Noname manuscript No.
(will be inserted by the editor)

Automated Generation of Constructive Ordering
Heuristics for Educational Timetabling

Nelishia Pillay - Ender Ozcan

Received: date / Accepted: date

Abstract Construction heuristics play an important role in solving combina-
torial optimization problems. These heuristics are usually used to create an
initial solution to the problem which is improved using optimization techniques
such as metaheuristics. For examination timetabling and university course
timetabling problems essentially graph colouring heuristics have been used
for this purpose. The process of deriving heuristics manually for educational
timetabling is a time consuming task. Furthermore, according to the no free
lunch theorem different heuristics will perform well for different problems and
problem instances. Hence, automating the induction of construction heuristics
will reduce the man hours involved in creating such heuristics, allow for the
derivation of problem specific heuristics and possibly result in the derivation
of heuristics that humans have not thought of. This paper presents generation
construction hyper-heuristics for educational timetabling. The study investi-
gates the automatic induction of two types of construction heuristics, namely,
arithmetic heuristics and hierarchical heuristics. Genetic programming is used
to evolve arithmetic heuristics. Genetic programming, genetic algorithms and
the generation of random heuristic combinations is examined for the genera-
tion of hierarchical heuristics. The hyper-heuristics generating both types of
heuristics are applied to the examination timetabling and the curriculum based
university course timetabling problems. The evolved heuristics were found to

This research was funded by a Royal Society Newton International Interchange Grant
(NI150199).

Nelishia Pillay

Department of Computer Science
University of Pretoria, South Africa
E-mail: nelishiap@gmail.com

Ender Ozcan

ASAP, School of Computer Science
University of Nottingham, UK

E-mail: Ender.Ozcan@nottingham.ac.uk

2 Nelishia Pillay, Ender Ozcan

perform much better than the existing graph colouring heuristics used for this
domain. Furthermore, it was found that the while the arithmetic heuristics
were more effective for the examination timetabling problem, the hierarchical
heuristics produced better results than the arithmetic heuristics for the cur-
riculum based course timetabling problem. Genetic algorithms proved to be
the most effective at inducing hierarchical heuristics.

Keywords Educational timetabling - Construction heuristics - Hyper-
heuristics - Genetic programming - Genetic algorithms

1 Introduction

Generation construction hyper-heuristics have proven to be effective in de-
riving construction heuristics that perform better than existing manually de-
rived construction heuristics for various combinatorial optimization problems
including production scheduling [3], packing problems [8] and vehicle routing
[17]. Genetic programming [9] or variations of genetic programming such as
grammatical evolution [12] have chiefly been employed by generation construc-
tion hyper-heuristics to create new low-level construction heuristics. This is
achieved by combining problem specific attributes with arithmetic and condi-
tional operators. Genetic algorithms have also been used for the automatic in-
duction of construction heuristics [13]. The hyper-heuristic achieves generality
in that the same hyper-heuristic is applied to all problem instances. However,
the evolved construction heuristics can be disposable or reusable [4]. Dispos-
able heuristics are induced for a particular problem instance while reusable
heuristics can be used to solve unseen problem instances, different from the
problem instance/s that it was created for.

The research presented in this paper investigates the automatic deriva-
tion of construction heuristics for educational timetabling problems. While
there has been a fair amount of research into the use of hyper-heuristics
for educational timetabling, there has not been much research into the au-
tomatic generation of construction heuristics for this domain. Furthermore,
there is very little work using a genetic programming or genetic algorithm
hyper-heuristic for this purpose despite the success of genetic programming
hyper-heuristics in inducing construction heuristics for other domains such
as production scheduling and packing. The generation hyper-heuristic imple-
mented by Bader-El-Den et al. [1] uses grammar-based genetic programming
[11] to evolve construction heuristics for the examination timetabling prob-
lem. Existing construction heuristics, namely the graph colouring heuristics,
for the examination timetabling problem are decomposed into their basic com-
ponents and recombined together with period selection heuristics, arithmetic
operators and an if-then-else operator to create new heuristics. The hyper-
heuristic was used to generate disposable heuristics for the Toronto bench-
mark set. A similar study is conducted in [14] in which genetic programming
is used to evolve construction heuristics in the form of rules for the exami-
nation timetabling problem. Each low-level heuristic represents a comparator

Generation of Constructive Ordering Heuristics for Educational Timetabling 3

which decides which of two examinations should be given priority. Hence, each
heuristic is a nested if-then-else operator with the conditions comprised of ex-
isting construction heuristics and arithmetic logical and logical operators. This
hyper-heuristic also produced disposable heuristics for five problem instances
of the Toronto benchmark set. In [15] construction heuristics are evolved for
the school timetabling problem using genetic programming. Each heuristic is
a priority function which assigns a numerical value to each class-teacher tuple
to be allocated. The tuples are sorted in ascending order and allocated accord-
ingly. Each heuristic is comprised of problem characteristics, e.g. the number
of class-teacher meetings a teacher is involved in and arithmetic operators and
an if-then-else operator. The generated disposable heuristics produced feasible
timetables for all the problem instances in the Abramson benchmark set [2].

The study presented in this paper investigates the automatic generation of
construction heuristics for educational timetabling problems. As in the study
by Bader-El-Den et al. [1] the evolved heuristics are disposable. Two hyper-
heuristics are examined, one generating arithmetic heuristics(AHH) and the
second hierarchical heuristics (HHH). The hyper-heuristics were applied to
two examination timetabling benchmark sets, namely, the Toronto benchmark
set and the ITC 2007 benchmark set, as well as the ITC 2007 curriculum
based course timetabling benchmark set. The construction heuristics evolved
by the hyper-heuristic performed better than the existing heuristics for both
the domains of examination timetabling and curriculum based timetabling.
The study also revealed that the AHH produced better results for the exami-
nation timetabling problems while the hierarchical heuristics performed better
for the curriculum based course timetabling problem.

The following contributions are made by the research presented in the
paper:

— To the authors’ knowledge this is the first detailed study investigating the
use of genetic programming and genetic algorithm hyper-heuristics for ed-
ucational timetabling in general, i.e. more than one timetabling problem.
The use of genetic programming hyper-heuristics has been well researched
for production scheduling [3] and packing problems [8], clearly showing
its effectiveness for the automatic generation of construction heuristics for
these domains. Furthermore, previous research into the use of genetic pro-
gramming construction hyper-heuristics has been focussed on examination
timetabling. To the authors’ knowledge, genetic algorithms has not previ-
ously been investigated for automatic heuristic induction for educational
timetabling.

— While previous research has examined the automatic induction of heuristics
in the form of heuristic functions and rules using genetic programming
hyper-heuristics, this is the first study investigating hierarchical heuristics.

— To the authors’ knowledge this is the first study examining the use of ge-
netic programming and genetic algorithm hyper-heuristics to evolve con-
struction heuristics for the curriculum based course timetabling problem.

4 Nelishia Pillay, Ender Ozcan

— This is the first study applying genetic programming and genetic algorithm
construction hyper-heuristics to the I'TC 2007 examination timetabling and
curriculum based course timetabling benchmark sets.

— The study has revealed that different heuristics, namely, arithmetic and
hierarchical, are effective for different educational timetabling problems.

The following section presents a critical reflection on generation construc-
tion hyper-heuristics in the context of educational timetabling, highlighting
the purpose of generation construction hyper-heuristics, evaluation of the per-
formance of these hyper-heuristics, and generality of the derived construc-
tion heuristics for educational timetabling. Section 3 provides an overview of
educational timetabling and section 4 describes the generation construction
hyper-heuristics for educational timetabling. The experimental setup used to
evaluate the performance of the hyper-heuristics is presented in section 5 and
the performance of the hyper-heuristics are discussed in section 6. The findings
of the study are summarized in section 7 together with future extensions of
the work.

2 Generation Construction Hyper-Heuristics

The role that generation construction hyper-heuristics play and hence how
these hyper-heuristics should be evaluated is not consistent in the literature,
with literature often being contradictory. Hence, this section provides a critical
reflection, revisiting the purpose of generation construction hyper-heuristics,
performance evaluation and generality. These aspects are examined in the
context of deriving construction heuristics for educational timetabling.

2.1 Purpose of Generation Construction Hyper-Heuristics for Educational
Timetabling

The main aim of generation construction hyper-heuristics is to automate the
process of deriving low-level construction heuristics that are used to create
an initial solution to the problem. This initial solution is then optimized by
search techniques such as metaheuristics. As such the initial solution provides
the search technique with a more informed starting point than a randomly cre-
ated initial solution. The low-level construction heuristics are usually manually
derived. This is a time-consuming process and hence the need for automation
[3] [7]. Furthermore, by the no free lunch theorem and as shown in previous re-
search in this field, different construction heuristics are more effective for some
problem instances than others, however manually deriving heuristics specific
to problem instances is not feasible. Furthermore, it is anticipated that the au-
tomated induction of such heuristics could result in the induction of heuristics
that a human may not think of [8].

Generation of Constructive Ordering Heuristics for Educational Timetabling 5

2.2 Performance Evaluation

As mentioned in the previous section the aim of the heuristics generated by
the hyper-heuristic is to create an initial solution which is optimized further
using optimization techniques to get a final solution. As such the performance
of the evolved heuristics can not be expected to be comparable to state of
the art techniques for the problem domain [6] [7]. The performance of the
automatically induced low-level heuristics should be at least as good as that
of the existing manually derived heuristics [5]. Furthermore, evolving these
heuristics should not take as long as required to manually derive them [5].
Bader-El-Den et al. [1] state that it should take a few hours to at most a
day for a heuristic to be induced. Hence, the performance of generation con-
struction hyper-heuristics should be assessed in terms of how well the evolved
construction heuristics perform compared to existing manually derived heuris-
tics as well as the time taken to generate these heuristics.

2.3 Generality

Hyper-heuristics aim to achieve generality [4]. In the context of generation
construction hyper-heuristics this is achieved by the same technique and set of
parameters being used to evolve construction heuristics for different problem
instances and problems. The heuristic evolved can however be either dispos-
able or reusable as explained in [4]. Hyper-heuristics producing disposable
heuristics perform online learning and the heuristic is tailored for the prob-
lem instance as in the studies conducted in [8] for packing problems, [1] for
examination timetabling and [17] for vehicle routing. In the case of reusable
heuristics the hyper-heuristic performs offline learning on a subset of prob-
lem instances, namely, the training set instead of a single problem instance.
The evolved heuristics are applied to unseen problem instances which form a
test set. Usually, problems instances for the particular domain are placed into
classes with similar problem instances grouped together [3] [8]. The instances
in each class are divided into training and testing sets and different low-level
construction heuristics are produced for each class of problem instances.

3 Educational Timetabling Problems

Educational timetabling problems require events involving students to be al-
located to timetable periods. In the domain of examination timetabling the
events are examinations and for university course timetabling these are lec-
tures for the different courses. Allocations must be made so as to satisfy cer-
tain problem constraints. Constraints that must be met are referred to as hard
constraints. Timetables satisfying all hard constraints are feasible timetables.
Examples of hard constraints include that all events must be scheduled, there
must be no clashes, i.e. students, rooms, or teachers, must not be scheduled

6 Nelishia Pillay, Ender Ozcan

more than once in a period. Soft constraints are constraints that it may not
be possible to meet as these could be contradictory and we aim to minimize
the number of soft constraints violated. The cost is a measure of the quality
of the timetable, a lower cost indicating a better timetable.

This study investigates the automated derivation of construction order-
ing heuristics for educational timetabling problems. The genetic program-
ming hyper-heuristics presented are tested on two educational timetabling
domains, namely, examination timetabling and curriculum based university
course timetabling. Two benchmark sets that are commonly used in the lit-
erature for examination timetabling are the Toronto benchmark set and the
ITC 2007 benchmark set for the track on examination timetabling. Curriculum
based university course timetabling was also a track for the second interna-
tional timetabling competition (ITC 2007) and the benchmark set for this
track is generally used to evaluate methods for solving the this problem. This
section provides an overview of these benchmark sets which are used in this
study. The section also looks at the role that low-level construction heuristics
play in solving educational timetabling problems.

3.1 Toronto Benchmark Set

Table 1 lists the details of the problem instances in the Toronto benchmark set
[16] used in this study. The density of the conflict matrix is a measure of the
difficulty of the problem instance and is the ratio of the number of students
that could potentially be involved in clashes to the total number of students.
The hard constraints for the benchmark are that all examinations must be
allocated and there must be no clashes, i.e. no student must be scheduled to
write more than one examination in the same period.

The soft constraint for the benchmark set is that examinations must be
well spread for all students. The proximity cost function in equation (1) below
is used to calculate the soft constraint cost.

> w(le; — e;[) Ny
5 (1)

where: |e; — e;is the distance between the periods of the examination pair e;
and e; which have students in common; S is the total number of students; IV;;
is the number of students common to both examinations; w(1)=16, w(2)=8,
w(3)=4, w(4)=2, w(5)=1, w(n)=0 for n >5.

3.2 ITC 2007 Examination Timetabling Benchmark Set

The details of the ITC 2007 benchmark set [10] are listed in Table 2. This
benchmark set is more constrained than the Toronto benchmark set and rep-
resents the capacitated version of the examination timetabling problem.

The hard constraints for the benchmark set are:

Generation of Constructive Ordering Heuristics for Educational Timetabling

Table 1: Toronto benchmark set

Instance

Institution

No. of Periods

No. of Exams

No. of
Students

Density of
Conflict
Matrix

car-f-92 1
car-f-91 1

ear-f-83 1

hec-s-92 1

kfu-s-93

Ise-f-91

pur-s-93 I

rye-s-93

sta-f-83 1

tre-s-92

uta-s-92 1

ute-s-92

yor-f-83 1

Carleton
University
Carleton
University
Earl Haig
Collegiate
Institute

Ecoles des Hautes

Etudes
Commerciale
King Fahd
University of
Petroluem
and Minerals
London School
of Economics
Purdue
University
Ryerson
University

St Andrews
Junior High
School

Trent
University
Faculty of Arts
and Sciences
University

of Toronto
Faculty of
Engineering
University

of Toronto
York Mills
Collegiate
Institute

32

35

24

18

20

18

43

23

13

23

35

10

21

543

682

190

81

461

381

2419

486

139

261

622

184

181

18419

16925

1125

2823

5349

2726

30029

11483

611

4360

21266

2749

941

0.14

0.13

0.27

0.42

0.06

0.06

0.03

0.08

0.14

0.18

0.13

0.08

0.29

Table 2: ITC 2007 examination timetabling benchmark set

Instance Exams Students Periods Rooms Conflict Density (%)
Examl 607 7891 54 7 5.05
Exam?2 870 12743 40 49 1.17
Exam3 934 16439 36 48 2.62
Exam4 873 5045 21 1 15.00
Exam5 1018 9253 42 3 0.87
Exam6 242 7909 16 8 6.16
Exam?7 1096 14676 80 15 1.93
Exam8 598 7718 80 8 4.55

8 Nelishia Pillay, Ender Ozcan

— There are no clashes, i.e. no students should be scheduled to write more
than one examination at the same time.

— Room capacities must not be exceeded.

— Period durations must not be exceeded.

— Ordering requirements must be met, e.g. one examination being scheduled
after another, two examinations being scheduled simultaneously.

— Room requirements must be met, e.g. an examination has to be scheduled
in a particular venue such as Computer Science in a laboratory.

The following soft constraints are minimized:

— Two in a row: a student is scheduled to write two examinations successively.

— Two in a day: a student is scheduled to write two examinations in a day
but the examinations are not successive.

— Period spread: Aims at ensuring that the examinations are well spread
for each student. A penalty is added to the soft constraint cost for each
examination scheduled within a specified period for a student.

— Mixed durations: A penalty is added to the soft constraint cost for each
instance of examinations of different durations being scheduled in the same
period in the same venue.

— Largest examinations at the beginning of the examination period: The aim
is for the largest examinations to be scheduled at the beginning of the
examination period. For each instance the beginning of the examination
period is defined as the first n periods and the number of examinations that
are in the category ”largest examinations”. If one of these examinations
is not scheduled in the specified periods a penalty is added to the soft
constraint cost.

— Room penalty: A penalty is associated with using certain rooms in an
attempt to minimize the usage of certain rooms. If one of these rooms is
used a penalty is added to the soft constraint cost.

— Period penalty: As with rooms there are also penalties associated with
using certain periods. If examinations are scheduled in one of these periods
a penalty is added to the soft constraint cost.

3.3 ITC 2007 Curriculum Based Course Timetabling Benchmark Set

The problem instances in the ITC 2007 curriculum based university course
timetabling benchmark set [10] are listed in Table 3. The conflicts column
lists the conflicts per lecture. This value is the number of pairs of potential
conflicts divided by the total number of lectures.

The hard constraints are:

— Lecture allocations - The number of lectures specified for each course must
be timetabled.

— Conflicts - Lectures for courses in a curriculum must be scheduled in dif-
ferent periods.

— RoomOccupancy - Each room must only be scheduled once in a period.

Generation of Constructive Ordering Heuristics for Educational Timetabling 9

Table 3: ITC 2007 CB-CTT Problem Instances

Instance Courses Rooms Curricula Days Periods Conflicts

comp01 30 6 14 6 5 13.2
comp02 82 16 70 5 5 7.97
comp03 72 16 68 5 5 8.17
comp04 79 18 57 5 5 5.42
comp05 56 9 139 6 6 21.7
comp06 108 18 70 5 5 5.24
comp07 131 20 77 5 5 4.48
comp08 86 18 61 5 5 4.52
comp09 76 18 75 5 5 6.64
compl0 115 18 67 5 5 5.03
compll 30 5 13 9 5 13.8
compl2 88 11 150 6 6 13.9
compl3 82 9 66 5 5 5.61
compl4 85 17 60 5 5 6.87
complb 72 16 68 5 5 8.17
compl6 108 20 71 5 5 5.13
compl7 99 1 70 5 5 5.5

compl8 47 9 52 6 6 13.3
compl9 74 16 66 5 5 7.45
comp20 121 19 78 5 5 5.06
comp21 94 18 78 5 5 6.09

Availabilities - Each teacher must be scheduled once in a period.
The soft constraints are:

— RoomCapacity -Room capacities must not be exceeded.

— MinimumWorkingDays - For some courses a minimum number of working
days is specified. In this case the lectures for the course must not be sched-
uled over more than the specified minimum number of days. If this occurs
a penalty is incurred.

— CurriculumCompactness - Lectures for courses belonging to the same cur-
riculum should be scheduled adjacent to each other on a day.

— RoomStability - All the lectures for a course should be scheduled in the
same venue.

3.4 Low-Level Construction Heuristics and Educational Timetabling

Low-level construction heuristics are used to create an initial solution to an
educational timetabling problem. This initial solution forms input to an op-
timization technique which is used to solve the problem. For educational
timetabling problems graph colouring heuristics have generally been used to
create an initial solution. The low-level heuristic is a measure of the difficulty
of scheduling an event, e.g. an examination or a lecture. The events to be
scheduled are sorted in either ascending or descending order according to the
heuristic and allocated to timetabling periods in order. The existing manually
derived heuristics which are used for educational timetabling include:

10

Nelishia Pillay, Ender Ozcan

Largest enrolment (LE) - The events to be scheduled are sorted in descend-
ing order according to the number of students involved in the event. Events
with a larger number of students are given priority to be scheduled.
Largest degree (LD) - The number of potential clashes, i.e. other events
the event has students in common with, is used to assess the difficulty of
scheduling the event. The higher the number of clashes the more difficult
the event is to schedule and is hence given priority.

Largest weighted degree (LWD) - This heuristic is similar to the the largest
degree heuristic but instead of counting the number of events an event has
students in common with, it counts the number of students involved in both
events. Events with a higher largest weighted degree are given priority.
Largest colour degree(LCD) - The largest colour degree is a variation of
the largest degree heuristic and is the number of potential clashes with
events that have already been scheduled.

Saturation degree (SD) - The saturation degree heuristic is the number of
feasible periods, i.e. periods not resulting in hard constraint violations when
the event is scheduled in it, at the current point of timetable construction.
Events with fewer periods are scheduled first.

The first three heuristics are static heuristics and the values of these heuris-

tics is determined prior to constructing the timetable and remain the same for
each event throughout the process of timetable construction. The algorithm
for constructing a timetable using a static low-level construction heuristic is
illustrated in 1. All the events are sorted in ascending or descending order ac-
cording to the heuristic value and are allocated in order to the timetable. The
aim is to schedule each event to a feasible period p. If a feasible period cannot

be

found the event is either not scheduled or it is scheduled to a randomly

selected period and the hard constraint cost is incremented. If more than one
timetable period is feasible the period can be selected using a period selection
heuristic. Examples of period selection heuristics include:

First period (f) - The event is scheduled in the first feasible period found.
Random period (r) - The period is randomly selected from the feasible
periods.

Minimum cost period (m) - The soft constraint cost of feasible periods is
calculated given the current partial timetable. The event is scheduled in
the period with the minimum soft constraint cost.

Algorithm 1 Timetable construction using a static heuristic

1:
2:

procedure CREATE TIMETABLE(Events[])
Calculate the heuristic value h; for each event e; in Events|]
Sort the events in Events[] according to h;
for i + 1,n do
Allocate event Eventli] to a timetable period p
end for
end procedure

Generation of Constructive Ordering Heuristics for Educational Timetabling 11

The saturation degree and largest colour degree heuristics are dynamic
heuristics as the value for each unallocated event changes depending on the
current partially created timetable. At the beginning of the timetable construc-
tion process all events have the same saturation degree, namely, the number
of periods in the timetable, as there has not been allocations as yet. As the
timetable is constructed the saturation degree of an event e that has students
in common with the event just allocated is decreased if the event is scheduled
in a period that does not contain other events in common with e. Similarly,
the largest colour degree heuristic has an initial value of zero for all events.
Once events are allocated the largest colour degree heuristic is incremented
for an event e that has students in common with the event scheduled. The
algorithm for using a dynamic heuristic to create a timetable is depicted in 2.

Algorithm 2 Timetable construction using a dynamic heuristic

1: procedure CREATE TIMETABLE(Ewvents|])
2: Specify an initial value for the heuristic value h; for each event e; in Events]]
Sort the events in Fvents[] according to h;
while Events[] <> null do
Allocate event Event[0] to a timetable period p
Remove Event[0] from Events
Update the heuristic value h; for each unallocated event e; in Events|]
end while
end procedure

4 Evolving Construction Heuristics for Educational Timetabling

This section describes the generation hyper-heuristics employed to induce low-
level construction heuristics for educational timetabling problems. The genetic
programming hyper-heuristic inducing arithmetic heuristics is presented in sec-
tion 4.1. The genetic programming, genetic algorithm and random generation
hyper-heuristics inducing hierarchical heuristics are described in section 4.2.
Both hyper-heuristics employ the generational algorithm to evolve heuristics
[9]. The algorithm begins by creating an initial population. This initial popu-
lation is iteratively refined by means of evaluation, selection and regeneration
until a termination criterion is met. Each iteration is referred to as a genera-
tion. The termination condition used in this study is a maximum number of
generations. The mutation and crossover operators are applied during regen-
eration to create the offspring of each generation.

4.1 Arithmetic Hyper-Heuristic (AHH)

This section describes the processes of initial population generation, evaluation
and selection and regeneration in evolving low-level arithmetic construction
heuristics in the following subsections.

12 Nelishia Pillay, Ender Ozcan

4.1.1 Representation and Initial Population Generation

Each element of the genetic programming population is an expression tree
representing a heuristic. A heuristic is composed of problem specific attributes
that are combined with operators. The operators are arithmetic operators and
an if-then-else operator including relational operators for use with this opera-
tor. Each heuristic is either an arithmetic function or an arithmetic rule. An
arithmetic function combines the problem attributes with arithmetic operators
such as addition and subtraction. An arithmetic rule is composed of a condi-
tion and two actions, if the condition is met the first action is performed and
the second action otherwise. The actions are arithmetic expressions or rules.
The condition combines problem attributes and relational operators and hence
the action performed depends on the relation between the attributes specified
in the condition. The operators form the function set and the problem at-
tributes the terminal set. The function set used is depicted in table 4. The
operators include the standard arithmetic operators. The division operator
performs protected division which returns a value of one in the case of the
denominator being zero. Relational operators are included in the set for use
with the if-then-else operator.

Table 4: Function set

Type Operators Description

Arithmetic +,-, %/ Perform standard arithmetic
operations.

Relational <, >, <=, >=, ==, !|= Perform the standard relational
operators. Used with the conditional
operators.

Conditional if-then-else Perform the standard function of

an if-then-else statement.

Each expression tree in the population is created by randomly selecting
elements from the function and terminal sets until a specified maximum tree
depth is reached. At the maximum permitted tree depth only elements from
the terminal set are selected. The terminal set contains variables represent-
ing the problem attributes. While the function set remains the same from
one problem to the next the terminal set differs for each problem domain or
benchmark set. Factors taken into consideration when choosing the attributes
to include are the problem definition, hard constraints and soft constraints.
This is done manually and is one of the challenges in automating the process
of heuristic derivation. As highlighted by Branke et al. [3] sufficient attributes
need to be included to sufficiently represent the problem, however using too
many attributes will increase the search space and hence runtimes. Table 5
lists the terminal set used for the Toronto benchmark set. The first column
specifies the terminal and the second column the corresponding description.
The first attribute a represents a problem characteristic related to the soft

Generation of Constructive Ordering Heuristics for Educational Timetabling 13

constraint of the problem, namely, the examinations must be well spread for
each student. There terminals b to f represent attributes that are related to
the hard constraint that there must be no clashes. The last two terminals rep-
resent general problem characteristics, the total number of students and the
number of periods.

Table 5: Terminal set for the Toronto benchmark set

T | Description

Measure of the distance between slots of examinations that share students.

Is calculated to be the sum of the weighted distances using

the following weights, where d is the distance and w the weight: w(1)=16;
w(2)=8;w(3)=4;w(4)=2;w(5)=1;w(d)=0 where d<5. Initially all examinations
have a value of zero for this attribute.

<

b | Number of potential clashes the examination has with unallocated examinations,
i.e. the number of unallocated examinations that it has students in common with.

[¢ Number of potential clashes for the examination, i.e. the number of examinations
it has students in common with.

Number of students taking the examination.

e Number of periods in the timetable that the examination can be allocated to which
will not result in hard constraint violations.

f Number of potential clashes the examination has with allocated examinations,
i.e. the number of allocated examinations that it has students in common with.

g The total number of students.

h The number of periods.

The terminal set used for the ITC 2007 examination timetabling problem
is illustrated in table 6. Terminals a to f and h to j represent problem char-
acteristics related to the hard constraints of the problem, while the terminal g
is related to soft constraints of the problem. The last two terminals represent
general problem characteristics. Examinations with a lower room degree (h)
are scheduled first. However, certain rooms have a penalty associated with
them which is added to the soft constraint cost whenever the room is used.
Hence, a penalty of 0.5 is subtracted from the room degree if one of the avail-
able rooms has a penalty associated with it to indicate a more difficult exam
to schedule. Similarly, certain periods have a penalty associated with using
the period and a penalty of 0.5 is subtracted for each available period with a
penalty.

The terminal set used for the ITC 2007 curriculum based course timetabling
problem is listed in table 7. As in the previous two benchmark sets the termi-
nals represent attributes related to the problem in general, the hard constraints
and the soft constraints. Terminals p, n and m represent general problem char-
acteristics, c is related to a hard constraint of the problem and the remaining
terminals to soft constraints.

An example of an element of the population, namely an arithmetic func-
tion, for examination timetabling is illustrated in Fig. 1. In this example the
heuristic is the product of the number of potential clashes for an examination

14

Nelishia Pillay, Ender Ozcan

Table 6: Terminal set for the ITC 2007 examination timetabling benchmark set

Description

o

Number of potential clashes for the examination, i.e. the number of examinations
it has students in common with.

Number of students involved in potential clashes for the examination, i.e. the
number of students the examination has in common with other examinations.

Number of students taking the examination.

Number of periods in the timetable that the examination can be allocated to which
will not result in hard constraint violations.

Number of potential clashes the examination has with unallocated examinations,
i.e. the number of unallocated examinations that it has students in common with.

Number of potential clashes the examination has with allocated examinations,
i.e. the number of allocated examinations that it has students in common with.

Measure of the distance between slots of examinations that share students

Is calculated to be the sum of the weighted distances using

the following weights, where d is the distance and w the weight: w(1)=16;
w(2)=8;w(3)=4;w(4)=2;w(5)=1;w(d)=0 where d<5. Initially all examinations
have a value of zero for this attribute.

Room degree, i.e. the number of rooms with the required capacity for the
examination. A value of 0.5 is subtracted for each room with a penalty associated
with using it.

Period degree, i.e. the number of periods with the required duration for the
examination. A value of 0.5 is subtracted for each period with a penalty associated
with using it.

The hard constraints include certain sequence requirements, e.g. one examination
must take place before another. This attribute is the sum of these requirements.

The total number of periods.

The total number of rooms.

Table 7: Terminal set for the ITC 2007 curriculum based course timetabling benchmark set

T

Description

S

Number of periods in the timetable that the lecture can be allocated to which
will not result in hard constraint violations.

Number of potential clashes for the lecture.

Number of lectures for the course.

Number of students enrolled for the lecture.

ol |l

Minimum number of working days over which the lectures for a course must be
distributed.

—

Room degree i.e. the number of rooms with sufficient capacity for the the number
of students enrolled for the course.

Teacher degree, i.e. the number of courses the teacher allocated to the course is
required to teach.

Number of potential clashes for the lecture.

The number of periods during which the lectures for the course should not be
scheduled.

The number of periods.

The total number of lectures for the course.

The total number of rooms.

Generation of Constructive Ordering Heuristics for Educational Timetabling 15

Fig. 1: Example of an arithmetic heuristic

and the number of students taking the examination added to the number of
potential clashes with examinations not as yet allocated to the timetable.

The grammar below illustrates the syntax permitted for arithmetic func-
tions and rules for using the terminal set for Toronto examination timetabling
problem.

expr) ::= (expr) {op)(expr) | if (cond) (expr) (expr) | (term)

(
(term):=a|b|c|d|e|f]|g
(op)i=+1[-[*|/
(relop)=<| > < |>|==|!=

When applying this to another problem all that will change are the termi-
nals in the < term > production rules. For example, for course timetabling
these would be < term >::= s|l|d|u|c|r|t|g|v|p|n|m.

4.1.2 Evaluation and selection

Evaluating the population involves calculating the fitness of each element of
the population. The fitness of an individual is calculated by firstly using the
heuristic to create a timetable. The algorithm used to create a timetable using
the heuristic is depicted in Algorithm 3. The algorithm begins by calculating
the heuristic value for each event, i.e. examination or lecture, using the indi-
vidual. The events are sorted in descending order according to this heuristic
value. The first event in the sorted list is allocated to a feasible period. If there
is more than one feasible period, the period with the minimum penalty is cho-
sen. The minimum penalty is the soft constraint cost resulting from allocating
the event to the period. If there is more than one period with the minimum
penalty cost, a period is randomly chosen from these periods. If a feasible pe-
riod cannot be found the event is not allocated and the hard constraint cost
is incremented.

In applying search to solving timetabling problems the fitness or objective
value generally used is the sum of the hard and soft constraint cost. However,
we have ascertained empirically that taking the product of the hard constraint

16 Nelishia Pillay, Ender Ozcan

Algorithm 3 Timetable construction using a low-level heuristic

1: procedure CREATETIMETABLE(Events|], HeuristicTree)

2: Calculate the heuristic value using HeuristicTree for each event in Events])

3: Sort Events in descending order according to heuristic

4: while there are unallocated exams in Events|[|] do

5: Find the list Options of feasible periods that Fvents[0] can be allocated to
6: Allocate Events[0] to the period in Options with the minimum penalty cost
7 if there is more than on feasible minimum penalty period then

8: Randomly select one of these periods to allocate Event|0]

9: end if
10: if there are no feasible periods for Events[0] then
11: Increment the hard constraint cost
12: end if
13: Remove Events[0] from Exzams
14: Recalculate the heuristic values for each exam in FEvents using HeuristicTree
15: Sort the Events in descending order according to heuristic

16: end while
17: end procedure

cost plus one and the soft constraint is better at distinguishing between dif-
ferent timetables, i.e. which of two timetables is better and would lead to
further improvements in successive generations, than taking the sum of both
the costs. The use of a Pareto fitness function which does a vector compari-
son of the hard and soft constraints, i.e. if the hard constraint costs are the
same the timetable with a lower soft constraint is better, was also investigated.
However, this did not provide an improvement on taking the product of the
hard constraint cost plus one and the soft constraint cost. Hence, the fitness
assigned to the individual is a function of the hard and soft constraint cost of
the timetable constructed using the heuristic depicted in equation 2.

Fitness = (hev + 1) * scv (2)
where:

— hcwv is the number of hard constraint violations
— scv is the number of soft constraint violations

Tournament selection [9] is used to choose the parents (individuals) from
the population for regeneration. This selection method randomly chooses ¢
individuals from the population representing a tournament. The fittest indi-
vidual in the tournament is returned as a parent. Selection is with replacement
so an individual may be chosen more than once to be a parent.

4.1.83 Regeneration

The standard mutation and crossover operators described in [9] are applied
to selected parents to produce the offspring of each generation. The muta-
tion operator randomly chooses a mutation point in the expression tree and
the subtree rooted at this point is replaced by a randomly created tree. The
crossover operator randomly selects crossover points in each of the parents and
the subtrees rooted at these points are swapped to create two offspring.

Generation of Constructive Ordering Heuristics for Educational Timetabling 17

Fig. 2: An example of a hierarchical heuristic

4.2 Hierarchical Hyper-Heuristic (HHH)

This section describes the hyper-heuristic employed to induce hierarchical
heuristics. Three approaches were investigated for this, namely, genetic pro-
gramming using a parse tree representation for each heuristic; genetic algo-
rithms using string representation and random generation using a string rep-
resentation. The latter was investigated in order to determine whether opti-
mization is necessary to produce effective hierarchical heuristics or whether it
would be sufficient to randomly generate these.

4.2.1 Genetic Programming Hyper-Heuristic (HHH-GP)

Each heuristic in HHH-GP combines problem attributes with a period selec-
tion heuristic. The function set consists of two elements, namely, * and +.
The terminal set is comprised of the terminal set used by AHH as well as vari-
ables representing the three period selection heuristics, namely, first period (f),
random period (r) and minimum cost period (m). The * is used to combine
problem attributes. The attributes are applied hierarchically, i.e. the second
attribute is used to break ties of the first attribute and the third attribute is
used to break ties of the second attribute. The + is used to combine the termi-
nals representing problem attributes with one of the period selection heuristics.
The attributes are applied logically in a hierarchical manner, namely, the first
attribute is applied and in the case of a tie the second characteristic is applied
and so on. An example of a hierarchical heuristic for examination timetabling
is illustrated in Fig. 2. The events to be scheduled will be sorted according
to the value of the attribute f, i.e. the number of potential clashes for the
examination with allocated examinations. The attribute a, i.e. the number of
potential clashes the examination is involved in, will be used to break ties in
cases where two events have the same value of f. The event will be scheduled
in the minimum cost period.

The grammar below depicts the syntax of heuristics for the Toronto exam-
ination timetabling problem:

(start) ::= + (attrib) (psh)

(attrib)::= * (at)
(at)::= (esh) | (esh) (at)

18 Nelishia Pillay, Ender Ozcan

(esh) ma|blc|d]|e|f|lglh
(pshy:=1|r|m

The only difference in the grammar for a different problem is the terminal
values for < esh >.

As for AHH the fitness of each heuristic is determined by using it to con-
struct a timetable. The process is as outlined in section 4.1.2. The mutation
and crossover operators are used to create the offspring of each generation.
Strong typing is used to ensure that syntactically correct offspring are cre-
ated. For example, the + node can only appear as the root of a tree and a *
node as the left child of the +. Similarly, attribute nodes and period selection
nodes can only be replaced with nodes of the same type.

4.2.2 Genetic Algorithm Hyper-Heuristic (HHH-GA)

Like HHH-GP, HHH-GA is generational with the heuristics evolved over a set
number of generations. In the HHH-GA each heuristic is a combination of n
problem attributes and a period selection heuristic. The problem attributes
are the terminals used by the HHH-GP listed in tables 5, 6 and 7. However,
instead of this being represented as a parse tree it is represented as a string.
For example, the equivalent string representation for the heuristic in figure 2 is
fam. Hence, each chromosome is a string representing a hierarchical heuristic.
Each element of the population is created by randomly selecting characters
representing the problem attributes for the first n characters of the string and
the remaining character is randomly selected from the set representing the
period selection heuristics. The chromosomes are of fixed length.

As in HHH-GP tournament selection is used to choose parents. The fitness
of each chromosome is determined by using the heuristic it represents to create
a solution to the problem. The fitness is calculated to be a function of the hard
and soft constraint cost as calculated in equation 2.

The mutation and crossover operators are used to produce offspring. The
mutation operator replaces a randomly selected character ¢ in the chromosome
with a a randomly selected character from the set of problem attributes if ¢
is one of the first n characters of the chromosome and from the set of period
selection heuristics if ¢ is the last character in the chromosome. The crossover
operator crosses over two chromosomes at a randomly selected crossover point
to produce offspring of the same size.

4.2.83 Random Generation Hyper-Heuristic (HHH-RG)

The random generation hyper-heuristic randomly creates strings comprised of
n characters representing the problem attributes and the last character rep-
resenting a period selection heuristic. This hyper-heuristic basically performs
the initial population generation of the genetic algorithm in section 4.2.2.

Generation of Constructive Ordering Heuristics for Educational Timetabling 19

5 Experimental Setup

AHH and HHH were applied to the Toronto, I'TC 2007 examination timetabling
and ITC 2007 curriculum based course timetabling benchmark sets. Due to
the stochastic nature of genetic programming and genetic algorithms and to
ensure a normal distribution for statistical tests thirty runs were performed
for each problem instance. Hypothesis tests are used to test the significance in
the difference of means when comparing the performance of AHH and HHH
in evolving construction heuristics.

The hyper-heuristics were implemented in Java and simulations were run
on multicore clusters at the Centre for High Performance Computing (CHPC)
in South Africa and University of Nottingham High Performance Computing
facility.

The genetic programming parameter values used in this study are listed
in table 8. These values have been determined empirically by performing trial
runs. There is no limit set on the size of offspring produced by the AHH genetic
operators. The chromosomes for HHH are fixed length, hence the size of the
offspring remain constant.

Table 8: AHH and HHH parameter values

Number of generation 50
Population size 500
Tournament size 4
Mutation rate 50%
Crossover rate 50%

Maximum initial tree depth (for AHH) 4

6 Results and Discussion

This section discusses the performance of AHH and HHH in inducing low-level
construction heuristics for the Toronto, ITC 2007 examination timetabling and
the ITC 2007 curriculum based course timetabling benchmark sets. The first
section examines the performance of the three different hierarchical hyper-
heuristics, HHH-GP, HHH-GA and HHH-RG, on the ITC curriculum based
course timetabling benchmark sets to see which approach, genetic program-
ming, genetic algorithms or random generation, is most effective. The next
section compares the performance of the best performing HHH with AHH in
solving the three problems. Finally the performance of the evolved heuristics
is compared to the existing graph colouring heuristics generally used to create
initial solutions.

20 Nelishia Pillay, Ender Ozcan

6.1 Hierarchical Hyper-Heuristics

This section firstly compares the performance of HHH-GP, HHH-GA and
HHH-RG in generating construction heuristics for the curriculum based course
timetabling problem. Table 9 compares the performance of the three hyper-
heuristics. The table lists the minimum and average hard constraint cost and
soft constraint cost (hard constraint cost/soft constraint cost) for each prob-
lem instance. The performance is compared using the minimum hard and soft
constraint costs and in the case of these values being the same, the average
hard and soft constraint costs. The main aim is to find a feasible solution,
i.e. a hard constraint cost of zero, with the lowest soft constraint cost. Each
heuristic is comprised of five problem attributes and a period selection heuris-
tic. From table 9 it can be seen that HHH-GP and HHH-GA perform much
better than HHH-RG. This was found to be statistical significant at the 1 %
level of significance for all problem instances except compi2. HHH-GA per-
forms slightly better than HHH-GP. For 11 of the 21 problem instances the
performance of HHH-GP and HHH-GA are the same. For 8 of the problem
instances HHH-GA produces better results than HHH-GP. This was found to
be significant at the 1% level of significance for 4 of these problem instances.
For two of the problem instances HHH-GP performs better than HHH-GA.
This result was found to be significant at the 1% level of significance for one
of these two problem instances.

Table 9: Comparison of HHH-GP and HHH-GA - Chromosome Length 6. Each column
lists hard constraint cost / soft constraint cost.

HHH-GP HHH-GA HHH-RG

Instance Minimum Average Minimum Average Minimum Average
compOl _ 4/63 4/63 1/63 1/63 1763 176717
comp02 0/383 0/385 0/383 0/383.13 0/388 0/388.6
comp03 0/271 0/271 0/271 0/271 0/280 0/282.43
comp04 0/275 0/276.53 0/275 0/276.5 0/ 278 0/284.73
comp05 0/974 0/1100.23 0/1015 0.23/1096.82 0/1148 0.23/1393.2
comp06 0/344 0/349.87 0/344 0/347.67 355 0/385.13
comp07 0/412 0/415.9 0/412 0/412.77 0/419 0/446.4
comp08 0/268 0/268 0/268 0/268 0/282 0/287.93
comp09 0/342 0/342 0/342 0/342 0/342 0/354.27
compl0 0/336 0/336.77 0/336 0/336.47 0/343 0/344.47
compll 0/36 0/36 0/36 0/36 0/40 0/41.53
compl2 0/802 0/802 0/802 0/802 0/802 0/805.57
compl3 0/267 0/267 0/267 0/267 0/273 0/285.07
compl4d 0/305 0/305 0/305 0/305 0/305 0/315.33
compls 0/271 0/271 0/271 0/271 0/280 0/285.6
compl6 0/272 0/272 0/272 0/272.37 0/283 0/288.93
compl7 0/343 0/343 0/343 0/343 0/353 0/361.63
compl8 0/219 0/219 0/219 0/219 0/219 0/220.9
compl9 0/307 0/307.23 0/307 0/307 0/316 0/319.83
comp20 0/471 0/480.43 0/471 0/476 0/490 0/514.2

comp2l 0/396 0/399.5 0/396 0/396.6 0/405 0/405.1

Generation of Constructive Ordering Heuristics for Educational Timetabling 21

Table 10 and 11 compares the performance of the heuristics evolved by
HHH-GA comprised of 5, 10, 20 and 50 problem attributes to determine if the
number of attributes included in the heuristic effects performance. Note that
if a problem attribute appears more than once in a heuristic its effect at each
point of application is different as the list of events at each point is different.
The values of 5, 10, 20 and 50 were decided on empirically to provide a sufficient
range of number of problem attributes. Table 10 displays the minimum and
average hard and soft constraint costs over the 30 runs. The performance is
compared in terms of the minimum hard and soft constraint cost and where
this is the same the average hard and soft constraint costs are used. Table 11
lists the corresponding minimum and average fitness. From both these tables it
can be seen that HHH-GA 10 produces the best results for 20 of the 21 problem
instances. Note that for the problem instance comp05 while HHH-GAS5 appears
to produce more feasible solutions than HHH-GA10 over the 30 runs, HHH-
GA10 produces feasible solutions with lower soft constraint costs and has a
better fitness over the 30 runs. Hence, HHH-GA evolving heuristics comprised
of 10 problem attributes will be used for HHH. The following section compares
the performance of arithmetic heuristics evolved by AHH and hierarchical
heuristics evolved by HHH-GA10.

Table 10: Comparison of HHH-GA with different heuristic sizes. Each column lists hard
constraint cost / soft constraint cost.

HHH-GA5 HHH-GA10 HHH-GA20 HHH-GAS50
Instance Minimum Average Minimum Average Minimum Average Minimum Average
comp01 4/63 4/63.1 4/63 4/63.1 4/64 4/64 4/64 4/64
comp02 0/383 0/383.03 0/383 0/383 0/383 0/383.03 0/383 0/383.77
comp03 0/265 0/265 0/265 0/265 0/265 0/265 0/265 0/265
comp04 0/274 0/274.1 0/274 0/274.03 0/274 0/274 0/274 0/274.13
comp05 0/995 0/1092.3 0/981 0.2/1069.21 0/1032 0.23/1086 0/999 0.13/1067.07
comp06 0/344 0/344.6 0/344 0/344 0/344 0/344 0/344 0/349.1
comp07 0/411 0/412.5 0/411 0/411.2 0/411 0/411.3 0/411 0/415.33
comp08 0/268 0/268 0/268 0/268 0/268 0/268 0/268 0/268
comp09 0/342 0/342 0/342 0/342 0/342 0/342 0/342 0/343.2
compl0 0/336 0/336.13 0/336 0/336.07 0/336 0/336.13 0/336 0/336.47
compll 0/36 0/36 0/36 0/36 0/36 0/36 0/36 0/36
compl2 0/802 0/802 0/802 0/802 0/802 0/802 0/802 0/802
compl3 0/260 0/260 0/260 0/260 0/260 0/260 0/260 0/260.1
compl4 0/305 0/305 0/305 0/305 0/305 0/305 0/305 0/305
complb 0/265 0/265 0/265 0/265 0/265 0/265 0/265 0/265
compl6 0/272 0/272 0/272 0/272 0/272 0/272 0/272 0/278.37
compl7 0/343 0/343 0/343 0/343 0/343 0/343 0/343 0/343
compl8 0/219 0/219 0/219 0/219 0/219 0/219 0/219 0/219
compl9 0/307 0/307 0/307 0/307 0/307 0/307 0/307 0/307
comp20 0/467 0/467.13 0/467 0/467 0/467 0/467.67 0/467 0/469.53
comp21 0/396 0/396 0/396 0/396 0/396 0/396 0/396 0/396

22 Nelishia Pillay, Ender Ozcan

Table 11: Fitness Comparison of HHH-GA with different heuristic sizes.

HHH-GA5 HHH-GA10 HHH-GA20 HHH-GA50
Instance Minimum Average Minimum Average Minimum Average Minimum Average
comp01 315 315 315 315.5 320 320 320 320
comp02 383 383.13 383 383 383 383.03 383 383.77
comp03 271 271 265 265 265 265 265 265
comp04 275 276.5 274 274.03 274 274 274 274.13
comp05 1015 1362.133 981 1269.5 1032 1321.87 999 1207.4
comp06 344 347.67 344 344 344 344 344 349.1
comp07 412 412.77 411 411.2 411 411.3 411 415.33
comp08 268 268 268 268 268 268 268 268
comp09 342 342 342 342 342 342 342 343.2
complO 336 336.47 336 336.07 336 336.13 336 336.47
compll 36 36 36 36 36 36 36 36
compl2 802 802 802 802 802 802 802 802
compl3 267 267 260 260 260 260 260 260.1
compl4 305 305 305 305 305 305 305 305
complb 271 271 265 265 265 265 265 265
compl6 272 272.37 272 272 272 272 272 278.37
compl7 343 343 343 343 343 343 343 343
compl8 219 219 219 219 219 219 219 219
compl9 307 307 307 307 307 307 307 307
comp20 471 476 467 467 467 467.67 467 469.53
comp21 396 396.6 396 396 396 396 396 396

6.2 AHH and HHH-GA10 Performance

This section compares the performance of the arithmetic hyper-heuristic and

hierarchical hyper-heuristic in creating initial solutions to educational timetabling

problems. Table 12 lists the minimum and average hard constraint and soft
constraint costs of the heuristics evolved using AHH and HHH-GA10 over
thirty runs for the Toronto benchmark set. The average soft constraint cost
is taken over those runs which produced feasible timetables. The heuristics
produced by AHH produced feasible solutions on all runs for all problem in-
stances with an exception of car-f~-92 I for which a feasible solution was not
produced on one of the runs. Just one hard constraint was violated in this
timetable. HHH-GA10 produced feasible solutions on all runs for all data sets
except hec-s-92 I and yor-f-83 I. For hec-s-92 I feasible solutions were not
found on two of the runs and for yor-f-83 I on twenty seven of the runs. In all
these cases the number of hard constraints violated was one. It is evident from
table 12 that the arithmetic heuristics performed better than the hierarchical
heuristics both in terms of feasibility and quality for all 13 problem instances.
These results were found to be significant at the 1% level of significance.

The arithmetic heuristics evolved by AHH were arithmetic rules or arith-
metic functions containing arithmetic rules. The heuristics evolved by AHH
contain a large number of nodes and thus cannot be interpreted. Hence this
can be considered as a blackbox approach producing instance specific con-
struction heuristics. The heuristics produced by HHH-GA10 for the Toronto

Generation of Constructive Ordering Heuristics for Educational Timetabling 23

Table 12: AHH and HHH-GA10 Performance for the Toronto benchmark set. Each column
lists hard constraint cost / soft constraint cost.

AHH HHH-GA10
Instance Minimum Average Minimum Average
car-f-921 0/4.32 0.03/4.51 0/9.63 0/9.63
car-f-911 0/5.16 0/5.24 0/8.67 0/11.36
ear-f-831 0/36.52 0/38.65 0/53.76 0/64.13
hec-s-921 0/11.87 0/12.4 0/15.07 0.07/16.55
kfu-s-93 0/14.67 0/ 1515 0/24.45 0/32.59
lse-f-91 0/10.81 0/11.39 0/13.48 0/13.48
pur-s-93 1 0/4.46 0/4.64 0/4.83 0/4.83
rye-s-93 0/9.48 0/9.86 0/11.48 0/11.48
sta-f-831 0/157.64 0/158.11 0/163.7 0/164.93
tre-s-92 0/8.48 0/8.64 0/9.48 0/9.48
uta-s-921 0/3.35 0/3.45 0/3.59 0/3.59
ute-s-92 0/27.16 0/27.77 0/29.19 0/29.19
yor-£-831 0/41.31 0/43.02 0/51.19 0.9/52.58

benchmark instances are more readable as each heuristic is of length 11. Dif-
ferent heuristics were evolved on each run for each problem set. However, there
are some similarities between the evolved heuristics for each problem instance.
For example, the best heuristics induced on each run for each problem instance
contained the same period or one of two period selection heuristics. Similarly,
the first problem attribute in each heuristic was either the same or one of two
or three on all runs for each problem instance.

The performance of AHH and HHH-GA10 for the ITC 2007 examination
timetabling benchmark set is illustrated in table 13. As in table 12 the average
soft constraint cost is taken over those runs producing feasible timetables. Con-
sistent with the results for the Toronto benchmark set the arithmetic heuristics
perform much better than hierarchical heuristics in constructing initial solu-
tions to the problem. The heuristics evolved by HHH-GA10 were not able to
produce feasible timetables for six of the eight problem instances. The result
that AHH performs better than HHH-GA10 was found to be significant at the
1% level of significance.

Table 13: AHH and HHH-GA10 performance for the ITC 2007 examination timetabling
benchmark set

AHH HHH-GA10
Instance Minimum Average Minimum Average
Examl 0/9403 0/9909.57 0/12647 0/12884.87
Exam2 0/1891 0/2249.03 0/3881 0/3947.77
Exam3 0/13884 0/15873.03 4/- 8.13/-
Exam4 0/18760 0/21783.83 23/- 27.13/-
Exam5 0/5551 0/6443.33 6/- 6.3/-
Exam6 0/29695 0/31296.5 13/- 13.57/-
Exam? 0/10569 0/11655.77 2/- 2.77/-
Exam8 0/14024 0/14263.63 2/- 2.03/-

24 Nelishia Pillay, Ender Ozcan

As for the Toronto benchmark set the heuristics evolved by AHH on each
run for each problem instance was different. The evolved heuristics are lengthy
and hence not easily interpretable. On some runs the heuristics producing the
best results are arithmetic functions for some problem instances and arith-
metic rules for others, with the majority being arithmetic rules. Similarly, the
best performing heuristics induced by HHH are different on each run for each
problem instance. The evolved heuristics differ both in terms of the problem
attributes and period selection heuristic on each run for each problem instance.

Table 14 depicts the performance of the heuristics evolved by AHH and
HHH-GA10 for the ITC 2007 curriculum based course timetabling benchmark
set. The heuristics evolved by both AHH and HHH-GA10 have produced fea-
sible solutions for all problem instances except comp01. None of the heuristics
evolved by AHH or HHH-GA10 were able to produce feasible timetables for
this problem instance, the cost obtained is 4 on all thirty runs for both hyper-
heuristics. The soft constraint average for this problem instance is summed
over the infeasible solutions for the thirty runs. For this benchmark set the
hierarchical heuristics have produced much better results than the arithmetic
heuristics for all problem instances. These results were found to be significant
at the 1% level of significance for all problem instances except comp05.

Table 14: AHH and HHH-GA10 performance for the ITC 2007 curriculum based course
timetabling problem

AHH HHH-GA10
Instance Minimum Average Minimum Average
compOl _ 4/119 171413 4/63 1/63
comp02 0/630 0/644.4 0/383 0/383
comp03 0/608 0/626.13 0/265 0/265
comp04 0/553 0/573.83 0/274 0/274.03
comp05 0/1001 0/1053.8 0/981 0.2/1062.43
comp06 0/745 0/780.83 0/344 0/344
comp07 0/868 0/898.27 0/411 0/411.2
comp08 0/591 0/653.83 0/268 0/268
comp09 0/660 0/688.47 0/342 0/342
compl0 0/718 0/748.97 0/336 0/336.07
compll 0/141 0/157.87 0/36 0/36
compl2 0/1279 0/1339.23 0/802 0/802
compl3 0/635 0/649.47 0/260 0/260
compld 0/612 0/634.47 0/305 0/305
compl5 0/580 0/621.83 0/265 0/265
compl6 0/763 0/800.73 0/272 0/272
compl7 0/766 0/787.07 0/343 0/343
compl8 0/485 0/504.53 0/219 0/219
compl9 0/565 0/583.53 0/307 0/307
comp20 0/841 0/868.1 0/467 0/467
comp21 0/772 0/800.73 0/396 0/396

As in the case of the previous two benchmark sets AHH produced different
heuristics on each run for all problem instances. The evolved heuristics are
lengthy and hence not easily readable. Hence the AHH operates as blackbox.

Generation of Constructive Ordering Heuristics for Educational Timetabling 25

The heuristics producing the best result over the thirty runs for each problem
instance is an arithmetic rule. As the size of the hierachical heuristics evolved
are limited, these heuristics are more readable. Different heuristics are evolved
on each of the thirty runs for all problem instances. The best performing
heuristic for each run for all problem instances with an exception of comp05
included the minimum penalty period selection heuristic. For all thirty runs
for comp05 the period selection heuristic contained in the best performing
evolved heuristic was random period. The first problem attribute in the best
performing evolved heuristics was the same or one of two problem attributes
for the thirty runs for all problem instances. Majority of the evolved heuristics
across all problem domains included the saturation degree or room degree as
the first problem attribute.

For both AHH and HHH-GA10 the same parameter values were used for
the population size and number of generations with the termination criterion
being the number of generations. Hence, the same number of fitness evaluations
were performed for all problem instances. However, in terms of runtime AHH
took longer than HHH-GA10 with runtime ranging from 1 minute to 19 hours
for the former and 30 seconds to 10 hours for the latter depending on the
problem instance being solved. In all cases it takes less than a day for a problem
specific heuristic to be evolved.

6.3 Comparison to Existing Construction Heuristics

This section compares the performance of the heuristics evolved to the existing
low-level construction heuristics described in section 3.4 used to create initial
solutions for educational timetabling. Algorithms 1 and 2 presented in section
3.4 are used to create the timetables. Table 15 lists the hard constraint and soft
constraint values for the existing low-level heuristics and evolved heuristics for
the Toronto benchmark set. The heuristics induced by both AHH and HHH-
GA10 have produced initial solutions with better feasibility and quality than
the existing low-level construction heuristics with the exception of lse-f-91 for
which SD and LCD have a better soft constraint cost than HHH-GA10. From
table 15 it can be seen that the heuristics produced by AHH have produced
the best initial solutions for all 13 problem instances.

The performance of the heuristics evolved by AHH and HHH-GA10 is com-
pared to that of the existing low-level heuristics for the ITC 2007 examination
timetabling benchmark set in table 16. The heuristics evolved by AHH has
produced the best initial solutions with respect to both feasibility and quality.
For some problem instances the low-level heuristics produce better solutions
than the heuristics evolved by HHH-GA10. Upon examination there does not
appear to be any evident correlation between the characteristics of the prob-
lems instances as outlined in table 2 and the performance of HHH-GA10 and
the low-level heuristics.

Table 17 compares the existing heuristics and evolved heuristics for the
ITC 2007 curriculum based course timetabling problem. The largest weighted

26

Nelishia Pillay, Ender Ozcan

Table 15: Performance comparison with low-level heuristics for the Toronto benchmark set.
Each column lists hard constraint cost / soft constraint cost.

Instance LD LE LWD LCD SD AHH HHH-GA10
car-£921 6/4.89 10/4.62 12/4.63 6/4.97 5/4.97 0/4.32 0/9.63
car-f-911 13/5.89 18/5.09 14/5.58 6/5.58 2/0.66 0/5.16 0/8.67
ear-£-831 2/40.2 13/41.15 6/38 2/46.47 2/46.77 0/36.52 0/53.76
hec-s-92 1 2/14.22 7/12.92 6/11.83 2/13.4 2/13.38 0/11.87 0/15.07
kfu-s-93 4/18.11 4/16.27 6 /17.55 1/18.12 5/17.34 0/14.67 0/24.45
lse-£-91 4/14.05 8/13 3/12.86 0/12.6 0/12.53 0/10.81 0/13.48
pur-s-931 1/4.94 5/4.9 4/4.91 0/4.95 0/4.93 0/4.46 0/4.83
rye-s-93 2/12.76 6/10.83 6/ 4.96 0/11.92 0/12.05 0/9.48 0/11.48
sta-f-831 24/163.38 1/172.04 2/172.02 0/178.24 0/178.24 0/157.64 0/163.7
tre-s-92 6/10.39 7/9.54 5/9.03 2/0.37 2/1042 0/8.48 0/9.48
uta-s-92 1 8/3.84 13/3.73 11 /3.62 2/1041 2/3.98 0/3.35 0/3.59
ute-s-92 2/34.72 3/28.86 3/29.58 2/3.88 4/46.5 0/27.16 0/29.19
yor-£-83 1 6/44.62 10/40.55 17/41.03 5/45.34 1/32.82 0/41.31 0/51.19

Table 16: Performance comparison with low-level heuristics for the ITC 2007 examination
timetabling benchmark set. Each column lists hard constraint cost / soft constraint cost.

Instance LD LWD LE LCD SD AHH HHH-GA10
Examl 0 /12870 0/11519 0 /12360 0/12609 0/12600 0/9403 0/12647
Exam2 0 /7492 7/ 18343 1/5668 0/4112 0/4599 0/1891 0/3881
Exam3 8/18397 7/18343 9/22153 0 /16568 8 /18508 0/13884 8/24303
Examd 2/26457 50/38241 49/31238 4/25418 2/30683 0/18760 23/35264
Exam5 9/7189 10/13927 9 /13128 0/8548 9/6801 0/5551 6/8293
Exam6 4/33545 6/33800 11/36855 0/35800 8/32930 0/29695 13/32150
Exam7 4/19048 5/18241 5/19604 0/17312 1/23561 0/10569 2/15202
Exam8 1/20084 0/15702 0/16302 0 /15715 0/15336 0/14024 2/16808

degree is not included as the number of students that courses have in common
is not provided as part of the benchmark set. The heuristics evolved by HHH-
GA10 have generally outperformed the existing heuristics and those produced
by AHH. For some of the problem instances the existing low-level heuristics
have performed better than the heuristics evolved by AHH, producing feasible
timetables with a lower soft constraint cost for some of the problem instances,
e.g. comp02. As in the case of the ITC 2007 examination timetabling bench-
mark set there is no evident correlation between the problem characteristics
listed in table 3 and the performance of the low-level heuristics and AHH.
The performance of the evolved heuristics is also compared to that of other
studies employing genetic programming hyper-heuristics to automatically in-
duce construction heuristics for educational timetabling. There is not much
work done in this domain and previous work in this area has been evaluated
using the Toronto benchmark set. There has been no previous research into
evolving heuristics using genetic programming hyper-heuristics for both the
ITC 2007 benchmark sets. Table 18 compares the performance of both hyper-
heuristics with the grammatical evolution hyper-heuristic employed in [1] and
the genetic programming hyper-heuristic implemented in [14]. These studies

Generation of Constructive Ordering Heuristics for Educational Timetabling

27

Table 17: Performance comparison with low-level heuristics for the I'TC 2007 curriculum
based course timetabling problem

Instance LD LE LCD SD AHH HHH-GA10
compO01 6/86 4/196 8/57 8/59 4/119 4/63
comp02 9/455 4/843 2/360 0/437 0/630 0/383
comp03 4/390 0/741 2/34 0/328 0/608 0/265
comp04 1/382 0/702 7/292 0/320 0/553 0/274
comp05 9/589 3/1579 6/571 4/656 0/1001 0/981
comp06 4/463 2/969 9/399 4/356 0/745 0/344
comp07 7/543 1/1098 3/459 1/459 0/868 0/411
comp08 0/333 0/757 1/331 0/346 0/591 0/268
comp09 0/413 0/788 0/328 0/383 0/660 0/342
compl0 0/403 0/969 3/453 0/404 0/718 0/336
compll 7/94 0/221 0/67 1/34 0/141 0/36
compl2 4/830 6/1701 6/805 0/839 0/1279 0/802
compl3 1/348 0/806 5/341 0/328 0/635 0/260
compl4 5/391 1/808 8/302 0/324 0/612 0/305
compls 4/390 2/805 2/345 0/328 0/580 0/265
compl6 5/433 0/931 3/367 0/338 0/763 0/272
compl7 8/516 1/880 4/420 0/371 0/766 0/343
compl8 0/246 0/690 0/243 0/256 0/485 0/219
compl9 2/352 2/715 0/333 3/363 0/565 0/307
comp20 12/555 2/1048 4/495 13/451 0/841 0/467
comp2l 4/482 2/1013 2/472 0/411 0/772 0/396

are described in section 1. From table 18 it is evident that the heuristics evolved

by AHH outperform the other evolved heuristics for the benchmark set.

Table 18: Performance comparison with previous work for the Toronto benchmark set.

Each column lists hard constraint cost / soft constraint cost.

Instance [1] [14] AHH HHH-GA10
carf9021 0/4.46 - 0/4.32 0/9.63
car-f-91 1 0/textbf5.12 - 0/5.16 0/8.67
car-£831 0/37.10 0/37.39 0/36.52 0/53.76
hec-s-921 0/11.78 0/11.43 0/11.87 0/15.07
kfu-s-93 0/14.72 - 0/14.67 0/24.45
Ise-£-91 0/11.11 - 0/10.81 0/13.48
pur-s-93 1 - - 0/4.46 0/4.83
ryes-93 - - 0/9.48 0/11.48
sta-f-83 I 0/158.70 0/158.38 0/157.64 0/163.7
tre-s-92 0/8.62 - 0/8.48 0/9.48
uta-s-92 1 0/3.47 - 0/3.35 0/3.59
ute-s-92 - 0/27.31 0/27.16 0/29.19
yor-f-831 0/40.56 0/39.96 0/41.31 0/51.19

7 Conclusion

The research presented in this paper investigates the use of generation con-
struction hyper-heuristics to automate the process of low-level construction

28 Nelishia Pillay, Ender Ozcan

heuristic generation for educational timetabling. Two hyper-heuristics, AHH
for evolving arithmetic heuristics and HHH-GA10 to generate hierarchical
heuristics have been implemented and applied to solving two examination
timetabling problems and a curriculum based course timetabling problem.
AHH was found to be more effective for the examination timetabling problem,
outperforming both the heuristics induced by HHH-GA10 and the existing
low-level construction heuristics for this domain when applied to the Toronto
and ITC 2007 benchmark sets. However, AHH did not perform as well for
the curriculum based course timetabling problem and HHH-GA10 produced
the best results for this problem also outperforming the existing heuristics
for the ITC 2007 curriculum based course timetabling benchmark set. Hence,
the study has revealed that different types of heuristics are more effective for
different educational timetabling problems.

Given this future work will investigate a hyper-heuristic that can cater for
more than one type of heuristic representation and also evaluating the hyper-
heuristic on the post enrolment course based and high school timetabling
problems. This study focussed on evolving disposable heuristics based on
previous work on genetic programming construction heuristics for examina-
tion timetabling. Future work will also investigate the possibility of inducing
reusable heuristics for educational timetabling.

Acknowledgements The authors would like to thank the reviewers for their helpful com-
ments to improve the quality of the paper. The facilities made available by the Centre for
High Performance Computing (CHPC) in South Africa and University of Nottingham High
Performance Computing facility to run simulations for the experiments is acknowledged.

References

1. Bader-El-Den, M., Poli, R., Fatima, S.: Evolving timetabling heuristics using grammar-
based genetic programming hyper-heuristic framework. Memetic Computing 1, 205-219
(2009)

2. Beasley, J.: Or-library. URL http://people.brunel.ac.uk/ mas-
tjjb/jeb/orlib/tableinfo.html

3. Branke, J., Nguyean, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation
20(1), 110-124 (2015)

4. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.: Hyper-
heuristics: A survey of the state of the art. Journal of Operational Research Society 64,
1695-1724 (2013)

5. Burke, E.K., Hyde, M., Kendall, G., Woodward, J.: A genetic programming hyper-
heuristic approach for evolving two dimensional strip packing heuristics. IEEE Trans-
actions on Evolutionary Computation pp. 942-958 (2010)

6. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-
heuristic for educational timetabling problems. European Journal of Operational Re-
search 176, 177-192 (2007) .

7. Drake, J.H., Hyde, M., Ibrahim, K., Ozcan, E.: A genetic programming hyper-heuristic
for the multidimensional knapsack problem. Kybernetes 43(9/10), 1500-1511 (2014)

8. Hyde, M.: A genetic programming hyper-heuristic approach to automated packing.
Ph.D. thesis, School of Computer Science (2010)

9. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Nat-
ural Selection, 1st edn. MIT (1992)

Generation of Constructive Ordering Heuristics for Educational Timetabling 29

10.

11.

12.

13.

14.

15.

16.

17.

McCollum, B., McMullan, P., Paechter, B., Lewis, R., Schaerf, A., DiGaspero, L.,
Parkes, A., Qu, R., Burke, E.: Setting the research agenda in automated timetabling:
The second international timetabling competition. INFORMS Journal of Computing
22(1), 120-130 (2008)

McKay, R.I., Hoai, N.X., Whigham, P., O’Neill, M.: Grammar-based genetic program-
ming: A survey. Genetic Programming and Evolvable Machines 11(3), 365-396 (2010)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming
in an Arbitrary Language. Springer (2003)

Ozcan, E., Parkes, A.: Policy matrix evolution for generation of heuristics. In: Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp.
2011-2018 (2011)

Pillay, N.: Evolving hyper-heuristics for the uncapacitated examination timetabling
problem. In: Proceedings of the Multidisciplinary International Conference on Schedul-
ing, pp. 409-422 (2009)

Pillay, N.: Evolving heuristics for the school timetabling problem. In: Proceedings of the
2011 IEEE Conference on Intelligent Computing and Intelligent Systems (ICIS 2011),
vol. 3, pp. 281-286. IEEE (2011)

Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A survey of search methodologies
and automated system development for examination timetabling. Journal of Scheduling
12(1), 55-89 (2009)

Sim, K., Hart, E.: A combined generative and selective hyper-heuristic for the vehi-
cle routing problem. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’16), pp. 1093-1100. ACM (2016)

