
ar
X

iv
:1

90
2.

10
35

6v
1

 [
m

at
h.

O
C

]
 2

7
Fe

b
20

19

Noname manuscript No.

(will be inserted by the editor)

A Note on Using the Resistance-Distance Matrix to solve Hamiltonian

Cycle Problem

V. Ejov, J.A. Filar, M. Haythorpe∗, J.F. Roddick, and S.
Rossomakhine

the date of receipt and acceptance should be inserted later

Abstract An instance of Hamiltonian cycle problem can be solved by converting it to an instance
of Travelling salesman problem, assigning any choice of weights to edges of the underlying graph. In
this note we demonstrate that, for difficult instances, choosing the edge weights to be the resistance
distance between its two incident vertices is often a good choice. We also demonstrate that arguably
stronger performance arises from using the inverse of the resistance distance. Examples are provided
demonstrating benefits gained from these choices.

Acknowledgements

This work was supported by Australian Research Council grants LP110100166 and DP150100618.

V. Ejov
Flinders University
1284 South Road, Clovelly Park SA 5042
E-mail: vladimir.ejov@flinders.edu.au

J.A. Filar
Flinders University
1284 South Road, Clovelly Park SA 5042
E-mail: jerzy.filar@flinders.edu.au

M. Haythorpe - Corresponding Author
Flinders University
1284 South Road, Clovelly Park SA 5042
E-mail: michael.haythorpe@flinders.edu.au

J.F. Roddick
Flinders University
1284 South Road, Clovelly Park SA 5042
E-mail: john.roddick@flinders.edu.au

S. Rossomakhine
Flinders University
1284 South Road, Clovelly Park SA 5042
E-mail: serguei.rossomakhine@flinders.edu.au

http://arxiv.org/abs/1902.10356v1

2 V. Ejov, J.A. Filar, M. Haythorpe∗, J.F. Roddick, and S. Rossomakhine

1 Introduction

The famous travelling salesman problem (TSP) can be summarised as follows: given a graph G

containing a vertex set V and an edge set E : V → V , and a weighting function f that assigns a
weight to each edge in the graph, find a simple cycle that includes every vertex in V such that
the sum of weights of the edges used is minimised. TSP is known to be NP-hard, and the decision
variant, in which the question is whether any tour with length less than a given value k exists, is
NP-complete. In the language of TSP, a simple cycle visiting every vertex is called a tour, however
it is also known as a Hamiltonian cycle. A closely related problem is the Hamiltonian cycle problem

(HCP) which simply asks if at least one Hamiltonian cycle exists in a given graph. Graphs with at
least one Hamiltonian cycle are called Hamiltonian and graphs with none are called non-Hamiltonian.

Although specialised algorithms and heuristics for solving HCP do exist (e.g. see Baniasadi et al.
(2014); Chalaturnyk (2008); Eppstein (2003)), a common and typically quite successful method for
solving HCP is to first cast it as a TSP problem, and then use one of the suite of highly-developed
TSP heuristics (e.g. see Applegate et al. (2006); Helsgaun (2000)) to solve it. It is natural to convert
HCP to TSP, since in the latter a tour of minimal length is desired, and any tour suffices to give
an affirmative answer to an instance of HCP. Specifically, HCP is converted to an optimisation
(typically, integer programming) problem of the generic form:

min
x

∑

i

∑

j

wijxij , s.t. x = {xij ∈ {0, 1} | (i, j) ∈ E} (1)

where the positive solution values corresponds to the edges in a tour, and wij is the weight or cost
associated with edge (i, j). However, there is the question of how best to assign the weights.

One approach which, perhaps, seems logical is to assign every edge in the graph an equal weight,
say, 1. This avoids unnaturally biasing the heuristic used by ensuring that all tours have equal
weight, equal to |V |. However, this naive approach can cause the algorithm to run inefficiently.
Since all edges are weighted equally, it is difficult for any TSP heuristic to make good choices,
and often random guesses are required to find a solution. Using randomly chosen weights for the
edges can help drive the heuristic in some direction, and if the graph has many tours this may be
sufficient, but if there are relatively few tours this often amounts to little better than a prohibitively
exhaustive search.

Since randomly generated graphs typically have exponentially many tours (and in fact, can be
solved in general in only slightly longer than linear time (Frieze 2015)), graphs with relatively few
tours usually contain significant structure. In this note, we propose to use information about the
structure present in the underlying HCP instance to provide a better choice of weighting function.
Specifically, we use information obtained from the resistance-distance matrix that contains all of
the resistance distances between pairs vertices in a graph. Using the state-of-the-art TSP solver
Concorde (Applegate et al. 2006), we attempt to solve several difficult families of HCP instances,
and demonstrate that these instances can be much more easily solved using resistance distances.
Interestingly, we show that for many families of HCP instances, the best choice is to use the inverse
of resistance distances.

A Note on Using the Resistance-Distance Matrix to solve Hamiltonian Cycle Problem 3

2 Resistance-Distance Matrix

Suppose that a graph G corresponds to an electrical network, such that the vertices on the graph
are electrical components, and each edge (i, j) corresponds to a 1 ohm resistor being placed between
components i and j. The resistance distance Ωij is then the effective resistance between components
i and j, and the matrix of all resistance distances is called the resistance-distance matrix.

Although there are several ways to formulate resistance distance mathematically, perhaps the sim-
plest arises from the inverse of the Laplacian matrix. Suppose that a graph G of order n has a
corresponding adjacency matrix A, and further define a diagonal matrix D where each entry dii is
equal to the degree of vertex i in G. Then the Laplacian matrix L := D − A. Define a new matrix
Γ := L+ 1

n
J, where J is the n×n matrix with every entry equal to 1. Then the resistance distance

between vertices i and j was shown in (Babic et al. 2002) to be equal to

Ωij = (Γ)−1

ii + (Γ)−1

jj − 2 (Γ)−1

ij .

Since an inverse needs to be found, it takes O(n3) time to compute the full set of resistance distances
for every pair of vertices in the graph. However, for difficult instances of HCP this is a relatively
small expense compared to the time taken to solve the instance. Note that the above definition is
only well-defined if G is connected. If G is disconnected then the resistance distance can be found
between vertices in connected components by treating those connected components as individual
graphs, and the resistance distance between vertices in different connected components is defined
to be infinity (see p.132 in Bapat (2010)).

Research into the value of the resistance-distance matrix is still relatively young, arguably initiated
in 1993 by Klein and Randić (1993), although the underlying theory of resistive electrical networks
has been studied for far longer (e.g. see Doyle and Snell (1984)). The resistance-distance matrix
has been used extensively in mathematical chemistry, where it is also known as the commute-
time distance. For example, it is used as a tool in studying cyclicity and stability of molecules
(e.g. see Babić et al. (2002); Fowler (2002)) as well as signal transduction in proteins (e.g. see
Chennubhotla and Bahar (2007)). Arguably the most famous result arising from this line of research
is the Kirchhoff index (Lukovits et al. (1999)), defined as one half of the sum of all entries of the
resistance-distance matrix. Palacios (2001) computed closed-form formulae for the Kirchhoff index
of various classes of graphs. In the years since it was introduced, the resistance-distance matrix
has been recognised as a useful tool in analysing graphs and networks of various kinds, including
communications networks (Tizghadam et al. 2010), social networks (Alguliev et al. 2011), ecological
connectivity models (McRae et al. 2007), and graphs arising from natural language processing (Rao
et al. 2008), while Spielman and Srivastava (2011) use a nearly linear-time approximation of the
resistance-distance matrix to develop a fast graph sparsification algorithm.

We now extend the use of the resistance distance matrix to aid in solving a classical graph theory
problem, namely, HCP. In particular, in the formulation (1), we consider wij = Ωij and wij = Ω−1

ij ,
as well as randomly generated wij ’s. In the following section, we demonstrate that difficult classes
of HCP instances can be much more effectively solved by using resistance distances to weight the
edges. This finding is, perhaps, unsurprising since the resistance distance is in some sense a measure
of how many paths exist between two vertices. Intuitively then, it would seem to be linked to the
problem of trying to find a longest cycle. Of course, such a link need not be direct, and so we will
consider both the resistance distance, and the inverse of the resistance distance, and will show that
in various cases, one or both are more effective than random weights.

4 V. Ejov, J.A. Filar, M. Haythorpe∗, J.F. Roddick, and S. Rossomakhine

3 Examples

We now provide examples of families of HCP instances which, in our experience, are difficult to
solve, primarily due to the relative rarity of Hamiltonian cycles.

– Aldred-Thomassen graphs - Aldred and Thomassen (1999) produced a family of 3-connected
graphs which has only a single Hamiltonian cycle, and for which all vertices are degree 3 except
two vertices of degree 4. One example of such a graph is displayed in Aldred and Holton (1999)
and can be generalised easily. The graphs have order 16 + 4k for integer k ≥ 1.

– Fleischner-2 and Fleischner-3 graphs - Fleischner (2014) provides two infinite families of
graphs which all have minimum degree 4, and only a single Hamiltonian cycle. The first family
contains 2-connected graphs of order 169k for integer k ≥ 2. The second family contains 3-
connected graphs of order 85 + 323k for integer k ≥ 2. We will henceforth refer to the two
families as Fleischner-2 and Fleischner-3, respectively.

– Modified Flower Snarks - Isaacs (1975) constructed an infinite family of Snarks, that is, non-
Hamiltonian 3–regular graphs with chromatic index 4, called the Flower snarks. The family
contains graphs of order 8 + 4k for any odd integer k ≥ 1, which are constructed by taking
k copies of the Star graph and joining them together in a prescribed way. The graphs are all
maximally non-Hamiltonian, that is, the addition of any edge renders them Hamiltonian. We
modify the Flower snarks by adding a single edge. Specifically, we add an edge between any
two non-adjacent vertices in one of the star graphs (any such choice is equivalent).

– Minimally-Hamiltonian Regular Graphs - Haythorpe (2016) proposed a family of regular
graphs which are conjectured to contain the minimal number of Hamiltonian cycles over all
k-regular graphs (for k ≥ 5) of equivalent order. The family contains graphs of order m(k + 1)
for integer m ≥ 2 and k ≥ 5. The graphs contain (k− 1)2 [(k − 2)!]

m Hamiltonian cycles. In our
experiments we chose k = 10 in all cases.

We considered several instances of graphs of the above types. In each case, we attempted to solve
the graph by submitting it to Concorde in sparse format with edge weights chosen from the following
four schemes (rounding up when necessary):

1. All edge weights are equal to 1.
2. All edge weights are randomly chosen integers between 1 and 100.
3. All edge weights are equal to the resistance distance between their two incident vertices multi-

pled by 100.
4. All edge weights are equal to the inverse of the resistance distance between their two incident

vertices multiplied by 100.

In Table 1 we demonstrate how quickly Concorde was able to solve the various instances for the
four schemes. In each case, we limited the size of the instance to less than 2000 vertices to ensure
memory management was not an overriding factor in the experiment. We stopped Concorde if an
individual run took longer than 24 hours. The experiment was conducted on a Linux machine with
an AMD Opteron 6282 SE 2.6GHz Processor and 512GB RAM.

It is interesting to note the vast range of solving times, depending on the scheme used. For example,
the Fleischner graphs with over 1000 vertices all took longer than 24 hours to solve with three of
the schemes, but mere seconds with Scheme 4. In fact, Scheme 4 typically dominated the other
methods, but was unable to solve the modified Flower Snarks which in turn were solved in seconds
by Scheme 3. These findings highlight the importance of using appropriate weights for instances
of this kind. In the case of the modified Flower Snarks, the single added edge must be used in all

A Note on Using the Resistance-Distance Matrix to solve Hamiltonian Cycle Problem 5

Family Order Scheme 1 Scheme 2 Scheme 3 Scheme 4

Aldred-Thom. 736 00:07:52 00:02:21 00:02:35 00:00:01

Aldred-Thom. 976 00:07:19 00:03:20 00:03:32 00:00:01

Aldred-Thom. 1216 Failed 00:04:11 00:10:19 00:00:02

Aldred-Thom. 1536 Failed 00:06:37 00:06:29 00:00:02

Fleischner-2 338 Timeout 00:06:08 00:02:29 00:00:01

Fleischner-2 507 Timeout 00:37:52 00:06:28 00:00:01

Fleischner-2 676 Timeout Timeout 00:21:42 00:00:01

Fleischner-2 845 Timeout Timeout 01:08:31 00:00:01

Fleischner-3 731 Timeout Timeout 00:19:08 00:00:01

Fleischner-3 1054 Timeout Timeout Timeout 00:00:02

Fleischner-3 1377 Timeout Timeout Timeout 00:00:02

Fleischner-3 1700 Timeout Timeout Timeout 00:00:02

Flower 324 Timeout Timeout 00:00:01 Timeout
Flower 684 Timeout Timeout 00:00:02 Timeout
Flower 996 Timeout Timeout 00:00:05 Timeout
Flower 1332 Timeout Timeout 00:00:06 Timeout

Minimal Reg. 1100 00:08:52 00:00:25 00:06:44 00:00:14

Minimal Reg. 1375 04:34:59 00:00:30 00:10:40 00:00:21

Minimal Reg. 1650 09:07:27 00:00:58 00:13:26 00:00:15

Minimal Reg. 1925 21:09:23 00:02:06 00:27:10 00:00:26

Table 1 Times taken (hh:mm:ss) to solve each instance in Concorde using the three weighting schemes given
above. The fastest runtime for each instance is given in bold. Any run that took longer than 24 hours was
terminated (labelled “Timeout”). The label “Failed” means that Concorde encountered an unexpected bug and
crashed during execution.

Hamiltonian cycles (since the graph was non-Hamiltonian before its addition). This edge appears to
always have the lowest resistance-distance out of all edges in the graph, which perhaps explains the
strong performance. It appears that “important” edges often have outstanding resistance-distance,
although this can be in a minimal or maximal sense.

The Minimal Reg instances are a strong example of the kind of graphs which contain many Hamilto-
nian cycles, but contain some complex structure. Choosing to give each edge equal weight appears
to have been a very poor strategy, but since each graph contains many Hamiltonian cycles, choosing
random weights worked relatively well. Indeed, for these instances, random weights turned out to
be superior to resistance distances, but not to the inverse of resistance distances.

Given the strong performance obtained by using the inverse of resistance-distance, and inspired by
the field of electronics where the inverse of electrical resistance is called conductivity, we propose
that this useful metric be given the name conductivity distance. Intuitively, it seems reasonable
that conductivity distance would be a good choice of weights, since a large resistance distance
implies many paths go between two vertices, and hence there are potentially more ways of finding
a Hamiltonian cycle using the corresponding edge.

Although we have only used resistance distance and conductivity distance to solve instances of
HCP in this note, the impact on solving time is so dramatic that it hints at the potential for future
research into using these metrics for sparse TSP instances. Specifically, by augmenting the edge
weights of a TSP instance with the resistance distance or conductivity distance (with intelligently
chosen coefficients to prevent the true edge weights from being swamped), it might be possible to
help coax TSP solvers such as Concorde to find good solutions more rapidly. This development
could be widely useful, since even non-sparse TSP instances (such as those based on the Euclidean
distance between each pair of vertices) are typically first converted to a sparse instance by a
sparsification heuristic.

6 V. Ejov, J.A. Filar, M. Haythorpe∗, J.F. Roddick, and S. Rossomakhine

References

1. R.E.L. Aldred and D. Holton. Planar Graphs, Regular Graphs, Bipartite Graphs and Hamiltonicity. Aus-

tralasian Journal of Combinatorics, 20:111–131, 1999.
2. R. Alguliev, R. Aliguliyev and F. Ganjaliyev. Investigation the role of similarity measure and ranking algo-

rithm in mining social network. Journal of Information Science, 37:229–234, 2011.
3. D.L. Applegate, R.B. Bixby, V. Chavátal and W.J. Cook. The Traveling Salesman Problem: A Computational

Study. Princeton University Press, 2006.
4. D. Babić, D.J. Klein, I. Lukovits, S. Nikolić and N. Trinajstić. Resistance-Distance Matrix: A Computational

Algorithm and Its Application. International Journal of Quantum Chemistry, 90(1):166–176, 2002.
5. P. Baniasadi, V. Ejov, J.A. Filar, M. Haythorpe and S. Rossomakhine. Deterministic “Snakes and Ladders”

Heuristic for the Hamiltonian cycle problem. Mathematical Programming Computation, 6(1):55-75, 2014.
6. R.B. Bapat. Graphs and Matrices, Springer, 2010.
7. A. Chalaturnyk. A Fast Algorithm For Finding Hamilton Cycles. Masters Thesis, University of Manitoba,

2008.
8. C. Chennubhotla and I. Bahar. Signal Propagation in Proteins and relation to Equilibrium Fluctuations.

PLoS Computational Biology, 3:1716–1726, 2007.
9. P.G. Doyle and J.L. Snell. Random walks and electric networks, Mathematical Association of America, 1984.

10. D. Eppstein. The Traveling Salesman Problem for Cubic Graphs. In Frank Dehne, Jörg-Rüdiger Sack, and
Michiel Smid, editors, Algorithms and Data Struct., volume 2748 of Lecture Notes in Computer Science,
pages 307–318. Springer Berlin (2003).

11. H. Fleischner. Uniquely Hamiltonian Graphs of Minimum Degree 4. Journal of Graph Theory, 75(2):167–177,
2014.

12. P.W. Fowler. Resistance Distances in Fullerene Graphs. Croatica Chemica Acta, 75(2):401–408, 2002.
13. A. Frieze and S. Haber. An almost linear time algorithm for finding Hamiltonian cycles in sparse random

graphs with minimum degree at least three. Random Structures and Algorithms, 47(1):73–98, 2015.
14. M. Haythorpe. On the Minimum Number of Hamiltonian Cycles in Regular Graphs. Experimental Mathe-

matics, submitted, 2016. Available at: http://arxiv.org/abs/1608.00713
15. K. Helsgaun. An Effective Implementation of Lin-Kernighan Traveling Salesman Heuristic. European Journal

of Operations Research 126:106–130, 2000.
16. R. Isaacs. Infinite families of non-trivial trivalent graphs which are not Tait colorable. American Mathematical

Monthly 82:221–239, 1975.
17. D.J. Klein and M. Randić. Resistance distance. Journal of Mathematical Chemistry, 12(1):81–95, 1993.
18. I. Lukovits, S. Nikolić and N. Trinajstić. Resistance distance in regular graphs. International Journal of

Quantum Chemistry, 71(3):217–225, 1999.
19. B.H. McRae and P. Beier. Circuit theory predicts gene flow in plant and animal populations. Proceedings of

the National Academy of Sciences of the United States of America, 104(50):19885–19890, 2007.
20. J.L. Palacios. Closed-form formulas for Kirchhoff index. International Journal of Quantum Chemistry,

81(2):135–140, 2001.
21. D. Rao, D. Yarowsky and C. Callison-Burch. Affinity measures based on the graph Laplacian. In: Proceeding

of the 3rd Textgraphs Workshop on Graph-Based Algorithms for Natural Language Processing, Association
for Computation Linguistics, pp. 41–48, 2008.

22. D.A. Spielman and N. Srivastava. Graph Sparsification by Effective Resistances. SIAM Journal on Computing,
40(6):1913–1926, 2011.

23. A. Tizghadam and L-G. Alberto. Betweenness centrality and resistance distance in communication networks.
IEEE Network, 24(6):10–16, 2010.

http://arxiv.org/abs/1608.00713

	1 Introduction
	2 Resistance-Distance Matrix
	3 Examples

