Skip to main content

Advertisement

Log in

A multiproduct single machine economic production quantity (EPQ) inventory model with discrete delivery order, joint production policy and budget constraints

  • CLAIO 2016
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper develops a multiproduct economic production quantity inventory model for a vendor–buyer system in which several products are manufactured on a single machine. The vendor delivers the products to customer in small batches. The number of orders must be a discrete value. Moreover, benefitting from a just-in-time policy, the buyer decides the size of the delivered batches. Due to the fact that several products are manufactured on one machine, this makes that the production capacity be considered as a constraint. The aim of this study is to determine the optimal cycle length and the number of delivered batches for each product so that the total inventory cost is minimized. The problem under study is modeled as a mixed integer nonlinear programing problem considering maximum number of orders, capacity and budget constraints. Three different methods are developed and employed to solve this problem: an exact method, a heuristic algorithm and a hybrid genetic algorithm. Based on the results, the three algorithms have near efficiency with different running times. The results shows that the heuristic algorithm obtains a good solution in a short time and the hybrid genetic algorithm finds solutions with higher quality in an acceptable time. Finally, a sensitivity analysis is done to evaluate the effect of changes in the parameters of problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baker, K. R. (1970). Note-on Madigan’s approach to the deterministic multi-product production and inventory problem. Management Science, 16(9), 636–638.

    Google Scholar 

  • Ben-Daya, M. (2002). The economic production lot-sizing problem with imperfect production processes and imperfect maintenance. International Journal of Production Economics, 76(3), 257–264.

    Google Scholar 

  • Cárdenas-Barrón, L. E. (2001). The economic production quantity (EPQ) with shortage derived algebraically. International Journal of Production Economics, 70(3), 289–292.

    Google Scholar 

  • Cárdenas-Barrón, L. E., Chung, K. J., & Treviño-Garza, G. (2014a). Celebrating a century of the economic order quantity model in honor of Ford Whitman Harris. International Journal of Production Economics, 155, 1–7.

    Google Scholar 

  • Cárdenas-Barrón, L. E., Treviño-Garza, G., Taleizadeh, A. A., & Vasant, P. (2015). Determining replenishment lot size and shipment policy for an EPQ inventory model with delivery and rework. Mathematical Problems in Engineering (Vol. 2015, pp. 1–8). Article ID 595498.

  • Cárdenas-Barrón, L. E., Treviño-Garza, G., & Wee, H. M. (2012). A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Systems with Applications, 39(3), 3888–3895.

    Google Scholar 

  • Cárdenas-Barrón, L. E., Treviño-Garza, G., Widyadana, G. A., & Wee, H. M. (2014b). A constrained multi-products EPQ inventory model with discrete delivery order and lot size. Applied Mathematics and Computation, 230, 359–370.

    Google Scholar 

  • Chiu, S. W., Lin, H. D., Wu, M. F., & Yang, J. C. (2011). Determining replenishment lot size and shipment policy for an extended EPQ model with delivery and quality assurance issues. Scientia Iranica, 18(6), 1537–1544.

    Google Scholar 

  • Chiu, Y. S. P., Lin, C. A. K., Chang, H. H., & Chiu, V. (2010). Mathematical modelling for determining economic batch size and optimal number of deliveries for EPQ model with quality assurance. Mathematical and Computer Modelling of Dynamical Systems, 16(4), 373–388.

    Google Scholar 

  • Daskin, M. S., Coullard, C. R., & Shen, Z. J. M. (2002). An inventory–location model: Formulation, solution algorithm and computational results. Annals of Operations Research, 110(1–4), 83–106.

    Google Scholar 

  • De, S. K., & Sana, S. S. (2015). Backlogging EOQ model for promotional effort and selling price sensitive demand-an intuitionistic fuzzy approach. Annals of Operations Research, 233(1), 57–76.

    Google Scholar 

  • Doll, C. L., & Whybark, D. C. (1973). An iterative procedure for the single-machine multi-product lot scheduling problem. Management Science, 20(1), 50–55.

    Google Scholar 

  • Eilon, S. (1957). Scheduling for batch production. Journal of Institute of Production Engineering, 36, 549–570 and 582.

    Google Scholar 

  • Erlenkotter, D. (1989). Note-An early classic misplaced: Ford W. Harris’s economic order quantity model of 1915. Management Science, 35(7), 898–900.

    Google Scholar 

  • Erlenkotter, D. (1990). Ford Whitman Harris and the economic order quantity model. Operations Research, 38(6), 937–946.

    Google Scholar 

  • Erlenkotter, D. (2014). Ford Whitman Harris’s economical lot size model. International Journal of Production Economics, 155, 12–15.

    Google Scholar 

  • Ferreira, A. C., & Hodgson, T. J. (1973). An N-product, multi-machine, lotsize scheduling model. AIIE Transactions, 5(3), 237–244.

    Google Scholar 

  • García-Laguna, J., San-José, L. A., Cárdenas-Barrón, L. E., & Sicilia, J. (2010). The integrality of the lot size in the basic EOQ and EPQ models: Applications to other production–inventory models. Applied Mathematics and Computation, 216(5), 1660–1672.

    Google Scholar 

  • Goyal, S. K. (1973). Scheduling a multi-product single machine system. Journal of the Operational Research Society, 24(2), 261–269.

    Google Scholar 

  • Haji, R., Haji, A., Sajadifar, M., & Zolfaghari, S. (2008). Lot sizing with non-zero setup times for rework. Journal of Systems Science and Systems Engineering, 17(2), 230–240.

    Google Scholar 

  • Haji, R., & Mansuri, M. (1995). Optimum common cycle for scheduling a single-machine multiproduct system with a budgetary constraint. Production Planning and Control, 6(2), 151–156.

    Google Scholar 

  • Hanssman, F. (1962). Operation research in production and inventory. New York: Wiley.

    Google Scholar 

  • Harris, F. W. (1913). How many parts to make at once. Factory, the Magazine of Management, 10(2), 135–136 and 152.

  • Hirano, H. (2009). JIT implementation manual—The complete guide to just-in-time manufacturing—Waste and the 5S’s (Vol. 2). Boca Raton: CRC Press.

    Google Scholar 

  • Johnson, L. A., & Montgomery, D. C. (1974). Operations research in production planning and inventory control. New York: Wiley.

    Google Scholar 

  • Jozefowska, J. (2007). Just-in-time scheduling: Models and algorithms for computer and manufacturing systems (Vol. 106). Berlin: Springer.

    Google Scholar 

  • Madigan, J. G. (1968). Scheduling a multi-product single machine system for an infinite planning period. Management Science, 14(11), 713–719.

    Google Scholar 

  • Mandal, N. K., Roy, T. K., & Maiti, M. (2005). Multi-objective fuzzy inventory model with three constraints: A geometric programming approach. Fuzzy Sets and Systems, 150(1), 87–106.

    Google Scholar 

  • Modak, N. M., Panda, S., & Sana, S. S. (2015). Optimal just-in-time buffer inventory for preventive maintenance with imperfect quality items. Tékhne, 13(2), 135–144.

    Google Scholar 

  • Mousavi, S. M., Alikar, N., Niaki, S. T. A., & Bahreininejad, A. (2015). Optimizing a location allocation-inventory problem in a two-echelon supply chain network: A modified fruit fly optimization algorithm. Computers and Industrial Engineering, 87, 543–560.

    Google Scholar 

  • Mousavi, S. M., Bahreininejad, A., Musa, S. N., & Yusof, F. (2017). A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network. Journal of Intelligent Manufacturing, 28(1), 191–206.

    Google Scholar 

  • Mousavi, S. M., Hajipour, V., Niaki, S. T. A., & Alikar, N. (2013). Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: Two calibrated meta-heuristic algorithms. Applied Mathematical Modelling, 37(4), 2241–2256.

    Google Scholar 

  • Mousavi, S. M., Hajipour, V., Niaki, S. T. A., & Aalikar, N. (2014a). A multi-product multi-period inventory control problem under inflation and discount: A parameter-tuned particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 70(9–12), 1739–1756.

    Google Scholar 

  • Mousavi, S. M., Niaki, S. T. A., Bahreininejad, A., & Musa, S. N. (2014b). Multi-item multiperiodic inventory control problem with variable demand and discounts: A particle swarm optimization algorithm. The Scientific World Journal Article ID 136047, 1–16.

  • Mousavi, S. M., & Pasandideh, S. H. (2011). A multi-periodic multi-product inventory control problem with discount: GA optimization algorithm. Journal of Optimization in Industrial Engineering, 4(7), 37–44.

    Google Scholar 

  • Mousavi, S. M., Sadeghi, J., Niaki, S. T. A., Alikar, N., Bahreininejad, A., & Metselaar, H. S. C. (2014c). Two parameter-tuned meta-heuristics for a discounted inventory control problem in a fuzzy environment. Information Sciences, 276, 42–62.

    Google Scholar 

  • Mousavi, S. M., Sadeghi, J., Niaki, S. T. A., & Tavana, M. (2016). A bi-objective inventory optimization model under inflation and discount using tuned Pareto-based algorithms: NSGA-II, NRGA, and MOPSO. Applied Soft Computing, 43, 57–72.

    Google Scholar 

  • Nobil, A. H., Nobil, E., & Cárdenas-Barrón, L. E. (2017a). Some observations to: Lot sizing with non-zero setup times for rework. International Journal of Applied and Computational Mathematics,. doi:10.1007/s40819-017-0340-6.

    Article  Google Scholar 

  • Nobil, A. H., Sedigh, A. H. A., & Cárdenas-Barrón, L. E. (2016). A multi-machine multi-product EPQ problem for an imperfect manufacturing system considering utilization and allocation decisions. Expert Systems with Applications, 56, 310–319.

    Google Scholar 

  • Nobil, A. H., Sedigh, A. H. A., & Cárdenas-Barrón, L. E. (2017b). Multi-machine economic production quantity for items with scrapped and rework with shortages and allocation decisions. Scientia Iranica: Transaction E, Industrial Engineering. doi:10.24200/sci.2017.4453.

    Google Scholar 

  • Nobil, A. H., & Taleizadeh, A. A. (2016a). A single machine EPQ inventory model for a multi-product imperfect production system with rework process and auction. International Journal of Advanced Logistics, 5(3–4), 141–152.

    Google Scholar 

  • Nobil, A. H., & Taleizadeh, A. A. (2016b). Analysing a fuzzy integrated inventory–production–distribution planning problem with maximum NPV of cash flows in a closed-loop supply chain. International Journal of Inventory Research, 3(1), 31–48.

    Google Scholar 

  • Pal, S., Goswami, A., & Chaudhuri, K. S. (1993). A deterministic inventory model for deteriorating items with stock-dependent demand rate. International Journal of Production Economics, 32(3), 291–299.

    Google Scholar 

  • Pal, B., Sana, S. S., & Chaudhuri, K. (2012). A three layer multi-item production–inventory model for multiple suppliers and retailers. Economic Modelling, 29(6), 2704–2710.

    Google Scholar 

  • Pal, B., Sana, S. S., & Chaudhuri, K. (2013a). A mathematical model on EPQ for stochastic demand in an imperfect production system. Journal of Manufacturing Systems, 32(1), 260–270.

    Google Scholar 

  • Pal, B., Sana, S. S., & Chaudhuri, K. (2013b). Maximising profits for an EPQ model with unreliable machine and rework of random defective items. International Journal of Systems Science, 44(3), 582–594.

    Google Scholar 

  • Pal, B., Sana, S. S., & Chaudhuri, K. (2016). A stochastic production inventory model for deteriorating items with products’ finite life-cycle. RAIRO-Operations Research, 51(3), 669–684.

    Google Scholar 

  • Pasandideh, S. H. R., & Niaki, S. T. A. (2008). A genetic algorithm approach to optimize a multi-products EPQ model with discrete delivery orders and constrained space. Applied Mathematics and Computation, 195(2), 506–514.

    Google Scholar 

  • Pasandideh, S. H. R., Niaki, S. T. A., & Mousavi, S. M. (2013). Two metaheuristics to solve a multi-item multiperiod inventory control problem under storage constraint and discounts. The International Journal of Advanced Manufacturing Technology, 69(5–8), 1671–1684.

    Google Scholar 

  • Pasandideh, S. H. R., Niaki, S. T. A., & Nia, A. R. (2011). A genetic algorithm for vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Systems with Applications, 38(3), 2708–2716.

    Google Scholar 

  • Pasandideh, S. H. R., Niaki, S. T. A., Nobil, A. H., & Cárdenas-Barrón, L. E. (2015). A multiproduct single machine economic production quantity model for an imperfect production system under warehouse construction cost. International Journal of Production Economics, 169, 203–214.

    Google Scholar 

  • Pasandideh, S. H. R., Niaki, S. T. A., & Yeganeh, J. A. (2010). A parameter-tuned genetic algorithm for multi-product economic production quantity model with space constraint, discrete delivery orders and shortages. Advances in Engineering Software, 41(2), 306–314.

    Google Scholar 

  • Raafat, F. F., Wolfe, P. M., & Eldin, H. K. (1991). An inventory model for deteriorating items. Computers and Industrial Engineering, 20(1), 89–94.

    Google Scholar 

  • Rogers, J. (1958). A computational approach to the economic lot scheduling problem. Management Science, 4(3), 264–291.

    Google Scholar 

  • Roy, A., Sana, S. S., & Chaudhuri, K. (2015). Optimal pricing of competing retailers under uncertain demand-a two layer supply chain model. Annals of Operations Research. doi:10.1007/s10479-015-1996-0.

    Google Scholar 

  • Sadeghi, J., Mousavi, S. M., Niaki, S. T. A., & Sadeghi, S. (2014). Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm. Transportation Research Part E: Logistics and Transportation Review, 70, 274–292.

    Google Scholar 

  • Sadeghi, J., & Niaki, S. T. A. (2015). Two parameter tuned multi-objective evolutionary algorithms for a bi-objective vendor managed inventory model with trapezoidal fuzzy demand. Applied Soft Computing, 30, 567–576.

    Google Scholar 

  • Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64(1), 59–64.

    Google Scholar 

  • Sarkar, B., Saren, S., & Cárdenas-Barrón, L. E. (2015). An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Annals of Operations Research, 229(1), 677–702.

    Google Scholar 

  • Saxena, N., Singh, S. R., & Sana, S. S. (2016). A green supply chain model of vendor and buyer for remanufacturing items. RAIRO-Operations Research,. doi:10.1051/ro/2016077.

    Article  Google Scholar 

  • Shafiee-Gol, S., Nasiri, M. M., & Taleizadeh, A. A. (2016). Pricing and production decisions in multi-product single machine manufacturing system with discrete delivery and rework. OPSEARCH, 53(4), 873–888.

    Google Scholar 

  • Taft, E. W. (1918). The most economical production lot. Iron Age, 101, 1410–1412.

    Google Scholar 

  • Taleizadeh, A. A., Cárdenas-Barrón, L. E., Biabani, J., & Nikousokhan, R. (2012). Multi products single machine EPQ model with immediate rework process. International Journal of Industrial Engineering Computations, 3(2), 93–102.

    Google Scholar 

  • Taleizadeh, A. A., Cárdenas-Barrón, L. E., & Mohammadi, B. (2014). A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. International Journal of Production Economics, 150, 9–27.

    Google Scholar 

  • Taleizadeh, A. A., Jalali-Naini, S. G., Wee, H. M., & Kuo, T. C. (2013a). An imperfect multi-product production system with rework. Scientia Iranica, 20(3), 811–823.

    Google Scholar 

  • Taleizadeh, A. A., Kalantari, S. S., & Cárdenas-Barrón, L. E. (2016). Pricing and lot sizing for an EPQ inventory model with rework and multiple shipments. Top, 24(1), 143–155.

    Google Scholar 

  • Taleizadeh, A., Najafi, A. A., & Niaki, S. T. A. (2010a). Economic production quantity model with scrapped items and limited production capacity. Scientia Iranica Transaction E: Industrial Engineering, 17(1), 58–69.

    Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T. A., & Najafi, A. A. (2010b). Multiproduct single-machine production system with stochastic scrapped production rate, partial backordering and service level constraint. Journal of Computational and Applied Mathematics, 233(8), 1834–1849.

    Google Scholar 

  • Taleizadeh, A. A., Sadjadi, S. J., & Niaki, S. T. A. (2011). Multiproduct EPQ model with single machine, backordering and immediate rework process. European Journal of Industrial Engineering, 5(4), 388–411.

    Google Scholar 

  • Taleizadeh, A. A., Wee, H. M., & Jalali-Naini, S. G. (2013b). Economic production quantity model with repair failure and limited capacity. Applied Mathematical Modelling, 37(5), 2765–2774.

    Google Scholar 

  • Taleizadeh, A. A., Wee, H. M., & Sadjadi, S. J. (2010c). Multi-product production quantity model with repair failure and partial backordering. Computers and Industrial Engineering, 59(1), 45–54.

    Google Scholar 

  • Tang, J., Yung, K. L., Kaku, I., & Yang, J. (2008). The scheduling of deliveries in a production–distribution system with multiple buyers. Annals of Operations Research, 161(1), 5–23.

    Google Scholar 

  • Teng, J. T., Cárdenas-Barrón, L. E., Lou, K. R., & Wee, H. M. (2013). Optimal economic order quantity for buyer–distributor–vendor supply chain with backlogging derived without derivatives. International Journal of Systems Science, 44(5), 986–994.

    Google Scholar 

  • Tsao, Y. C. (2015). A piecewise nonlinear optimization for a production–inventory model under maintenance, variable setup costs, and trade credits. Annals of Operations Research, 233(1), 465–481.

    Google Scholar 

  • Viswanathan, S. (1998). Optimal strategy for the integrated vendor–buyer inventory model. European Journal of Operational Research, 105(1), 38–42.

    Google Scholar 

  • Wang, H., & Pham, H. (1999). Some maintenance models and availability with imperfect maintenance in production systems. Annals of Operations Research, 91, 305–318.

    Google Scholar 

  • Wee, H. M., & Widyadana, G. A. (2013). Single-vendor single-buyer inventory model with discrete delivery order, random machine unavailability time and lost sales. International Journal of Production Economics, 143(2), 574–579.

    Google Scholar 

  • Wee, H. M., Widyadana, G., Taleizadeh, A. A., & Biabani, J. (2011). Multi products single machine economic production quantity model with multiple batch size. International Journal of Industrial Engineering Computations, 2(2), 213–224.

    Google Scholar 

  • Wen, D., Ershun, P., Ying, W., & Wenzhu, L. (2016). An economic production quantity model for a deteriorating system integrated with predictive maintenance strategy. Journal of Intelligent Manufacturing, 27(6), 1323–1333.

    Google Scholar 

  • Widyadana, G. A., & Wee, H. M. (2009). A multi-product EPQ model with discrete delivery order: A Langrangean solution approach. In Global perspective for competitive enterprise, economy and ecology (pp. 601–608). London: Springer.

Download references

Acknowledgements

The third author was partially supported by the Tecnológico de Monterrey Research Group in Industrial Engineering and Numerical Methods 0822B01006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo Eduardo Cárdenas-Barrón.

Appendices

Appendix A: Coefficients of the objective function in Eq. (21)

$$\begin{aligned} \sum _i {\Delta _i^1 \left( \frac{1}{T}\right) }= & {} \sum _i {\left[ {A_i +Av_i } \right] } \left( {\frac{1}{T}} \right) ; \,\, \Delta _i^1 >0 \end{aligned}$$
(A.1)
$$\begin{aligned} \sum _i {\Delta _i^2 (T)}= & {} \sum _i {\left[ {\frac{hv_i D_i }{2}\left( {1-\frac{D_i }{P_i }} \right) } \right] } \left( T \right) ; \,\,\Delta _i^2 >0 \end{aligned}$$
(A.2)
$$\begin{aligned} \sum _i {\left( {\Delta _i^3 K_i } \right) \left( {\frac{1}{T}} \right) }= & {} \sum _i {\left( {b_i K_i } \right) } \left( {\frac{1}{T}} \right) ; \,\,\Delta _i^3 >0 \end{aligned}$$
(A.3)
$$\begin{aligned} \sum _i {\frac{\Delta _i^4 }{K_i }} \left( T \right)= & {} \sum _i {\left( {\frac{\left( {h_i +hv_i } \right) D_i }{2K_i }} \right) T} ; \,\,\Delta _i^4 >0 \end{aligned}$$
(A.4)

Appendix B: Hessian matrix to prove the convexity of the objective function (TC)

$$\begin{aligned} H= & {} [T,K_1 ,K_2 ,\ldots ,K_n ] \left[ {{\begin{array}{llll} {\frac{\partial ^{2}TC}{\partial ^{2}T}}&{} {\frac{\partial ^{2}TC}{\partial T\partial K_1 }}&{} {\frac{\partial ^{2}TC}{\partial T\partial K_2 }}&{} {{\begin{array}{ll} \cdots &{} {\frac{\partial ^{2}TC}{\partial T\partial K_n }} \\ \end{array} }} \\ {\frac{\partial ^{2}TC}{\partial K_1 \partial T}}&{} {\frac{\partial ^{2}TC}{\partial ^{2}K_1 }}&{} {\frac{\partial ^{2}TC}{\partial K_1 \partial K_2 }}&{} {{\begin{array}{ll} \cdots &{} {\frac{\partial ^{2}TC}{\partial K_1 \partial K_n }} \\ \end{array} }} \\ {\frac{\partial ^{2}TC}{\partial K_2 \partial T}}&{} {\frac{\partial ^{2}TC}{\partial K_2 \partial K_1 }}&{} {\frac{\partial ^{2}TC}{\partial ^{2}K_2 }}&{} {{\begin{array}{ll} \cdots &{} {\frac{\partial ^{2}TC}{\partial K_2 \partial K_n }} \\ \end{array} }} \\ {{\begin{array}{ll} \vdots \\ {\frac{\partial ^{2}TC}{\partial K_n \partial T}} \\ \end{array} }}&{} {{\begin{array}{l} \vdots \\ {\frac{\partial ^{2}TC}{\partial K_n \partial K_1 }} \\ \end{array} }}&{} {{\begin{array}{ll} \vdots \\ {\frac{\partial ^{2}TC}{\partial K_n \partial K_2 }} \\ \end{array} }}&{} {{\begin{array}{ll} {{\begin{array}{l} \vdots \\ \cdots \\ \end{array} }}&{} {{\begin{array}{ll} \vdots \\ {\frac{\partial ^{2}TC}{\partial ^{2}K_n }} \\ \end{array} }} \\ \end{array} }} \\ \end{array} }} \right] \left[ {{\begin{array}{l} {{\begin{array}{l} T \\ {K_1 } \\ \end{array} }} \\ {K_2 } \\ \vdots \\ {K_n } \\ \end{array} }} \right] \\ \frac{\partial TC}{\partial T}= & {} \frac{-\sum \limits _i {\left( {\Delta _i^1 +\Delta _i^3 K_i } \right) } }{T^{2}}+\sum _i {\left( {\Delta _i^2 +\frac{\Delta _i^4 }{K_i }} \right) } ; \\ \frac{\partial ^{2}TC}{\partial ^{2}T}= & {} \frac{2\sum \limits _i {\left( {\Delta _i^1 +\Delta _i^3 K_i } \right) } }{T^{3}} ;\,\, \frac{\partial ^{2}TC}{\partial K_i \partial K_j }=0 \\ \frac{\partial TC}{\partial K_i }= & {} +\frac{\Delta _i^3 }{T}-\frac{\Delta _i^4 }{K_i^2 }T ;\,\, \frac{\partial ^{2}TC}{\partial ^{2}K_i }=\frac{2\Delta _i^4 }{K_i^3 }T; \,\,\frac{\partial ^{2}TC}{\partial TC\partial K_i }=\frac{\partial ^{2}TC}{\partial TC\partial T}=\frac{\partial ^{2}TC}{\partial K_i \partial T}\\= & {} -\frac{\Delta _i^3 }{T^{2}}-\frac{\Delta _i^4 }{K_i^2 } \\ \end{aligned}$$

Therefore

$$\begin{aligned} \hbox {H}= & {} \left[ {\frac{\sum \limits _i {\left( {2\Delta _i^1 +\Delta _i^3 K_i } \right) } }{T^{2}}-\sum _{i=1} {\left( {\frac{\Delta _i^4 }{K_i }} \right) } ,\frac{\Delta _1^4 T}{K_1^2 }-\frac{\Delta _1^3 }{T},\frac{\Delta _2^4 T}{K_2^2 }-\frac{\Delta _2^3 }{T},\ldots ,\frac{\Delta _n^4 T}{K_n^2 }-\frac{\Delta _n^3 }{T},} \right] \\&\left[ {{\begin{array}{l}\\ {{\begin{array}{l} T \\ {K_1 } \\ \end{array} }} \\ {K_2 } \\ \vdots \\ {K_n } \\ \end{array} }} \right] \\= & {} \frac{\sum \limits _i {\left( {2\Delta _i^1 } \right) } }{T}+\sum _{i=1} {\left( {\frac{\Delta _i^4 }{K_i }} \right) T\ge 0} ;\quad \left( {T,K_i ,\Delta _i^1 ,\Delta _i^3 \ge 0} \right) {\textit{ Hessian Matrix is P.S.D}} \end{aligned}$$

Appendix C: Finding the optimal solution for the cycle length

$$\begin{aligned} \frac{\partial TC}{\partial K_i }= & {} +\frac{\Delta _i^3 }{T}-\frac{\Delta _i^4 }{K_i^2 }T=0 \rightarrow K_i =\sqrt{\frac{\Delta _i^4 T^{2}}{\Delta _i^3 }} \end{aligned}$$
(C.1)
$$\begin{aligned} \frac{\partial TC}{\partial T}= & {} \frac{-\sum \limits _i {\left( {\Delta _i^1 +\Delta _i^3 K_i } \right) } }{T^{2}}+\sum _i {\left( {\Delta _i^2 +\frac{\Delta _i^4 }{K_i }} \right) } =0 \end{aligned}$$
(C.2)

Based on Eq. (C.1),

$$\begin{aligned} T=\sqrt{\frac{\sum \limits _{i=1}^n {\left\{ {\Delta _i^1 } \right\} } }{\sum \limits _{i=1}^n {\left\{ {\Delta _i^2 } \right\} } }} \end{aligned}$$
(C.3)

Appendix D: Finding the \(K_i \) ‘s solution

With respect to Cárdenas-Barrón et al. (2014a, b) the objective function related to \(K_i \) can be rewritten as follows:

$$\begin{aligned} X=\sum _i {\left( {\frac{\Delta _i^3 }{T}\left( {K_i } \right) +\Delta _i^4 T\left( {\frac{1}{K_i }} \right) } \right) } \end{aligned}$$
(D.1)

García-Laguna et al. (2010) showed that discrete solution to the following minimization problem:

$$\begin{aligned}&{ min}\, s_1 Q+s_2 /Q; \hbox { where both } s_{1} \hbox { and } s_{2} \hbox { are positive}\\&Q>0 \hbox { and integer} \end{aligned}$$

is as follows:

$$\begin{aligned} Q=\left\lceil {- 0.5+\sqrt{0.25+\frac{s_2 }{s_1 }}} \right\rceil \hbox { or } Q=\left\lfloor {0.5+\sqrt{0.25+\frac{s_2 }{s_1 }}} \right\rfloor \end{aligned}$$
(D.2)

where \(\lceil {r}\rceil \) is the samllest integer greater than or equal to r, and \(\lfloor {r}\rfloor \) is the largest integer less than or equal to r . Based on Eq. (D.1), the solution for each discrete variable (\(K_i \)) is as follows:

$$\begin{aligned} K_i =\left\lceil {-0.5+\sqrt{0.25+\frac{\Delta _i^4 T^{2}}{\Delta _i^3 }}} \right\rceil \textit{ or } K_i =\left\lfloor {0.5+\sqrt{0.25+\frac{\Delta _i^4 T^{2}}{\Delta _i^3 }}} \right\rfloor \end{aligned}$$
(D.3)

Appendix E: Data of the problems

Instance

Values

1

\(\hbox {n}=1\); \(\hbox {A}=55\); \(\hbox {Av}=601\); \(\hbox {D}=3050\); \(\hbox {M}=12\); \(\hbox {P}=34021\); \(\hbox {S}=0.031254215825\); \(\hbox {b}=17\); \(\hbox {c}=32\); \(\hbox {h}=11\); \(\hbox {hv}=7\); \(\hbox {Bg}=210564\);

2

\(\hbox {n}=2\); \(\hbox {A}=[57;54; \)]; \(\hbox {Av}= [605;506; \)]; \(\hbox {D}=[3304;3585; \)]; \(\hbox {M}= [20;13; \)]; \(\hbox {P}=[34184;33209; \)]; \(\hbox {S}= [0.0105049440381213;0.0107826303120975; \)]; \(\hbox {b}= [18;19; \)]; \(\hbox {c}=[50;42\); \(\hbox {h}=[14;15;]\); \(\hbox {hv}=[7;9; \)]; \(\hbox {Bg}=200000\);

3

\(\hbox {n}=3\); \(\hbox {A}=[60;41;48; \)]; \(\hbox {Av}=[588;573;652; \)]; \(\hbox {D}=[3034;3106;3230; \)]; \(\hbox {M}=[16;19;15; \)]; \(\hbox {P}=[35078;35196;31741; \)]; \(\hbox {S}\)=[0.0223815747373719; 0.0431007305419610; 0.0256422317325111; ]; \(\hbox {b}=[20;19;19; \)]; \(\hbox {c}=[57;34;54; \)]; \(\hbox {h}=[14;12;13; \)]; \(\hbox {hv}=[8;6;6; \)]; \(\hbox {Bg}=220000; \)

4

\(\hbox {n}=4\); \(\hbox {P}=[20000;25000;30000;35000\)]; \(\hbox {D}=[3000;4000;5000;6000\)]; \(\hbox {A}=[50;49;48;47]\); \(\hbox {Av}=[300;350;400;450\)]; \(\hbox {b}=[15;16;17;18\)]; \(\hbox {c}=[60;50;40;30\)]; \(\hbox {h}=[10;11;12;13\)]; \(\hbox {hv}=[5;6;7;8\)]; \(\hbox {S}=[0.010;0.011;0.012;0.013\)]; \(\hbox {M}=[10;11;12;13\)]; \(\hbox {Bg}=200000\);

5

\(\hbox {n}=5\); \(\hbox {A}=[48;57;42;57;54; \)]; \(\hbox {Av}=[621;633;638;605;506; \)]; \(\hbox {D}=[3490;3392;3304;3585;3810; \)]; \(\hbox {M}=[25;23;12;20;27; \)]; \(\hbox {P}=[37432;38886;34178;34184;33209; \)]; \(\hbox {S}=[0.0123850047313383\); 0.0104662927574031; 0.0105868898071024; 0.0105049440381213; 0.0107826303120975; ]; \(\hbox {b}=[18;19;17;17;20; \)]; \(\hbox {c}=[60;35;50;35;42; \)]; \(\hbox {h}=[14;15;14;11;12; \)]; \(\hbox {hv}=[6;9;9;7;9; \)]; \(\hbox {Bg}=300000\);

6

\(\hbox {n}=6\); \(\hbox {A}=[56;41;49;54;59;58; \)]; \(\hbox {Av}=[599;564;606;531;679;517; \)]; \(\hbox {D}=[3698;3283;3768;3729;3745;3992; \)]; \(\hbox {M}=[14;12;14;16;14;15; \)]; \(\hbox {P}=[44292;45707;48886;48170;46883;46293; \)]; \(\hbox {S}=[0.0102325506160998\); 0.0126011032672879; 0.0142823788966337; 0.0105199928051386; 0.0132451259154651; 0.0121322355691141;]; \(\hbox {b}=[16;19;19;17;20;19; \)]; \(\hbox {c}=[47;56;36;51;56;56; \)]; \(\hbox {h}=[13;11;14;15;13;15; \)]; \(\hbox {hv}=[9;8;9;9;9;7; \)]; \(\hbox {Bg}=340000\);

Instance

Values

7

\(\hbox {n}=7\); \(\hbox {A}=[43;60;57;46;56;54;51\)]; \(\hbox {Av}=[683;598;687;510;660;533;640\)]; \(\hbox {b}=[19;20;19;16;16;16;20\)]; \(\hbox {c}=[33;35;53;55;45;45;59]\); \(\hbox {D}=[3906;3971;3036;3032;3382;3680;3256]\); \(\hbox {h}=[12;13;14;14;13;15;13]\); \(\hbox {hv}=[8;10;7;7;9;7;6\)]; \(\hbox {M}=[28;28;14;11;24;15;15]\); \(\hbox {P}=[58148;51577;56558;57061;54388;52761;57513]\); \(\hbox {S}=[0.00678753417717149\); 0.00596103664779777; 0.00527738945088778; 0.00675111024419178; 0.00554682415429036; 0.00492633875489889; 0.00274647002779529]; \(\hbox {Bg}=600000\);

8

\(\hbox {n}=8\); \(\hbox {A}=[44;51;49;47;59;46;50;60; \)]; \(\hbox {Av}=[543;644;688;567;607;628;556;655; \)]; \(\hbox {D}=[3881;3283;3048;3665;3762;3428;3173;3445; \)]; \(\hbox {M}=[21;11;13;16;20;14;15;17; \)]; \(\hbox {P}=[55155;52790;50621;50841;55832;50598;59402;59772; \)]; \(\hbox {S}=[0.00558092416972521;0.00545914149027077\); 0.00426036592499336; 0.00571323607021602; 0.00477255987896942; 0.00596349952839672; 0.00407898304411736; 0.00537758276671398;]; \(\hbox {b}=[16;16;18;16;16;20;20;16;]\); \(\hbox {c}=[42;46;41;35;57;47;56;39; \)]; \(\hbox {h}=[15;12;15;13;15;13;12;13; \)]; \(\hbox {hv}=[9;6;10;7;7;10;9;9; \)]; \(\hbox {Bg}=500000\);

9

\(\hbox {n}=9\); \(\hbox {A}=[57;52;51;47;45;41;44;48;59\)]; \(\hbox {Av}=[549;610;656;606;683;655;553;603;689\)]; \(\hbox {b}=[20;20;20;16;16;20;16;18;18\)]; \(\hbox {c}=[41;39;34;49;55;57;35;33;45\)]; \(\hbox {D}=[3255;3831;3054;3795;3084;3962;3911;3623;3050\)]; \(\hbox {h}=[11;14;13;12;13;11;15;12;12\)]; \(\hbox {hv}=[7;9;8;9;10;7;8;6;10\)]; \(\hbox {M}=[19;21;17;24;18;25;13;15;13\)]; \(\hbox {P}=[58408;53517;50759;51622;54506;51067;54315;58531;54173\)]; \(\hbox {S}=[0.00508022338073320;0.00390222923487678\); 0.00205951034750621; 0.00544607251570004; 0.00239087764376592; 0.00329935201425327; 0.00474930100918166; 0.00291953894141208; 0.00384623390560108]; \(\hbox {Bg}=3500000\);

10

\(\hbox {n}=10\); \(\hbox {A}=[42;56;52;55;54;56;55;54;43;50; \)]; \(\hbox {Av}=[686;604;507;553;639;580;599;656;571;553; \)]; \(\hbox {D}=[3100;3667;3128;3405;3912;3679;3990;3447;3208;3758; \)]; \(\hbox {M}=[16;19;20;19;21;13;16;19;14;15; \)]; \(\hbox {P}=[59821;54299;550821;59572;42408;59514;50261;55099;58458;58049; \)]; \(\hbox {S}=[0.0112106973483762;0.0123850047313383\); 0.0104662927574031; 0.0105868898071024; 0.0105049440381213; 0.0107826303120975; 0.0146195488032070; 0.0127347829716488; 0.0122802530908873; 0.0147300508601312; ]; \(\hbox {b}=[20;17;20;19;16;16;18;18;20;19; \)]; \(\hbox {c}=[32;37;49;46;34;48;56;46;42;39; \)]; \(\hbox {h}=[13;14;14;12;15;13;12;12;11;13; \)]; \(\hbox {hv}=[6;8;10;6;9;9;8;9;7;7; \)]; \(\hbox {Bg}=600000; \)

11

\(\hbox {n}=11\); \(\hbox {A}=[51;46;59;43;59;50;45;53;49;53;45\)]; \(\hbox {Av}=[661;522;637;621;666;532;593;658;618;631;627\)]; \(\hbox {b}=[19;20;17;18;20;20;19;17;17;18;20\)]; \(\hbox {c}=[49;59;41;47;44;43;55;57;39;44;34\)]; \(\hbox {D}=[3606;3834;3287;3786;3160;3937;3363;3045;3501;3085;3984\)]; \(\hbox {h}=[14;14;11;13;14;15;13;14;15;15;12\)]; \(\hbox {hv}=[9;6;8;9;7;9;9;7;10;8;8\)]; \(\hbox {M}=[13;22;21;16;25;28;17;23;22;11;12\)]; \(\hbox {P}=[50208;50930;57145;53449;56217;50570;55018;54236;57847;53903;55382\)]; \(\hbox {S}=[0.00385339917260576;0.00461031799286026\); 0.00411266385695393; 0.00280289708476204; 0.00369271920696948; 0.00622026239569885; 0.00604689568753645; 0.00602169571331641; 0.00365567075234566; 0.00552936138165679; 0.00668604035871797]; \(\hbox {Bg}=3800000; \)

Instance

Values

12

\(\hbox {n}=12\); \(\hbox {A}=[41;58;58;52;55;46;48;59;44;54;60;54; \)]; \(\hbox {Av}=[633;691;571;534;537;586;538;700;613;580;557;696; \)]; \(\hbox {D}=[3205;3029;3602;3114;3887;3379;3901;3382;3263;3731;3960;3634; \)]; \(\hbox {M}=[19;17;14;22;16;14;15;22;20;16;14;15; \)]; \(\hbox {P}=[59321;55999;50635;55204;55925;58121;50605; 59975;50464;55315;59200;59863; \)]; \(\hbox {S}=[0.00237863576838945\); 0.00382980277900154; 0.00499054393073464; 0.00599315969209121; 0.00487304632324858; 0.00250462689790922; 0.00438018680446738; 0.00607685421754563; 0.00448374817424293; 0.00596048077678951; 0.00393611042939634; 0.00507283635939654;]; \(\hbox {b}=[20;20;18;17;16;20;16;20;18;17;18;16; \)]; \(\hbox {c}=[39;43;34;43;39;32;52;34;48;47;40;35; \)]; \(\hbox {h}=[15;13;13;15;12;12;15;13;15;11;15;14; \)]; \(\hbox {hv}=[10;8;8;10;10;7;7;7;7;9;8;10; \)]; \(\hbox {Bg}=600000\);

13

\(\hbox {n}=13\); \(\hbox {A}=[44;50;53;41;53;41;53;58;56;59;45;48;58; \)]; \(\hbox {Av}=[555;547;695;506;638;658;534;683;634;578;622;675;540; \)]; \(\hbox {D}=[2778;2137;2528;2460;2105;2701;2959;2460; 2873;2642;2276;2761;2991; \)]; \(\hbox {M}=[14;15;13;21;19;13;17;19;19;21;16;15;20\)]; \(\hbox {P}\)=[52744; 50342; 53649; 56925; 54998; 54610; 52517; 56333; 53833; 56258; 50115; 56042; 58217; ]; \(\hbox {S}=[0.00697373984745531\); 0.00538728179008673; 0.00276067059238642; 0.00260025609984255; 0.00507142546058900; 0.00565465614936918; 0.00655004298127819; 0.00330371122544336; 0.00604773567906445; 0.00627909944120329; 0.00286204644589195; 0.00585936904264751; 0.00495586503648693; ]; \(\hbox {b}=[17;17;18;19;17;17;20;20;19;19;17;18;18; \)]; \(\hbox {c}=[49;56;45;42;54;55;56;42;34;36;33;47;43; \)]; \(\hbox {h}=[11;15;13;11;12;11;15;14;12;14;12;11;12; \)]; \(\hbox {hv}=[7;10;6;9;10;6;10;9;10;8;8;8;10; \)]; \(\hbox {Bg}=800000\);

14

\(\hbox {n}=14\); \(\hbox {A}=[43;60;57;46;56;54;51;57;52;51;47;45;41;44\)]; \(\hbox {Av}=[683;598;687;510;660;533;640;549;610;656;606;683;655;553\)]; \(\hbox {D}=[3906;3971;3036;3032;3382; 3680;3256;3255;3831;3054; 3795;3084;3962;3911\)]; \(\hbox {M}=[22;22;13;11;20;13;14; 16;17;15;19;16;20;12\)]; \(\hbox {P}\)=[58148; 51577; 56558; 57061; 54388; 52761; 57513; 58408; 53517; 50759; 51622; 54506; 51067; 54315]; \(\hbox {S}= [0.00678753417717149\); 0.00596103664779777; 0.00527738945088778; 0.00675111024419178; 0.00554682415429036; 0.00492633875489889; 0.00274647002779529; 0.00508022338073320; 0.00390222923487678; 0.00205951034750621; 0.00544607251570004; 0.00239087764376592; 0.00329935201425327; 0.00474930100918166]; \(\hbox {b}=[19;20;19;16;16;16;20;20;20;20;16;16;20;16\)]; \(\hbox {c}=[33;35;53;55;45;45;59;41;39;34;49;55;57;35\)]; \(\hbox {h}=[12;13;14;14;13;15;13;11;14;13;12;13;11;15\)]; \(\hbox {hv}=[8;10;7;7;9;7;6;7;9;8;9;10;7;8\)]; \(\hbox {Bg}=4000000\);

15

\(\hbox {n}=15\); \(\hbox {A}=[48;59;45;57;55;50;57;50;49;53;57;51;59;50;51\)]; \(\hbox {Av}=[603;689;581;504;538;588;607;547; 537;643;506;547;660;656;596\)]; \(\hbox {b}=[18;18;16;16;19;18;17; 20;20;17;20;18;16;19;20\)]; \(\hbox {c}=[33;45;34;36;36;40;59; 36;60;34;52;49;38;58;49\)]; \(\hbox {D}=[3623\); 3050; 3390; 3354; 3297; 3776; 3379; 3302; 3924; 3263; 3263; 3547; 3886; 3654; 3745]; \(\hbox {P}=[58531\); 54173; 57803; 52348; 55471; 59294; 56444; 52078; 53112; 55949; 50856; 59631; 50378; 51068; 50306]\(; \hbox {S}\)=[0.00291953894141208; 0.00384623390560108; 0.00487604297539233; 0.00523872981568153; 0.00590113717575688; 0.00608813854161131; 0.00511237543000614; 0.00313832148908277; 0.00329032347956033; 0.00412083379856904; 0.00318641789885761; 0.00383718324272238; 0.00268276568677685; 0.00549372916167397; 0.00602744712264843]; \(\hbox {h}=[12;12;15;14;12;13;15;12;13;12;13;14;12;15;14\)]; \(\hbox {hv}=[6;10;10;9;9;8;8;6;6;7;8;7;9;7;10\)]; \(\hbox {M}=[15;13;12;19;12;25;21;18;18;20;19;28;23;14;21\)]; \(\hbox {Bg}=5000000\);

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobil, A.H., Sedigh, A.H.A. & Cárdenas-Barrón, L.E. A multiproduct single machine economic production quantity (EPQ) inventory model with discrete delivery order, joint production policy and budget constraints. Ann Oper Res 286, 265–301 (2020). https://doi.org/10.1007/s10479-017-2650-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2650-9

Keywords

Navigation