta }_{S}}}{\partial \alpha }= & {} \frac{\eta \mu _H\left( \overline{D}_{H}-4\alpha \mu ^{\theta }_L\right) \left[ \overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H} -2\alpha \mu ^{\theta }_L\right) \right] -\alpha \eta \mu _H\left( \overline{D}_{H} -2\alpha \mu ^{\theta }_L\right) \left( \overline{D}_{H}-4\alpha \mu ^{\theta }_L\right) }{\left[ \overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H} -2\alpha \mu ^{\theta }_L\right) \right] ^{2}}\\= & {} \frac{\eta \mu _H\left( \overline{D}_{H}-4\alpha \mu ^{\theta }_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) }{\left[ \overline{D}_{H} -\underline{D}_{H}+\alpha \left( \overline{D}_{H}-2\alpha \mu ^{\theta }_L\right) \right] ^{2}} \end{aligned}$$

Therefore, we conclude that if \(1<\alpha \le \frac{\overline{D}_{H}}{4\mu ^{\theta }_L}\), the optimal contract price is increasing with \(\alpha \); otherwise if \(\frac{\overline{D}_{H}}{4\mu ^{\theta }_L}<\alpha \le \frac{\overline{D}_{H}}{2\mu ^{\theta }_L}\), the optimal contract price is decreasing with \(\alpha \). \(\square \)

1.5 Proof of Theorem 2

Proof

After substituting the shipper’s expected cost function (3) into the carrier’s optimization problem (4), the carrier’s contract design problem can be simplified as follows:

$$\begin{aligned}&\Pi =\max _{B^{B}(\cdot ),B^{G}(\cdot )}\left\{ \rho \left[ T^B+w^{B}q^{*B}_{B} +(w^{B}-P_H)\min \left( \alpha q^{*B}_{B},D_H\right) +P_H K\right] \right. \nonumber \\&\quad \left. +(1-\rho )\left[ T^G+w^{G}q^{*G}_{G}+(w^{G}-P_H) \min (\alpha q^{*G}_{G},D_H)+P_H K\right] \right\} \nonumber \\&\quad s.t. \quad \left\{ \begin{array}{ll} \frac{\overline{D}_{H}\left[ \alpha (\eta \mu _{H}-w^B)+\left( \eta \mu ^{B}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H}\left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }-T^B\ge 0, \\ \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^G\right) +\left( \eta \mu ^{G}_{L}-w^G\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}\left( \eta \mu _{H}-w^G\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }-T^G\ge 0, \\ \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{B}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }-T^B\ge \\ \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^G\right) +\left( \eta \mu ^{B}_{L}-w^G\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}\left( \eta \mu _{H}-w^G\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }-T^G,\\ \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^G\right) +\left( \eta \mu ^{G}_{L}-w^G\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}\left( \eta \mu _{H}-w^G\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }-T^G\ge \\ \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{G}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }-T^B. \end{array}\right. \nonumber \\ \end{aligned}$$
(A.7)

We claim that the first and last constraints are binding.

First of all, we claim that if the first and fourth constraints hold, the second constraint will hold automatically. To see this, notice that from the first constraint, we have

$$\begin{aligned} -T^{B}\ge -\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{B}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }.\nonumber \\ \end{aligned}$$
(A.8)

Since \(\mu ^{G}_{L}>\mu ^{B}_{L}\) and \(\alpha \overline{D}_{H}(\eta \mu _{H}-w^B)+(\overline{D}_{H} -\underline{D}_{H})(\eta \mu ^B_{L}-w^B)>0\), substituting (A.8) into the last constraint yields

$$\begin{aligned}&\frac{\overline{D}_{H}\left[ \alpha (\eta \mu _{H}-w^G)+\left( \eta \mu ^{G}_{L}-w^G\right) \right] ^{2} -\underline{D}_{H}\left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}\left( \eta \mu _{H}-w^G\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }-T^G\\&\quad \ge \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{G}_{L}-w^B\right) \right] ^{2} -\underline{D}_{H}\left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }-T^B\\&\quad \ge \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{G}_{L} -w^B\right) \right] ^{2}-\underline{D}_{H}\left[ \frac{\eta }{2}\underline{D}_{H} \left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2} +\left( \eta \mu ^{G}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }\\&\quad -\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{B}_{L} -w^B\right) \right] ^{2}-\underline{D}_{H}\left[ \frac{\eta }{2} \underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }\\&\quad =\frac{\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H} \left( \eta \mu _{H}-w^B\right) +\left( \overline{D}_{H}-\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L}+\eta \mu ^{B}_{L}-2w^{B}\right) \right] }{\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }\\&\quad \ge 0. \end{aligned}$$

Second, we show that in the optimal solution the first constraint must be binding. Recall that the second constraint is not binding and the shipper’s cost under the high market state is strictly negative. If the first constraint is not binding, we can increase \(T^{B}\) and \(T^{G}\) by the same amount \(\varepsilon \) such that all the constraints will still hold and the objective function will increase, which violates the optimality condition. Thus, the first constraint must be binding.

Third, we show that in the optimal solution the last constraint must be binding. As before, if in the optimal solution, the last constraint is not binding, we can increase \(T_{G}\) by \(\varepsilon \) such that the last constraint is binding. In this case, all other constraints will still hold and the objective function will increase, which violates the optimality condition. So the last constraint must be binding.

As the first and last constraints are binding, we obtain

$$\begin{aligned} \left\{ \begin{array}{ll} T^{B}=\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{B}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }\\ T^G=T^{B}+\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^G\right) +\left( \eta \mu ^{G}_{L}-w^G\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}\left( \eta \mu _{H}-w^G\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }\\ ~~~~~~~-\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{G}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }. \end{array}\right. \nonumber \\ \end{aligned}$$
(A.9)

After substituting \(T^B\) and \(T^G\) in (A.9) into the third constraint, we have

$$\begin{aligned}&\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{B}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }-T^B\\&\quad -\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^G\right) +\left( \eta \mu ^{B}_{L}-w^G\right) \right] ^{2}-\underline{D}_{H}\left[ \frac{\eta }{2} \underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}\left( \eta \mu _{H} -w^G\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }+T^G\\&\qquad =\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{B}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H}\left[ \frac{\eta }{2} \underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2} \left( \eta \mu _{H}-w^B\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }\\&\qquad -\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^G\right) +\left( \eta \mu ^{B}_{L}-w^G\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}\left( \eta \mu _{H}-w^G\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }\\&\qquad +\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^G\right) +\left( \eta \mu ^{G}_{L}-w^G\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^G\right) -\alpha ^{2}(\eta \mu _{H}-w^G)^{2}+\left( \eta \mu ^{G}_{L} -w^G\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }\\&\qquad -\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^B\right) +\left( \eta \mu ^{G}_{L}-w^B\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^B\right) -\alpha ^{2}\left( \eta \mu _{H}-w^B\right) ^{2} +\left( \eta \mu ^{G}_{L}-w^B\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }\\&\qquad =\frac{\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H}\left( \eta \mu _{H}-w^G\right) +\left( \overline{D}_{H} -\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L}+\eta \mu ^{B}_{L}-2w^{G}\right) \right] }{\eta (\overline{D}_{H}-\underline{D}_{H})+2\alpha ^{2}\left( \eta \mu _{H}-w^G\right) }\\&\quad -\frac{\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H}\left( \eta \mu _{H}-w^B\right) +\left( \overline{D}_{H}-\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L} +\eta \mu ^{B}_{L}-2w^{B}\right) \right] }{\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) } \end{aligned}$$

Define \(A=\frac{[2\alpha \overline{D}_{H}(\eta \mu _{H}-w)+(\overline{D}_{H}-\underline{D}_{H}) (\eta \mu ^{G}_{L}+\eta \mu ^{B}_{L}-2w)]}{\eta (\overline{D}_{H}-\underline{D}_{H})+2\alpha ^{2}(\eta \mu _{H}-w)}\), and we have

$$\begin{aligned} \frac{\partial {A}}{\partial {w}}= & {} \frac{\left[ \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w\right) \right] \left[ -2\alpha \overline{D}_{H}-2\left( \overline{D}_{H} -\underline{D}_{H}\right) \right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w\right) \right] ^2}\nonumber \\&+\frac{2\alpha ^2\left[ 2\alpha \overline{D}_{H}\left( \eta \mu _{H}-w\right) +\left( \overline{D}_{H}-\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L} +\eta \mu ^{B}_{L}-2w\right) \right] }{\left[ \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w\right) \right] ^2}\nonumber \\= & {} \frac{\left( \overline{D}_{H}-\underline{D}_{H}\right) \left[ -2\alpha \eta \overline{D}_{H}-2\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) -4\alpha ^{2}\eta \mu _H+2\alpha ^2\eta \mu ^{G}_{L} +2\alpha ^2\eta \mu ^{B}_{L}\right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w\right) \right] ^2}\nonumber \\< & {} 0. \end{aligned}$$
(A.10)

In this situation, we claim that as long as \(w^G<w^B\), the third constraint of Problem (A.7) holds automatically.

All of the above proves that the first and fourth constraints of Problem (A.7) are binding.

Let us now analyze the optimal contract price and the reservation fee. After relaxing the second and third constraints, and substituting \(T^B\) and \(T^G\) in (A.9) into the carrier’s objective function (A.7), we can then convert the original constrained optimization problem into an unconstrained one.

$$\begin{aligned} \Pi= & {} \rho \left[ T^B+\frac{\left( \eta \mu _{H}-w^{B}\right) \underline{D}^{2}_{H}}{2\left( \overline{D}_{H} -\underline{D}_{H}\right) }-\frac{\eta q^{B*2}_{B}}{4}-\frac{\left( \eta \mu _{H}-w^{B}\right) \alpha ^{2} q^{B*2}_{B}}{2\left( \overline{D}_{H}-\underline{D}_{H}\right) }-\frac{\eta q^{B*2}_{B}}{4}+\eta \mu ^{B}_{L}q^{B*}_{B}\right] \nonumber \\&+(1-\rho )\left[ T^G+\frac{\left( \eta \mu _{H}-w^{G}\right) \underline{D}^{2}_{H}}{2\left( \overline{D}_{H} -\underline{D}_{H}\right) }-\frac{\eta q^{G*2}_{G}}{4}-\frac{\left( \eta \mu _{H}-w^{G}\right) \alpha ^{2} q^{G*2}_{G}}{2\left( \overline{D}_{H}-\underline{D}_{H}\right) }-\frac{\eta q^{G*2}_{G}}{4}+\eta \mu ^{G}_{L}q^{G*}_{G}\right] \nonumber \\&=\rho \left( \eta \mu ^{B}_{L}q^{B*}_{B}-\frac{\eta q^{B*2}_{B}}{4}\right) +(1-\rho )\left( \eta \mu ^{G}_{L}q^{G*}_{G}-\frac{\eta q^{G*2}_{G}}{4}\right) \nonumber \\&-(1-\rho )\frac{\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H}(\eta \mu _{H}-w^B)+\left( \overline{D}_{H}-\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L} +\eta \mu ^{B}_{L}-2w^{B}\right) \right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) }. \end{aligned}$$
(A.11)

Note that the carrier’s objective function is separable in \(w^{B}\) and \(w^{G}\).

Then we get the first and the second derivatives of \(\Pi \) with respect to \(w^G\).

$$\begin{aligned} \frac{\partial {\Pi }}{\partial {w^{G}}}=\left( \eta \mu ^{G}_{L}-\frac{\eta q^{G*}_{G}}{2}\right) \frac{\partial {q^{G*}_{G}}}{\partial {w^{G}}} \end{aligned}$$
(A.12)

And

$$\begin{aligned} \frac{\partial ^{2}{\Pi }}{\partial {w^{G}}^{2}} =-\frac{\eta }{2}\left( \frac{\partial {q^{G*}_{G}}}{\partial {w^{G}}}\right) ^2+ \left( \eta \mu ^{G}_{L}-\frac{\eta q^{G*}_{G}}{2}\right) \frac{\partial ^2{q^{G*}_{G}}}{\partial {w^{G}}^{2}}<0. \end{aligned}$$
(A.13)

The optimal price in the high market state is uniquely determined by the first order condition:

$$\begin{aligned} w^{G*}\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \eta \mu _{H}-w^{G*}\right) \left( 2\alpha \mu ^{G}_{L}-\overline{D}_{H}\right) =0. \end{aligned}$$
(A.14)

That is

$$\begin{aligned} w^{G*}=\frac{\eta \mu _{H}\alpha \left( \overline{D}_{H}-2\alpha \mu ^{G}_{L}\right) }{\overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H}-2\alpha \mu ^{G}_{L}\right) }. \end{aligned}$$
(A.15)

For the contract price in the low demand market, we have:

$$\begin{aligned}&\frac{\partial {\Pi }}{\partial {w^{B}}}=\rho \left( \eta \mu ^{B}_{L} -\frac{\eta q^{B*}_{B}}{2}\right) \frac{\partial {q^{B*}_{B}}}{\partial {w^{B}}}+(1-\rho )\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \nonumber \\&\quad \cdot \frac{\left( \overline{D}_{H}-\underline{D}_{H}\right) \left[ 2\alpha \eta \overline{D}_{H}+2\eta \left( \overline{D}_{H} -\underline{D}_{H}\right) +4\alpha ^{2}\eta \mu _H-2\alpha ^2\eta \mu ^{B}_{L} -2\alpha ^2\eta \mu ^{G}_{L}\right] }{\left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^B\right) \right] ^2}\nonumber \\ \end{aligned}$$
(A.16)

Obviously, we may derive that \(\frac{\partial ^{2}{\Pi }}{\partial {w^{B}}^{2}}<0\), thus the optimal contract price in the low demand state is uniquely determined by the first order condition:

$$\begin{aligned} w^{B*}=\frac{\rho \alpha \eta \mu _H \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )\left( \mu ^G_L-\mu ^B_L\right) \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^2\eta \mu _H\right] C}{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2(\mu ^G_L-\mu ^B_L)C}. \end{aligned}$$

where \(C=[2\alpha \overline{D}_{H}+2(\overline{D}_{H}-\underline{D}_{H})+4\alpha ^{2}\mu _H-2\alpha ^2\mu ^{G}_{L}-2\alpha ^2\mu ^{B}_{L}]\).

Finally, we need to verify \(w^{B*}>w^{G*}\). Since \(\mu ^G_L>\mu ^B_L\)

$$\begin{aligned} w^{B*}> & {} \frac{\rho \alpha \eta \mu _H\left( \overline{D}_{H} -2\alpha \mu ^B_L\right) C}{\rho \left[ \overline{D}_{H}-\underline{D}_{H} +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] C}\nonumber \\= & {} \frac{\alpha \eta \mu _H\left( \overline{D}_{H}-2\alpha \mu ^B_L\right) }{\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) }\nonumber \\\ge & {} \frac{\alpha \eta \mu _H\left( \overline{D}_{H}-2\alpha \mu ^G_L\right) }{\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^G_L\right) }=w^{G*}. \end{aligned}$$
(A.17)

From all above, we conclude that with the payment structure \(B^{\theta }=\{(T^{\theta },w^{\theta })|\theta =B, G\}\) and under asymmetric information, the equilibrium contract parameters for the carrier are characterized as follows:

\((\text {i})\) In the bad demand state:

$$\begin{aligned} \left\{ \begin{array}{ll} w^{B*}=\frac{\rho \alpha \eta \mu _H\left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )\left( \mu ^G_L-\mu ^B_L\right) \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^2\eta \mu _H\right] C}{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2 \alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C},\\ T^{B*}=\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{B*}\right) +\left( \eta \mu ^{B}_{L}-w^{B*}\right) \right] ^{2}-\underline{D}_{H}\left[ \frac{\eta }{2} \underline{D}_{H}\left( \eta \mu _{H}-w^{B*}\right) -\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) ^{2} +\left( \eta \mu ^{B}_{L}-w^{B*}\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) }.\\ \end{array} \right. \end{aligned}$$

\((\text {ii})\) In the good demand state:

$$\begin{aligned} \left\{ \begin{array}{ll} w^{G*}=\frac{\eta \mu _{H}\alpha \left( \overline{D}_{H}-2\alpha \mu ^{G}_{L}\right) }{\overline{D}_{H}-\underline{D}_{H}+\alpha \left( \overline{D}_{H} -2\alpha \mu ^{G}_{L}\right) },\\ T^{G*}=T^{B*}+ \frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{G*}\right) +\left( \eta \mu ^{G}_{L}-w^{G*}\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^{G*}\right) -\alpha ^{2}\left( \eta \mu _{H}-w^{G*}\right) ^{2}+\left( \eta \mu ^{G}_{L} -w^{G*}\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2} \left( \eta \mu _{H}-w^{G*}\right) }-\\ ~~~~~~~\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{B*}\right) +\left( \eta \mu ^{G}_{L}-w^{B*}\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^{B*}\right) -\alpha ^{2} \left( \eta \mu _{H}-w^{B*}\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^{B*}\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) }.\\ \end{array} \right. \end{aligned}$$

where \(C=[2\alpha \overline{D}_{H}+2(\overline{D}_{H}-\underline{D}_{H})+4\alpha ^{2}\mu _H-2\alpha ^2\mu ^{G}_{L}-2\alpha ^2\mu ^{B}_{L}]\). \(\square \)

1.6 Proof of Proposition 4

Proof

\((\text {i})\) In a good market state, from Theorem 1 and Theorem 2 we get that \(w^{G}_S=w^{G*}\). Under symmetric information, we have

$$\begin{aligned} T^{G}_{S}=\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{G}_{S}\right) +\left( \eta \mu ^{B}_{L}-w^{G}_{S}\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^{G}_{S}\right) -\alpha ^{2}\left( \eta \mu _{H}-w^{G}_{S}\right) ^{2}+\left( \eta \mu ^{B}_{L}-w^{G}_{S}\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{G}_{S}\right) } \end{aligned}$$

However, in the presence of asymmetric information, from the proof of Theorem 2 we get that the last constraint of Problem (A.7) is untight. That is

$$\begin{aligned}&\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{G*}\right) +\left( \eta \mu ^{G}_{L}-w^{G*}\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^{G*}\right) -\alpha ^{2}\left( \eta \mu _{H}-w^{G*}\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^{G*}\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{G*}\right) }\\&\quad -T^{G*}>-T^{B*}\\&\quad +\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{B*}\right) +\left( \eta \mu ^{G}_{L}-w^{B*}\right) \right] ^{2} -\underline{D}_{H}\left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^{B*}\right) -\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^{B*}\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) }. \end{aligned}$$

Since the right hand side of the above inequality is positive, we get

$$\begin{aligned}&\frac{\overline{D}_{H}\left[ \alpha \left( \eta \mu _{H}-w^{G*}\right) +\left( \eta \mu ^{G}_{L}-w^{G*}\right) \right] ^{2}-\underline{D}_{H} \left[ \frac{\eta }{2}\underline{D}_{H}\left( \eta \mu _{H}-w^{G*}\right) -\alpha ^{2}\left( \eta \mu _{H}-w^{G*}\right) ^{2}+\left( \eta \mu ^{G}_{L}-w^{G*}\right) ^{2}\right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{G*}\right) }\\&>T^{G*}. \end{aligned}$$

Therefore, as \(w^{G}_{S}=w^{G*}\) we conclude that \(T^{G*}<T^{G}_{S}\).

\((\text {ii})\) We first claim that the contract price in the bad state \(w^{B*}\) is decreasing with \(\rho \), since

$$\begin{aligned}&\frac{\partial {w^{B*}}}{\partial {\rho }}=\frac{\rho \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] ^2\left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \alpha \eta \mu _H\left( \overline{D}_{H} -2\alpha \mu ^B_L\right) }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2 \alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad -\frac{\rho C\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left( \mu ^G_L-\mu ^B_L\right) \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^2\eta \mu _H\right] }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad -\frac{\rho \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] ^2\left[ \left( \overline{D}_{H} -\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \alpha \eta \mu _H\left( \overline{D}_{H}-2\alpha \mu ^B_L\right) }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad +\frac{\rho C\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left( \mu ^G_L-\mu ^B_L\right) 2\alpha ^2\alpha \eta \mu _H\left( \overline{D}_{H} -2\alpha \mu ^B_L\right) }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad +\frac{(1-\rho )C\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] 2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) \alpha \eta \mu _H\left( \overline{D}_{H} -2\alpha \mu ^B_L\right) }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad -\frac{(1-\rho )C^22\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) ^2 \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^2\eta \mu _H\right] }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad -\frac{(1-\rho )C\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left( \mu ^G_L-\mu ^B_L\right) \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^2\eta \mu _H\right] \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] }{\left\{ \rho \left[ \left( \overline{D}_{H} -\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad +\frac{(1-\rho )C^22\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) ^2 \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^2\eta \mu _H\right] }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad =-\frac{C\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left( \mu ^G_L-\mu ^B_L\right) \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) ^2+2\alpha ^2\eta \mu _H \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] }{\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2 \left( \mu ^G_L-\mu ^B_L\right) C\right\} ^2}\\&\quad <0. \end{aligned}$$

Note that when \(\rho =1\), we have \(w^{B*}=w^{BS}\). Therefore, we conclude that \(w^{B*}\ge w^{B}_{S}\).

Moreover, from the proof of Theorem 1, we get \(\frac{\partial {T^{\theta }_{S}}}{\partial {w^{\theta }_{S}}}<0\). As \(w^{B*}\ge w^{B}_{S} \), we obtain that \(T^{B*}\ge T^{B}_{S} \) . \(\square \)

1.7 Proof of Proposition 5

Proof

\((\text {i})\) In the presence of symmetric information, where \(\rho =0\) or \(\rho =1\), from Theorem 1 we get that at optimality, the IR constraint of the carrier’s optimization problem is tight. From the perspective of the shipper, we have

$$\begin{aligned}&\pi ^{\theta }_S\left( w^{\theta }_S, T^{\theta }_S\right) - EP_L ED_L - EP_H ED_H=T^{\theta }_S\\&\quad +\frac{\left( \eta \mu _{H}-w^{\theta }_{S}\right) \underline{D}^{2}_{H}}{2\left( \overline{D}_{H}-\underline{D}_{H}\right) }-\frac{\eta q^{\theta *2}}{4}-\frac{\left( \eta \mu _{H}-w^{\theta }_{S}\right) \alpha ^2 q^{\theta *2}}{2\left( \overline{D}_{H}-\underline{D}_{H}\right) }-\eta \mu _{H}^{2}-\eta \mu ^{\theta 2}_{L}\\&\quad =0. \end{aligned}$$

From the perspective of the carrier, we get

$$\begin{aligned} \Pi ^{\theta }_S\left( w^{\theta }_S, T^{\theta }_S\right) -E P_H K= & {} T^{\theta }_S+\frac{\left( \eta \mu _{H}-w^{\theta }_{S}\right) \underline{D}^{2}_{H}}{2\left( \overline{D}_{H}-\underline{D}_{H}\right) }\\&-\frac{\eta q^{\theta *2}}{4}-\frac{\left( \eta \mu _{H}-w^{\theta }_{S}\right) \alpha ^2 q^{\theta *2}}{2\left( \overline{D}_{H}-\underline{D}_{H}\right) }-\frac{\eta q^{\theta *2}}{4}+\eta \mu _Lq^{\theta *}\\= & {} -\eta \mu ^{\theta 2}_{L}+2\eta \mu ^{\theta 2}_{L}\\= & {} \eta \mu ^{\theta 2}_{L}>0. \end{aligned}$$

Thus, in the presence of symmetric information, the optimal contract always creates a win–win situation for both the shipper and the carrier.

\((\text {ii})\) In the presence of asymmetric information, where \(\rho \in (0,1)\), from Theorem 2 we get that the first constraint of Problem (A.7) is tight. Thus, when the market state is bad, from the perspective of the shipper, we have

$$\begin{aligned} \pi ^{B*}-EP_L ED_L- EP_H ED_H=0. \end{aligned}$$
(A.18)

When the market state is good, we get

$$\begin{aligned}&\pi ^{G*}-EP_L ED_L- EP_H ED_H\nonumber \\&\quad =-\frac{\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H}\left( \eta \mu _{H}-w^{B*}\right) +\left( \overline{D}_{H} -\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L}+\eta \mu ^{B}_{L} -2w^{B*}\right) \right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) }.\nonumber \\ \end{aligned}$$
(A.19)

To create the win–win situation for the shipper, we need the equation (A.19) to be non-positive. This is equivalent to testify

$$\begin{aligned} \frac{\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H}\left( \eta \mu _{H}-w^{B*}\right) +\left( \overline{D}_{H}-\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L} +\eta \mu ^{B}_{L}-2w^{B*}\right) \right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) }\ge 0.\nonumber \\ \end{aligned}$$
(A.20)

Since

$$\begin{aligned}&\eta \mu _{H}-w^{B*}\nonumber \\&\quad =\frac{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) \left\{ \rho \mu _H\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] -(1-\rho ) \left( \mu ^G_L-\mu ^B_L\right) C\right\} }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C} \nonumber \\\end{aligned}$$
(A.21)
$$\begin{aligned}&\eta \mu ^{B}_{L}-w^{B*}\nonumber \\&\quad =\frac{\rho \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \eta \mu ^B_L\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left( \eta \mu ^B_L-\eta \mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2 \left( \mu ^G_L-\mu ^B_L\right) C}\nonumber \\&\qquad -\frac{(1-\rho )C\left( \mu ^G_L-\mu ^B_L\right) \left[ \eta \left( \overline{D}_{H} -\underline{D}_{H}\right) -2\alpha ^2\left( \eta \mu ^B_L-\eta \mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C}.\nonumber \\ \end{aligned}$$
(A.22)

Also

$$\begin{aligned}&\eta \mu ^{G}_{L}-w^{B*}\nonumber \\&\quad =\frac{\rho \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \eta \mu ^G_L\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \left( \eta \mu ^G_L-\eta \mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2 \left( \mu ^G_L-\mu ^B_L\right) C}\nonumber \\&\quad \quad -\frac{(1-\rho )C\left( \mu ^G_L-\mu ^B_L\right) \left[ \eta \left( \overline{D}_{H}-\underline{D}_{H}\right) -2\alpha ^2\left( \eta \mu ^G_L-\eta \mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +(1-\rho )2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C}.\nonumber \\ \end{aligned}$$
(A.23)

Then

$$\begin{aligned}&\eta \mu ^{B}_{L}+\eta \mu ^{G}_{L}-2w^{B*}\nonumber \\&\quad =\frac{\rho \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \eta \left( \mu ^G_L+\mu ^B_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left( \eta \mu ^B_L+\eta \mu ^G_L-2\eta \mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +\left( 1-\rho \right) 2\alpha ^2 \left( \mu ^G_L-\mu ^B_L\right) C}\nonumber \\&\qquad -\frac{\left( 1-\rho \right) C\left( \mu ^G_L-\mu ^B_L\right) \left[ 2\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) -2\alpha ^2\left( \eta \mu ^G_L+\eta \mu ^B_L-2\eta \mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] +\left( 1-\rho \right) 2\alpha ^2\left( \mu ^G_L-\mu ^B_L\right) C}.\nonumber \\ \end{aligned}$$
(A.24)

After substituting (A.21) and (A.24) into the equation (A.20), we get that the optimal contract bundles create the win–win situation for the shipper if and only if the following condition holds

$$\begin{aligned}&\frac{2\alpha \overline{D}_{H}\left[ \rho \mu _H\left( C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right) -\left( 1-\rho \right) \left( \mu ^G_L-\mu ^B_L\right) C\right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] + 2\alpha ^{2}\rho \mu _H\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] }\\&\quad -\frac{\left( 1-\rho \right) C\left( \mu ^G_L-\mu ^B_L\right) \left[ 2\left( \overline{D}_{H} -\underline{D}_{H}\right) -2\alpha ^2\left( \mu ^G_L+\mu ^B_L-2\mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] + 2\alpha ^{2}\rho \mu _H\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] }\\&\quad +\frac{\rho \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \left( \mu ^G_L+\mu ^B_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left( \mu ^G_L+\mu ^B_L-2\mu _H\right) \right] }{\rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] + 2\alpha ^{2}\rho \mu _H\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] }\ge 0. \end{aligned}$$

Obviously, the above inequality is equivalent to

$$\begin{aligned}&\rho \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \left( \mu ^B_L+\mu ^G_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha \overline{D}_{H}\mu _H\right. \nonumber \\&\quad \left. +\,\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left( \mu ^B_L +\mu ^G_L-2\mu _H\right) \right] -\left( 1-\rho \right) \left( \mu ^G_L-\mu ^B_L\right) C^2\ge 0.\nonumber \\ \end{aligned}$$
(A.25)

From the perspective of the carrier, we need to verify that

$$\begin{aligned}&\Pi ^*-E P_H K=\rho \left( \eta \mu ^{B}_{L}q^{B*}_{B} -\frac{\eta q^{B*2}_{B}}{4}\right) +\left( 1-\rho \right) \{\eta \left( \mu ^{G}_{L}\right) ^2\nonumber \\&\quad -\frac{\left( \eta \mu ^{G}_{L}-\eta \mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H} \left( \eta \mu _{H}-w^{B*}\right) +\left( \overline{D}_{H}-\underline{D}_{H}\right) \left( \eta \mu ^{G}_{L}+\eta \mu ^{B}_{L}-2w^{B*}\right) \right] }{\eta \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha ^{2}\left( \eta \mu _{H}-w^{B*}\right) }\}\nonumber \\&\quad \ge 0. \end{aligned}$$
(A.26)

Since

$$\begin{aligned} q^{B*}_B= & {} 2\mu ^B_{L}-\frac{2\left( 1-\rho \right) \left( \mu ^{G}_{L}-\mu ^{B}_{L}\right) \left[ 2\alpha \overline{D}_{H}+2\left( \overline{D}_{H}-\underline{D}_{H}\right) +4\alpha ^{2}\mu _H-2\alpha ^2\mu ^{G}_{L}-2\alpha ^2\mu ^{B}_{L}\right] }{\rho \left[ 2\alpha \overline{D}_{H}+2\left( \overline{D}_{H}-\underline{D}_{H}\right) +4\alpha ^{2}\mu _H-4\alpha ^2\mu ^{B}_{L}\right] }\nonumber \\\le & {} 2\mu ^B_{L}. \end{aligned}$$
(A.27)

After substituting (A.21) and (A.24) into the equation (A.26), we get that the optimal contract bundles create the win–win situation for the carrier if the following condition holds

$$\begin{aligned}&\frac{\left( \mu ^{G}_{L}\right) ^2\left\{ \rho \left[ \left( \overline{D}_{H} -\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] + 2\alpha ^{2}\rho \mu _H\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \right\} }{\mu ^G_L-\mu ^B_L}\nonumber \\&\quad \ge \rho \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \left( \mu ^B_L+\mu ^G_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha \overline{D}_{H} \mu _H\right. \nonumber \\&\qquad \left. +\,\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left( \mu ^B_L+\mu ^G_L-2\mu _H\right) \right] -\left( 1-\rho \right) \left( \mu ^G_L-\mu ^B_L\right) C^2. \end{aligned}$$
(A.28)

Combining (A.25) and (A.28), we get that the win–win situation is achieved under the optimal contract bundle for both the carrier and the shipper if the following condition holds

$$\begin{aligned}&\left( \mu ^{G}_{L}\right) ^2\left\{ \rho \left[ \left( \overline{D}_{H} -\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \right. \nonumber \\&\left. \qquad + 2\alpha ^{2}\rho \mu _H\left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \right\} \nonumber \\&\quad \ge \rho \left( \mu ^G_L-\mu ^B_L\right) \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \left( \mu ^B_L+\mu ^G_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) \right. \nonumber \\&\qquad \left. +2\alpha \overline{D}_{H}\mu _H+\alpha \left( \overline{D}_{H}- 2\alpha \mu ^B_L\right) \left( \mu ^B_L+\mu ^G_L-2\mu _H\right) \right] \nonumber \\&\quad \ge \left( 1-\rho \right) \left( \mu ^G_L-\mu ^B_L\right) ^2C^2 \end{aligned}$$
(A.29)

Subsequently, we claim that the following inequality always holds.

$$\begin{aligned}&\left( \mu ^{G}_{L}\right) ^2\left\{ \rho \left[ \left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \right. \nonumber \\&\qquad \left. + 2\alpha ^{2}\rho \mu _H\left[ C+2\alpha ^{2}\left( \mu ^G_L -\mu ^B_L\right) \right] \right\} \\&\quad \ge \rho \left( \mu ^G_L-\mu ^B_L\right) \left[ C+2\alpha ^{2} \left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \left( \mu ^B_L+\mu ^G_L\right) \left( \overline{D}_{H} -\underline{D}_{H}\right) \right. \\&\qquad \left. +2\alpha \overline{D}_{H}\mu _H+\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \left( \mu ^B_L+\mu ^G_L-2\mu _H\right) \right] . \end{aligned}$$

Since \(\rho [C+2\alpha ^{2}(\mu ^G_L-\mu ^B_L)]>0\), and \(\mu _H>\mu ^G_L>\mu ^B_L\), it is easy to show that

$$\begin{aligned}&\left[ \left( \mu ^{G}_{L}\right) ^2\left( \overline{D}_{H}-\underline{D}_{H}\right) +\alpha \left( \mu ^{G}_{L}\right) ^2\left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \right] + 2\alpha ^{2}\left( \mu ^{G}_{L}\right) ^2\mu _H\\&\quad >\left[ \left( \mu ^G_L-\mu ^B_L\right) \left( \mu ^B_L+\mu ^G_L\right) \left( \overline{D}_{H} -\underline{D}_{H}\right) +2\alpha \left( \mu ^G_L-\mu ^B_L\right) \overline{D}_{H}\mu _H\right. \\&\quad \left. +\alpha \left( \mu ^G_L-\mu ^B_L\right) \left( \overline{D}_{H}-2\alpha \mu ^B_L\right) \left( \mu ^B_L+\mu ^G_L-2\mu _H\right) \right] . \end{aligned}$$

In this scenario, we conclude that the inequality (A.29) is equivalent to

$$\begin{aligned}&\rho \left[ C+2\alpha ^{2}\left( \mu ^G_L-\mu ^B_L\right) \right] \left[ \left( \mu ^B_L+\mu ^G_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha \overline{D}_{H}\mu _H\right. \nonumber \\&\qquad \left. +\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \left( \mu ^B_L+\mu ^G_L-2\mu _H\right) \right] \nonumber \\&\quad \ge \left( 1-\rho \right) \left( \mu ^G_L-\mu ^B_L\right) C^2. \end{aligned}$$
(A.30)

Therefore, we conclude that if the following condition holds

$$\begin{aligned} \frac{\rho }{1-\rho } \ge \frac{\left( \mu ^G_L-\mu ^B_L\right) \left[ 2\alpha \overline{D}_{H} +2\left( \overline{D}_{H}-\underline{D}_{H}\right) +4\alpha ^{2}\mu _H -2\alpha ^2\mu ^{G}_{L}-2\alpha ^2\mu ^{B}_{L}\right] ^2}{\left[ 2\alpha \overline{D}_{H}+2\left( \overline{D}_{H} -\underline{D}_{H}\right) +4\alpha ^{2}\left( \mu _H-\mu ^{B}_{L}\right) \right] \left[ \left( \mu ^B_L+\mu ^G_L\right) \left( \overline{D}_{H}-\underline{D}_{H}\right) +2\alpha \overline{D}_{H}\mu _H+\alpha \left( \overline{D}_{H} -2\alpha \mu ^B_L\right) \left( \mu ^B_L+\mu ^G_L-2\mu _H\right) \right] }. \end{aligned}$$

the contract creates a win–win situation for both the carrier and the shipper under asymmetric information. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Lee, CY., Liu, Q. et al. A carrier–shipper contract under asymmetric information in the ocean transport industry. Ann Oper Res 273, 377–408 (2019). https://doi.org/10.1007/s10479-017-2532-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2532-1

Keywords

Navigation