Skip to main content
Log in

Optimization of competitive facility location for chain stores

  • OR in Transportation
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The location affects the competitiveness and market share of a new entry enterprise, especially for a retail enterprise. This study focuses on the competitive location of new chain stores. In this paper, a bi-level model is proposed to formulate the competitive location problem. And the model also considers the pricing game between the new entry enterprise and the existing competitor. The model optimizes the location by maximizing the benefit on the principle of the Nash equilibrium. A heuristic algorithm is proposed to solve the model. Results show the feasibility of the proposed model and provide managerial insights for decision makers to determine an appropriate location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.explainz.com/explanations/business/location-pricing.

References

  • Aikens, C. H. (1985). Facility location models for distribution planning. European Journal of Operational Research, 22(3), 263–279.

    Article  Google Scholar 

  • Bell, D. R., Ho, T.-H., & Tang, C. S. (1998). Determining where to shop: Fixed and variable costs of shopping. Journal of Marketing Research, 35, 352–369.

    Article  Google Scholar 

  • Berman, O., & LeBlanc, B. (1984). Location-relocation of mobile facilities on a stochastic network. Transportation Science, 18(4), 315–330.

    Article  Google Scholar 

  • Berman, O., & Odoni, A. R. (1982). Locating mobile servers on a network with Markovian properties. Networks, 12(1), 73–86.

    Article  Google Scholar 

  • Brandeau, M. L., & Chiu, S. S. (1990). A unified family of single-server queueing location models. Operations Research, 38(6), 1034–1044.

    Article  Google Scholar 

  • Brimberg, J., & ReVelle, C. (2000). The maximum return-on-investment plant location problem. Journal of the Operational Research Society, 51(6), 729–735.

    Article  Google Scholar 

  • Cooper, L. (1963). Location-allocation problems. Operations Research, 11(3), 331–343.

    Article  Google Scholar 

  • Cooper, L. (1964). Heuristic methods for location-allocation problems. Siam Review, 6(1), 37–53.

    Article  Google Scholar 

  • Current, J., Daskin, M., & Schilling, D. (2002). Discrete network location models. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 81–118). Berlin: Springer.

    Chapter  Google Scholar 

  • Daskin, M. S. (2008). What you should know about location modeling. Naval Research Logistics, 55, 283–294.

    Article  Google Scholar 

  • Drezner, T. (2006). Derived attractiveness of shopping malls. IMA Journal of Management Mathematics, 4, 349–358.

    Article  Google Scholar 

  • Drezner, T. (2011). Cannibalization in a competitive environment. International Regional Science Review, 34, 306–322.

    Article  Google Scholar 

  • Drezner, T., & Drezner, Z. (2002). Validating the gravity-based competitive location model using inferred attractiveness. Annals of Operations Research, 11, 227–237.

    Article  Google Scholar 

  • Drezner, T., & Eiselt, H. A. (2002). Consumers in competitive location models. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory 151–178.

  • Drezner, Z., & Hamacher, H. (2002). Facility location: Applications and theory. Berlin: Springer.

    Book  Google Scholar 

  • Eaton, B. C., & Lipsey, R. G. (1975). The principle of minimum differentiation reconsidered: Some new developments in the theory of spatial competition. The Review of Economic Studies, 42(1), 27–49.

    Article  Google Scholar 

  • Economides, N. (1986). Nash equilibrium in duopoly with products defined by two characteristics. The RAND Journal of Economics, 17(3), 431–439.

    Article  Google Scholar 

  • Eiselt, H. A. (1992). Location modeling in practice. American Journal of Mathematical and Management Sciences, 12(1), 3–18.

    Article  Google Scholar 

  • Eiselt, H. A. (1993). Competition in locational models. Studies in Locational Analysis, 5, 129–147.

    Google Scholar 

  • Eiselt, H. A., & Laporte, G. (1989). Competitive spatial models. European Journal of Operational Research, 39, 231–242.

    Article  Google Scholar 

  • Eiselt, H. A., & Laporte, G. (1996). Sequential location problems. European Journal of Operational Research, 96, 217–231.

    Article  Google Scholar 

  • Eiselt, H. A., Laporte, G., & Thisse, J.-F. (1993). Competitive location models: A framework and bibliography. Transportation Science, 27, 44–54.

    Article  Google Scholar 

  • Francis, R., McGinnis, L., & White, J. (1992). Facility layout and location: An analytical approach. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Friesz, T. L., Miller, T., & Tobin, R. L. (1988). Competitive network facility location models: A survey. Papers of the Regional Science Association, 65, 47–57.

    Article  Google Scholar 

  • Friesz, T. L., Tobin, R. L., & Miller, T. (1989). Existence theory for spatially competitive network facility location models. Annals of Operations Research, 18(1), 267–276.

    Article  Google Scholar 

  • Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.

    Article  Google Scholar 

  • Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.

    Article  Google Scholar 

  • Goodchild, M. F., & Noronha, V. T. (1987). Location-allocation and impulsive shopping: The case of gasoline retailing. In A. Ghosh & G. Rushton (Eds.), Spatial analysis and location-allocation models (pp. 121–136). New Jersey: Van Nostrand Reinhold Company.

    Google Scholar 

  • Graitson, D. (1982). Spatial competition a la Hotelling: A selective survey. The Journal of Industrial Economics, 31(1–2), 11–25.

    Article  Google Scholar 

  • Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jesús, O. (1996). Neural network design (Vol. 20). Boston: PWS publishing company.

    Google Scholar 

  • Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450–459.

    Article  Google Scholar 

  • Hakimi, S. L. (1986). p-median theorems for competitive locations. Annals of Operations Research, 6, 77–98.

    Article  Google Scholar 

  • Hamacher, H. W., & Nickel, S. (1998). Classification of location models. Location Science, 6, 229–242.

    Article  Google Scholar 

  • Hotelling, H. (1929). Stability in competition. The Economic Journal, 39, 41–57.

    Article  Google Scholar 

  • Huff, D. L. (1964). Defining and estimating a trade area. Journal of Marketing, 28, 34–38.

    Article  Google Scholar 

  • Jain, A. K., & Mahajan, V. (1979). Evaluating the competitive environment in retailing using multiplicative competitive interactive models. In J. N. Sheth (Ed.), Research in marketing (Vol. 2, pp. 217–235). Greenwich: JAI Press.

    Google Scholar 

  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.

    Article  Google Scholar 

  • Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning.

  • Küçükaydın, H., Aras, N., & Altınel, İ. K. (2012). A leader-follower game in competitive facility location. Computers & Operations Research, 39(2), 437–448.

    Article  Google Scholar 

  • Larson, R. C. (1974). A hypercube queuing model for facility location and redistricting in urban emergency services. Computers & Operations Research, 1(1), 67–95.

    Article  Google Scholar 

  • Louveaux, F. V. (1986). Discrete stochastic location models. Annals of Operations Research, 6(2), 21–34.

    Article  Google Scholar 

  • Lu, X., Li, J., & Yang, F. (2010). Analyses of location-price game on networks with stochastic customer behavior and its heuristic algorithm. Journal of Systems Science and Complexity, 23(4), 701–714.

    Article  Google Scholar 

  • Mirchandani, P. B., Oudjit, A., & Wong, R. T. (1985). ‘Multidimensional’extensions and a nested dual approach for the m-median problem. European Journal of Operational Research, 21(1), 121–137.

    Article  Google Scholar 

  • Morris, J. G., Love, R. F., & Wesolowsky, G. O. (1988). Facilities location: Models and methods. New York: North-Holland Publishing Co.

  • Nakanishi, M., & Cooper, L. G. (1974). Parameter estimate for multiplicative interactive choice model: Least squares approach. Journal of Marketing Research, 11, 303–311.

    Google Scholar 

  • Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54(2), 286–295.

    Article  Google Scholar 

  • Pahlavani, A., & Saidi-Mehrabad, M. (2011). A competitive facility location model with elastic demand and patronising behaviour sensitive to location, price and waiting time. International Journal of Logistics Systems and Management, 10(3), 293–312.

    Article  Google Scholar 

  • Plastria, F. (1995). Continuous location problems. In Z. Drezner (Ed.), Facility location : A survey of applications and methods (pp. 225–262). New York: Springer.

    Chapter  Google Scholar 

  • Plastria, F. (2001). Static competitive facility location: An overview of optimization approaches. European Journal of Operational Research, 129, 461–470.

    Article  Google Scholar 

  • Plastria, F. (2002). Continuous covering location problems. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 37–79). Berlin: Springer.

    Chapter  Google Scholar 

  • ReVelle, C. S., Eiselt, H. A., & Daskin, M. S. (2008). A bibliography for some fundamental problem categories in discrete location science. European Journal of Operational Research, 184, 817–848.

    Article  Google Scholar 

  • Revelle, C. S., & Laporte, G. (1996). The plant location problem: New models and research prospects. Operations Research, 44(6), 864–874.

    Article  Google Scholar 

  • Şahin, G., & Süral, H. (2007). A review of hierarchical facility location models. Computers & Operations Research, 34(8), 2310–2331.

    Article  Google Scholar 

  • Serra, D., & ReVelle, C. (1999). Competitive location and pricing on networks. Geographical Analysis, 31(2), 109–129.

    Article  Google Scholar 

  • Slater, P. J. (1975). Maximin facility location. Journal of Research of the National Bureau of Standards B, 79, 107–115.

    Google Scholar 

  • Suárez-Vega, R., Santos-Peñate, D. R., & Dorta-González, D. (2014). Location and quality selection for new facilities on a network market. The Annals of Regional Science, 52(2), 537–560.

    Article  Google Scholar 

  • Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.

    Article  Google Scholar 

  • Wagner, M. R., Bhadury, J., & Peng, S. (2009). Risk management in uncapacitated facility location models with random demands. Computers & Operations Research, 36(4), 1002–1011.

    Article  Google Scholar 

  • Weaver, J. R., & Church, R. L. (1983). Computational procedures for location problems on stochastic networks. Transportation Science, 17(2), 168–180.

    Article  Google Scholar 

  • Weiszfeld, E. (1937). Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Mathematical Journal, 43(355–386), 2.

    Google Scholar 

  • Yao, B., Hu, P., Lu, X., Gao, J., & Zhang, M. (2014). Transit network design based on travel time reliability. Transportation Research Part C: Emerging Technologies, 43, 233–248.

    Article  Google Scholar 

  • Yao, B., Hu, P., Zhang, M., & Wang, S. (2013). Artificial bee colony algorithm with scanning strategy for the periodic vehicle routing problem. Simulation, 89(6), 762–770.

    Article  Google Scholar 

  • Yao, B., Yu, B., Hu, P., Gao, J., & Zhang, M. (2016). An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Annals of Operations Research, 242(2), 303–320.

  • Yu, B., Kong, L., Sun, Y., Yao, B., & Gao, Z. (2015). A bi-level programming for bus lane network design. Transportation Research Part C: Emerging Technologies, 55, 310–327.

    Article  Google Scholar 

  • Yu, B., Song, X., Guan, F., Yang, Z., & Yao, B. (2016). k-Nearest neighbor model for multiple-time-step prediction of short-term traffic condition. Journal of Transportation Engineering, 142(6), 04016018.

    Article  Google Scholar 

  • Yu, B., Yang, Z. Z., Chen, K., & Yu, B. (2010). Hybrid model for prediction of bus arrival times at next station. Journal of Advanced Transportation, 44(3), 193–204.

    Article  Google Scholar 

  • Yu, B., Yang, Z., Sun, X., Yao, B., Zeng, Q., & Jeppesen, E. (2011). Parallel genetic algorithm in bus route headway optimization. Applied Soft Computing, 11(8), 5081–5091.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in National Natural Science Foundation of China 51578112 and 71571026, and the Fundamental Research Funds for the Central Universities DUT16YQ104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozhen Yao.

Appendices

Appendix 1

See Table 5.

Table 5 Demands of communities

Appendix 2

See Table 6

Table 6 Parameters in models

Appendix 3

See Fig. 8

Fig. 8
figure 8

Networks of Case 1 and Case 3. a The network of Case 1, b the network of Case 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, W., Yan, Q., Chen, C. et al. Optimization of competitive facility location for chain stores. Ann Oper Res 273, 187–205 (2019). https://doi.org/10.1007/s10479-017-2579-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2579-z

Keywords

Navigation