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Data Envelopment Analysis of systems with multiple modes of 

functioning 

Abstract 

Many systems can operate in different modes of functioning. Conventional Data Envelopment 

Analysis (DEA) would ignore that fact and consider instead that the system is a black box, 

paying attention just to the overall input consumption and output production. In this paper a 

more fine-grained approach is proposed consisting of explicitly modelling the different modes 

of functioning as specific processes and using the observed data on the input consumption and 

output production in each of the modes of functioning to infer the corresponding mode-

specific technology. The system technology results from composing these mode-specific 

technologies according to the corresponding time allocations. The proposed approach allows 

computing efficient operating points for every mode of functioning, looking for 

improvements in the overall system performance. Two efficiency assessment DEA models are 

presented depending on whether the observed time allocation is maintained or the model is 

free to modify it.  

Keywords: efficiency assessment; multiple modes of functioning; DEA; mode-specific 

technology; time allocative efficiency 
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Data Envelopment Analysis of systems with multiple modes of 

functioning 

1. Introduction 

Data Envelopment Analysis (DEA) is a non-parametric technique for evaluating the 

relative efficiency of homogeneous units commonly termed Decision Making Units (DMUs) 

(see, e.g., Cooper et al. 2000). Conventional DEA considers that the system under study is a 

black box whose input consumption and output production is, however, known. When the 

internal structure of the DMUs is known, a more fine-grained analysis is possible. This is 

what happens, for example, when the system consists on different processes, each one with its 

own inputs and outputs, and with intermediate products between the processes. For those 

systems a number of Network DEA models have been developed (e.g. Färe and Grosskopf 

2000, Kao and Hwang 2008, Chen et al. 2009, Tone and Tsutsui 2009, Fukuyama and Weber 

2010, Lozano 2011, 2015, 2016, Mirdehghan and Fukuyama 2016, etc). A review of Network 

DEA approaches was carried out in Kao (2014). 

 But Network DEA is not the only type of system with an internal structure. Thus, 

Castelli et al. (2010) also identify two other types: shared flow models and multilevel models. 

Shared flow models occur when some inputs or outputs are shared by different processes (e.g. 

Cook et al. 2000, Chen et al. 2010, Amirteimoori et al. 2016, Wu et al. 2016) while multilevel 

models (e.g. Cook et al. 1998) are considered when DMUs exhibits activities that cannot be 

associated to any of its processes.  

 In this paper a new type of internal structure DEA model is presented. It deals with the 

case in which the DMUs have multiple modes of functioning and operate a certain fraction of 

the time in each of these modes. Each mode of functioning (MF) can be considered as a 

process which consumes inputs and produces outputs. The overall input consumption and 

output production of the system is the aggregation of the inputs consumed and the outputs 

produced in all the different MFs used. The peculiarity is that the processes run on a time-

sharing basis. Therefore, the performance of the whole system will be determined not only by 

the efficiency of the different MF but also by the amount of time that the system allocates to 

each MF. Consider for example the case of a reconfigurable manufacturing system, which can 

be set up to produce different part families using different tool types and fixtures. When the 

system is producing a part family, the system functions differently from when it produces 
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another part family. It can even use different types of input in each MF. Moreover, several 

MFs cannot run at the same time, i.e. when the system is dedicated to part family A, it cannot 

produce part family B. Another example would be the performance of an academic, who 

divides his/her time among different activities such as teaching, research and others. Each of 

these activities corresponds to a different MF, with its own inputs and outputs. Another 

application would be traffic regulation at intersections or in reversible lanes. Another 

application can be a toll road or bridge with the MFs corresponding to the number of toll 

booths open. This would be similar to considering the number of cash registers open in a 

supermarket as different MFs, also, the number of vehicles (and resulting headway) assigned 

to a route in an urban transit system. Following the dynamic transportation demand, different 

MFs can be used throughout a day. 

 The conventional DEA approach would ignore the existence of multiple MFs 

(disregarding their corresponding allocated time) and consider just the aggregate input 

consumption and output production. Our aim is just the opposite, i.e. to model the multiple 

MF (MMF) explicitly as specific processes, benchmarking the different processes using 

observed data about their inputs consumption and output production. Note that this is different 

from a parallel-process Network DEA approach (e.g. Kao 2009) due to the lack of 

simultaneity in the running of the different MFs, i.e. instead of operating in parallel the MFs 

operate using a time-sharing mechanism. 

 The structure of the paper is the following. In Section 2 the required notation is 

introduced and the mode-specific and overall MMF technologies are defined. In Section 3 the 

proposed MMF DEA models are presented. Section 4 presents a simple illustration of the 

proposed approach. Finally, the last section summarizes and concludes. 

2. Production possibility set of MMF systems 

Let us consider a certain physical device/system that can operate with M different 

modes of functioning. There is a set D of past observations (i.e. DMUs) so that each DMU j 

consists of the amount of inputs consumed  m m
j ijx x , the amount of outputs produced 

 m m
j kjy y  and the fraction of time m

jt  corresponding to each MF m. The usual notation of 

indexes i and k is used above for the inputs and outputs. With no loss of generality, it is 

assumed that all MFs consume the same inputs i I  and produce the same outputs k O . 
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Figure 1b shows a graphical representation of a DMU j, with each MF represented as a 

box labelled “MF_#”. Compare this scheme with that of Figure 1a, which corresponds to a 

conventional DEA approach (termed elementary DMU in Castelli et al. 2010) which would 

consider that the system is a black box, ignoring its MMF character. Such elementary DMU j 

would consume all the inputs of the different MF 
M

m
ij ij

m 1

x x



   and produce all the outputs of 

the different MF 
M

m
kj kj

m 1

y y



  . For these elementary DMUs to be comparable these total 

inputs and outputs would have been the result of the operation of the system for a given time 

span 
M

m
j

´m 1

T t j



  . Normally T is one week, one month, one year, etc. It is assumed that 

each DMU j has been idle (i.e. in no MF) for the corresponding time difference 
M

m
j

m 1

T t



  . 

========================== Figure 1 (about here) ==================== 

A Production Possibility Set (PPS) for each MF m can be determined from the 

available observations. This mode-specific PPS m
T  can also be designated as the mode-

specific technology of MF m. Consider the following axioms: 

A.0. Null functioning: 

 m m m m
x 0, y 0, t 0 T     

A.1. Envelopment: 

 m m m m
j j jx , y , t T j D    

A.2. Free disposability of inputs and outputs: 

   m m m m m m m m m m m m mˆ ˆ ˆ ˆx , y , t T t 0 x , y , t T x x , y y         



6 

A.2’. Free disposability of functioning time: 

   m m m m m m m m m m mˆ ˆx , y , t T t 0 x , y , t T t t        

A.3. Convexity: 

 
 

 
m m m m

m m m m m m m

m m m m

x , y , t T
ˆˆ ˆx (1 )x , y (1 )y , t (1 )t T 0 1

ˆˆ ˆx , y , t T

                   



 

A.4. Time scalability: 

 
m m

m m m m m m

m m

x y
x , y , t T t 0 , , T 0

t t

 
          
 
 

 

The interpretation of the above axioms is the following. A.0 indicates that it is feasible 

for the system not to function in MMF m, of course without consuming any inputs or 

producing any outputs. A.1 indicates that the observed operation points of MMF m are 

feasible. A.2 indicates that, given a certain feasible operation time, it is possible, within the 

same functioning time, to waste inputs and outputs. A.2’ indicates that, given a certain 

feasible operation time, it is possible to spend more time just to consume the same amount of 

inputs and produce the same amount of outputs. A.3 states that given two feasible operation 

points of MMF m, any convex linear combination of them, i.e. a mixture of both operating 

points, is also feasible. A.4 implies that, given a certain feasible operation time, any operation 

point of MMF m with the same rate of input of input consumption and output production is 

feasible. 

Applying the Minimum Extrapolation Principle the following mode-specific PPS is 

obtained 

  

 
m

m m m

m m
j jm m m m m m m

j j j jm m
j j jj j

T 0,0,0

x , y , t :

x y
0 j D x y t 0

t t

 

 
 
 
 
           
  

  

        (1) 
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Defining m m m
j jt j D     , the above mode-specific PPS can be rewritten as 

  

 
m

m m m

m m
j jm m m m m m m m

j j j jm m
j j jj j

T 0,0,0

x , y , t :

x y
0 j D x t y t 1 0

t t

 

 
 
 
 
             
  

  

      (1’) 

The variable m
j  represents the length of time that the system operates as in MF m of 

each DMU j while m
j  expresses that length of time as a fraction of m

t . Also, the ratios 

m
j

m
j

x

t
 

and 

m
j

m
j

y

t
 represent the input and output rates, respectively, of MF m of each observed DMU j. 

The interpretation of the last inequality in (1’) is that although A.4 implies Constant 

Returns to Scale with respect to functioning time (CRSwrtFT) the free disposability of the 

functioning time (i.e. time can be wasted) means that it is feasible to spend more time than the 

one that results from linearly combining the observed DMUs. However, although wasting time 

is feasible, it is not efficient. In other words, when looking for efficient operating points of MF 

m only the equality m
j

j

1   will do. And this is consistent with the fact that the above mode-

specific PPS corresponds to Variable Returns to Scale with respect to inputs and outputs 

(VRSwrtIO).  

To develop a mode-specific PPS corresponds to Constant Returns to Scale with respect 

to inputs and outputs (CRSwrtIO) we have to consider the following additional axiom: 

A.5. Total input-output scalability: 

    m m m m m m m m
x , y , t T x , y , t T 0        

In that case then we arrive at the following CRSwrtIO mode-specific PPS 
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  
 

m m m
CRSwrtIO

m m m m m
j j

m m
j jm m m m m m m m

j j j j jm m
j j jj j

T 0,0, t : t 0

x , y , t : 0 j D 0 j D

x y
x y t 0

t t

  

        
 
 
 
         
  

  

       (1’’) 

This can be rewritten as 

  
 

m m m
CRSwrtIO

m m m m m
j j

m m
j jm m m m m m

j j jm m
j j jj j

T 0, 0, t : t 0

x , y , t : 0 j D 0 j D

x y
x y t 0

t t

  

        
 
 
 
       
  

  

      (1’’’) 

Note that, in this CRSwrtIO case, the input-output components of the operation points 

of MMF are independent of the corresponding functioning time. This is because A.5 allows a 

trade-off between the functioning time and the rate of input consumption and output 

production. Thus, it is equivalent to function a certain time at certain input and output rates as 

to function half of that time at double rates or to function double that time at half the input 

and output rates. Note that A.5 is a very radical assumption, which allows attaining 

unbounded input and output rates for any functioning time. More reasonable seems to use the 

following alternative axiom 

A.5’. Downward input-output scalability: 

    m m m m m m m m
x , y , t T x , y , t T 0 1          

In that case then we arrive at the following mode-specific PPS, which exhibits Non-

Increasing Returns to Scale with respect to inputs and outputs (NIRSwrtIO) 

  
 

m m m
NIRSwrtIO

m m m m m
j j

m m
j jm m m m m m m m

j j j j jm m
j j jj j

T 0,0, t : t 0

x , y , t : 0 j D 0 1 j D

x y
x y t 0

t t

  

         
 
 
 
         
  

  

       (1iv) 
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This can be rewritten as 

  
 

 

m m m
NIRSwrtIO

m m m m m
j j

m m
j jm m m m m m m

j j j jm m
j j jj j

T 0, 0, t : t 0

x , y , t : 0 j D 0 j D

x y
x y t 0

t t

  

        
 
 
 
         
  

  

        (1v) 

Note that A.5’ is a relaxation of A.5 and implies that, given a feasible MMF m 

operation point, functioning at a fraction of the corresponding input-output rates (equivalent 

to slowing down the operation rate) is always feasible. Note also that the derivation of this 

last mode-specific PPS is similar to the way proposed in Kuosmanen (2005) for handling the 

weak disposability of undesirable outputs. 

The efficient frontier of each mode-specific technology is formed by those feasible 

operation points that are non-dominated, i.e. 

        m m m
eff

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆT x, y, t T : x, y, t T x, y, t x, y, t x x y y t t               (2) 

 The corresponding PPS of the MMF system (i.e. the overall MMF technology) is the 

composition/aggregation of the mode-specific technologies, i.e. 

   MMF m m m m m m m

m m m

T x, y, t : x , y , t T m x x y y t t
         
  

         (3) 

Note that the above MMF technology takes into account that the system can spend 

time in an idle state in which no MF is running. In that state no input is consumed and no 

output is produced. The MMF efficient frontier is formed by those feasible operation points 

that are non-dominated, i.e. 

        MMF MMF MMF
eff

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆT x, y, t T : x, y, t T x, y, t x, y, t x x y y t t             (4) 

 Note that the overall efficient operating points in MMF
effT  never involve idleness, i.e. 

   MMF m m m m m m m
eff eff

m m m

x, y, t T x , y , t T m x x y y t t                (5) 
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3. MMF DEA efficiency assessment 

Let 0 be the index of the DMU whose efficiency is to be assessed. Let us first 

formulate the corresponding DEA model if we consider it as an elementary DMU, i.e. 

ignoring its MMF structure (see Figure 1). CRSwrtFT and VRSwrtIO are assumed. The 

modifications required for NIRSwrtIO are straightforward. The modifications for the case of 

VRSwrtFT are not trivial and they are left as a topic for further research. 

Because of its being a simple and flexible DEA metric, a Slacks-Based Inefficiency 

(SBI) measure will be used (Fukuyama and Weber 2009, 2010). Needless to say, the proposed 

approach can also be used with other DEA models, involving, for example, a radial, non-

radial or Slacks-Based Efficiency (SBM), (Tone 2001, Tone and Tsutsui 2009) measure or a 

specific orientation (e.g. input, output or directional distance vector). 

Let 

ix̂  target amount of input i for DMU 0 

kŷ  target amount of output k  for DMU 0 

 1 2 n, ,...,    intensity variables for linearly combining the observed DMUs 

is
  slack for input i 

ks
  slack for output k 

x
ig  normalizing constant for slack of input i 

y
k

g  normalizing constant for slack of output k 

Elementary DMU model (EM) 

EM i k
0 x y

i I k Oi k

s s1 1
SBI Max

I Og g

 

 

 
  
 
 
    

s.t.  
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j ij i

j

ˆx x i    
 

i i0 ix̂ x s i
    (6) 

j kj k

j

ˆy y k    
 

k k0 kŷ y s k
     

j

j

1   
 

j 0 j       i ks ,s 0 i k
       

Since we are considering VRSwrtIO the usual CRS DEA technology is considered, 

including the convexity constraint on the j  variables. The objective function corresponds to 

maximizing the sum of normalized input and output slacks (which reflect the existence of 

inefficiencies in the corresponding dimensions). Thus, DMU 0 would be considered efficient 

if EM
0SBI 0 , while the larger the value of EM

0SBI  the more inefficient the DMU. A 

decomposition into input and output inefficiency measures can be made defining 

EM,x i
0 x

i I i

s1
SBI

I g





   

(7) 

EM,y k
0 y

k O k

s1
SBI

O g





   

which leads to  

EM,yEM EM,x
0 0 0

SBI SBI SBI   (8) 

Instead of this conventional approach, the internal MMF structure of the DMUs can be 

taken into account and modelled. Two different MMF DEA models are proposed. In the first 
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one, labelled MMF1, DMU 0 is projected onto the efficient frontier MMF
effT  but maintaining 

the fraction of time that the system operates in each of the different MFs. In the second 

model, labelled MMF2, this requirement is relaxed and the model is free to search for an 

efficient operating point of the overall system with an improved allocation of time among the 

different MFs. 

Let 

m
ix̂  target amount of input i for MF m of DMU 0 

m
kŷ  target amount of output k for MF m of DMU 0 

 1 2 M
j j j, , ...,    intensity variables for linearly combining the MFs of the observed DMUs 

(j=1,2,..n) 

Proposed MMF1 model 

MMF1 i k
0 x y

i I k Oi k

s s1 1
SBI Max

I Og g

 

 

 
  
 
 
   (9a) 

s.t.  

m
ijm m

j im
j j

x
x̂ i m

t
     (9b) 

m m
i i i0 i

m m

ˆ ˆx x x s i I
       (9c) 

m
kjm m

j km
j j

y
ŷ k m

t
     (9d) 

m m
k k k0 k

m m

ˆ ˆy y y s k
      (9e) 
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m m
j 0

j

t m    (9f) 

m
j 0 m j       i ks ,s 0 i k

      (9g) 

The above model always has feasible solutions. Thus, for example, the solution 

m m m
j 0 00 j 0 m t m        , m m

i i0x̂ x i m   , m m
k k0ŷ y k m   , i ks 0 i s 0 k

      

is feasible. 

Note that, when computing the target operating point of MF m, the intensity variables 

m
j  represent the fraction of time that the system should operate as DMU j for that MF. Thus, 

the target results from replicating the operating points of the observed DMUs for that MF 

using the time allocation given by m
j . The same as in a conventional DEA, only mode-

specific efficient operating points can be used as benchmarks in the optimal linear 

combinations that define the target operating point of a certain MF. That is because the facets 

that form the mode-specific efficient frontier m
effT  are defined by those efficient mode-

specific DMUs. Mathematically,    *
m m m m m
j j j j eff0 x , y , t T    . Analogously, the target 

mode-specific operating point is efficient, i.e.  m m m m
0 effˆ ˆx , y , t T m  . 

Model MMF1 assesses the efficiency of a DMU by removing the inefficiencies in its 

different MFs but maintaining the observed time allocation. However, if the observed time 

allocation is not optimal there exists a time allocative inefficiency that can be removed letting 

the time spent in each MF as a decision variable to be determined by the DEA model. This 

leads to model MMF2 which is obtained from MMF1 defining 

m  fraction of time the target overall operating point should operate using MF m 

and replacing (9f) by 

m m
j

j

m     
(10a) 
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m m
0

m m

t    (10b) 

m
0 m    (10c) 

The same as in model MMF1, the solution m m m
j 0 00 j 0 m t m        , 

m m
i i0x̂ x i m   , m m

k k0ŷ y k m   , i ks 0 i s 0 k
      is feasible in model MMF2. 

Actually, since MMF2 is a relaxation of model MMF1, every feasible solution of MMF1 is 

also feasible in MMF2. This means that MMF2 MMF1
0 0SBI SBI . In other words, MMF2 has 

more discriminant power than MMF1. Actually, the difference between the inefficiency 

scores computed by MMF2 and MMF1 is a measure of the time allocative inefficiency of 

DMU 0, i.e. the potential gain when the fraction of time during which the system operated in 

each MF is reallocated 

alloc MMF2 MMF1
0 0 0SBI SBI SBI   (11) 

leading to the following inefficiency decomposition 

MMF2 MMF1 alloc
0 0 0SBI SBI SBI   (12) 

Note that (10b) implies that, although the target overall operating point can allocate 

time freely among the different MFs, the total operation time should be equal to that observed 

for DMU 0. Model MMF2 could even determine a target overall operating point specifying 

that the system should operate using a single MF. In any case, the target overall operating 

point is efficient, i.e. m MMF
0 eff

m

ˆ ˆx, y, t T
 

  
 

 . 

4. Illustration of proposed approach 

In order to illustrate the proposed MMF models, let us consider a system with three 

MFs (labelled I, II and III) as shown in Figure 2. The system consumes two inputs and 

produces a single output. MFs I and III only consume input 1x  while MF II only consumes 
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input 2x . Table 1 shows the data for four DMUs. The observed data include not only the 

amounts of input consumed and the amount of output produced in each MF but also the 

amount of time that each MF was used. Note that DMUs 2, 3 and 4 run all the time while 

DMU 1 was idle for 0.1 time units. Note also that DMU 3 did not use MF III. 

========================== Figure 2 (about here) ==================== 

========================== Table 1 (about here) ==================== 

Assuming, for convenience in the numerical calculations, a slacks-normalizing vector 

x y
g (g ,g ) (1,1,1)  , the conventional DEA EM model for DMU 1 would be 

EM
1SBI Max  1 2

1
(s s ) s

2

     (13a) 

1 2 3 4 1ˆ7 1 3 5 x         (13b) 

1 1x̂ 7 s
   (13c) 

1 2 3 4 2ˆ3 2 5 2 x         (13d) 

2 2x̂ 3 s
   (13e) 

1 2 3 4 ˆ12 13 18 12 y         (13f) 

ŷ 12 s
   (13g) 

1 2 3 4 1         (13h) 

1 2 3 4 1 2, , , , s ,s ,s 0
        (13i) 

The optimal solution for the above model, as well as for the other three DMUs, is 

shown in Table 2. Note that only DMU 2 and DMU 3 are found to be efficient. DMU 4 is 

projected onto DMU 2 allowing a reduction of 4 units of input 1 and an increase of 1 unit of 
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output. DMUs 1 are projected onto a convex combination of the two efficient DMUs 2 

leading to larger input and output slacks which translate into a larger inefficiency score. 

========================== Table 2 (about here) ==================== 

As regards model MMF1 for DMU 1, this would be 

MMF1
1SBI Max  1 2

1
(s s ) s

2

     (14a) 

I I I I I
1 2 3 4 1

5 1 2 3
x̂

0.6 0.3 0.5 0.2
         (14b) 

III III III III III
1 2 3 4 1

2 1 2 ˆ0 x
0.1 0.2 0.4

         (14c) 

I III
1 1 1ˆ ˆx x 7 s

    (14d) 

II II II II II
1 2 3 4 2

3 2 5 2
x̂

0.2 0.7 0.3 0.4
         (14e) 

II
2 2x̂ 3 s

   (14f) 

I I I I I
1 2 3 4

4 6 4 1
ŷ

0.6 0.3 0.5 0.2
         (14g) 

II II II II II
1 2 3 4

3 7 8 6
ŷ

0.2 0.7 0.3 0.4
         (14h) 

III III III III III
1 2 3 4

5 6 5 ˆ0 y
0.1 0.2 0.4

         (14i) 

I II IIIˆ ˆ ˆy y y 12 s
     (14j) 

I I I I
1 2 3 4 0.6         (14k) 

II II II II
1 2 3 4 0.2         (14l) 
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III III III III
1 2 3 4 0.1         (14m) 

I I I I II II II II III III III III
1 2 3 4 1 2 3 4 1 2 3 4 1 2, , , , , , , , , , , , s ,s ,s 0

                (14n) 

As MF II does not consume input 1x  (see Table 1), the variable II
1x̂ 0  and it does 

not have to be included in the model. The same happens with variables I
2x̂  and III

2x̂ . On the 

other hand, in (14d) variables I
1x̂  and III

1x̂  are summed in order to compute the total amount 

of resource 1x  consumed in the target solution provided by the model and hence the input 

slack with respect to total consumption observed. The same happens with output y in equation 

(14j), for all three MFs in this case. 

Consider, for example, equation (14e) which defines the target of input 2x  for MF II 

in ( II
2x̂ ) as the linear combination of inputs for all the observations. The ratios 3/0.2, 2/0.7, 

5/0.3 and 2/0.4 represent the consumption of input 2x  per time unit for each DMU. The 

intensity variables II II II II
1 2 3 4, , ,     indicate what fraction of time the target should replicate 

each of the DMUs. The resulting linear combination of consumptions in MF II corresponds to 

the 0.2 duration of the use of MF II which is reflected in constraint (14l). 

 In order to formulate model MMF2, constraints (14k)-(14m) should be replaced by  

I I I I I
1 2 3 4          (15a) 

II II II II II
1 2 3 4          (15b) 

III III III III III
1 2 3 4          (15c) 

I II III
0.9       (15d) 

I II III
, , 0     (15e) 

 These restrictions determine the value of the variables I , II  and 
III  which 

correspond to the fractions of time during which the MMF2 target of DMU 1 should operate 

in each mode, keeping the value of the observed idle time constant (0.1 in this case). 
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 Tables 3 and 4 show the optimal values of the variables computed by MMF1 and 

MMF2. In both cases, DMU 2 is the only efficient DMU. The SBI scores of the inefficient 

DMUs are larger for MMF2 than for MMF1 leading to a different ranking from the one 

derived by EM. Thus, when the MMF structure is taken into account the inefficiency score of 

DMU 4 increases significantly while that of DMU 3 decreases. 

 Focusing on DMU 1, MMF1 provides  I I I I
1 2 3 4, , , (0,0.6,0,0)     , 

 II II II II
1 2 3 4, , , (0,0,0,0.2)      and  III III III III

1 2 3 4, , , (0.1,0,0,0)      (see Table 4), which 

means that, to be efficient, DMU 1 should operate in MF I as DMU 2 does, in MF II as DMU 

4 does, and in MF III as DMU 1 does, maintaining the run times of these MFs. Doing this 

leads to a reduction of 3 and 2 units of inputs 1 and 2, respectively, as well as an increase of 

output y of 8 units (see Table 3). However, when MMF2 is applied, the only non-zero 

intensities are III
1 =0.17 and III

3 =0.73 (see Table 4), which means that, to be efficient, DMU 

1 should operate the whole 0.9 time units exclusively in MF III and using an operating point 

that corresponds to replicating DMU 1 during 0.17 time units and DMU 3 during 0.73 time 

units. Doing this leads to a reduction of 3 units of input 2 and an increase of 18.33 of the 

output (see Table 3). The difference between the inefficiency scores computed by MMF2 and 

MMF1 is reported in the last column of Table 3 and corresponds to the time allocative 

inefficiency of the DMUs. In fact, DMU 1 is the one with the largest time allocative 

inefficiency. 

========================== Table 2 (about here) ==================== 

========================== Table 3 (about here) ==================== 

========================== Table 4 (about here) ==================== 

 Note that model MMF2 computes an overall operating point, within the overall MMF 

technology, that optimizes the MF time allocation. Using that freedom, and based on the 

observed operation points of the different MFs, the model can determine that the optimal (in 

the SBI objective function sense) target operation point has a MF time allocation that may not 

make use of all MF and that, in general, can be quite different from the observed DMU being 
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assessed. That should be interpreted as a MF time allocation inefficiency of the observed 

DMU, i.e. if the DMU had chosen the computed optimal MF time allocation and their 

corresponding target MF operation points, the sum of the input consumption reduction and the 

output production increases would be maximum.  

 Let us comment on two specific cases pointed out by one of the reviewers. Thus, the 

observed DMU 1 used all three MF (with a MF time allocation of 0.6, 0.2 and 0.1, 

respectively) producing a total of 12 units of output y and consuming a total of 7 and 3 units 

of inputs 1 and input 2, respectively. The application of MMF1, which respects the observed 

MF time allocation, represents an efficiency improvement as it allows achieving an output 

y=20 (i.e. 8 units more than DMU 1) with a consumption of 4 units of input 1 (3 units less 

than the observed DMU 1) and just 1 unit of input 2 (2 units less than DMU 1). Moreover, 

MMF2, which optimizes the MF time allocation, computes a feasible target operation point 

that uses just one MF (namely MF III) for the whole functioning time of 0.9, obtaining an 

output y=30.33 (18.33 more than the observed DMU 1) and consuming 7 units of input 1 

(same as the observed DMU 1) and nothing of input 2. It is clear that this target overall 

operating point dominates both the original DMU 1 and the MMF1 target as it produces more 

output and consume less inputs. 

 As regards the observed DMU 2, it originally used MF I (functioning time I
2t 0.3 ) 

and MF II (functioning time II
2t 0.7 ). The MF I stint consumed I

12x 1  and produced 

I
2y 6  while MF II produced II

2y 7  and consumed II
22x 2 . Overall the observed DMU 2 

produced 2y 13  and consumed 12x 1  and 22x 2 . Model MMF1, which respects the 

original MF time allocation, cannot improve the performance of the original DMU 2. Model 

MMF2 is not able either to find an overall operating point with more output and less input. 

Although model MMF2 computes an alternative optimum (that uses MF III instead of MF II 

but for the same length of time, producing the same amount of output and consuming the 

same amount of input), by looking at the zero optimal value of the SBI objective function it is 

clear that the original DMU 2 is efficient and that is why neither MMF1 nor MMF2 can find a 

feasible operating point that dominates it. 
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 Therefore, the target overall operation point computed by MMF2 is generally quite 

different from the observed DMU being assessed. What matters, however, is that the optimal 

overall operation point can produce more outputs and consume less inputs than the observed 

DMU. If that happens, the inefficiency of the observed DMU is derived. If, on the contrary, 

no efficiency improvement can be attained (as it was the case with DMU 2 above), then, even 

if the target computed by MMF2 is different from the original DMU, the conclusion is that 

the original DMU is non-dominated and, therefore, efficient. 

5. Summary and conclusions 

 In this paper the efficiency assessment of systems which have different MFs is studied. 

Instead of ignoring this internal structure of the system, as the EM model does, a novel MMF 

approach, which explicitly models this situation is proposed. Using observed data a mode-

specific technology can be inferred for each MF and the overall system technology results 

from composing these for any MF time allocation. Two variants, labelled MMF1 and MMF2, 

are considered, depending on whether the observed time allocation is maintained or is 

relaxed. The latter detects more inefficiency and therefore has more discriminant power. In 

any case, it can be argued that the proposed approach is more valid than the EM approach as 

it represents a perspective closer to the real functioning of the system and uses more fine-

grained data. 

 The proposed approach is illustrated in detail by a simple 2-input/1-output example. 

The results confirm that the proposed approach has more discriminant power than 

conventional DEA and makes better use of the available information on how the real system 

works. 

There are a number of topics that have not been addressed in this paper and that merit 

further research. Thus, the time scalability axiom implicitly implies CRSwrtFT. Other mode-

specific technologies, exhibiting other returns to scale with respect to functioning time may be 

devised for MFs that have some type of warm up and/or shutdown periods. Also related to 

this, the proposed approach only takes into account the fraction of the total time that the MFs 

are operating, implicitly assuming that each MF runs once and for the given length of time. 

However, it can happen that the MFs are used in a dynamic fashion with the DMU switching 

between the different MFs as required. Including this, especially if it involves switching costs, 

is also a challenging question. Finally, this paper deals with efficiency assessment but the 
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methodology can also be extended to planning the future operation of a system to attain 

certain output levels, using the observed data (at the MF level) to infer its overall PPS. 
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Figure 1. MMF system: a) EM perspective. b) Proposed perspective 

Figure 2. Illustration: system with 3 MFs, 2 inputs and a single output 
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 MF I MF II MF III TOTAL 

DMU I
1x  x2

I
 I

y  I
t  x1

II
 II

2x  II
y  II

t  
III
1x  x2

III
 III

y  III
t  x1

 x2
 y  tI + tII + tIII 

1 5 - 4 0.6 - 3 3 0.2 2 - 5 0.1 7 3 12 0.9 

2 1 - 6 0.3 - 2 7 0.7 - - - - 1 2 13 1.0 

3 2 - 4 0.5 - 5 8 0.3 1 - 6 0.2 3 5 18 1.0 

4 3 - 1 0.2 - 2 6 0.4 2 - 5 0.4 5 2 12 1.0 

Table 1. Observed data (4 DMUs) for system with 3 MFs 

 

 

DMU 1  2  3  4  x̂1
 x̂2

 ŷ  
1s
  2s

  s


 SBIx  SBIy  SBI  

1 0 0.67 0.33 0 1.67 3 14.67 5.33 0 2.67 2.67 2.67 5.33 

2 0 1 0 0 1 1 13 0 0 0 0 0 0 

3 0 0 1 0 3 5 18 0 0 0 0 0 0 

4 0 1 0 0 1 2 13 4 0 1 2 1 3 

Table 2. EM solution: intensity variables, input and output targets, input and output slacks and inefficiency scores 
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M

M
F

1
 

DMU 

Targets 
Slacks Inefficiency scores 

 

MF I MF II MF III  

x̂1
I
 x̂2

I
 ŷI

 x̂1
II

 x̂2
II

 ŷII
 x̂1

III
 x̂2

III
 ŷIII

 1s


 2s


 s


 SBIx
 SBIy

 SBI   

1 2 - 12 - 1 3 2 - 5 3 2 8 2.5 8 10.5  

2 1 - 6 - 2 7 - - - - - - 0.0 0.0 0.0  

3 1.67 - 10 - 1.5 4.5 1.33 - 6.44 - 3.5 2.94 1.75 2.94 4.69  

4 0.67 - 4 - 2 6 4.33 - 15.11 - - 13.11 0 13.11 13.11  

 

M
M

F
2
 

DMU 

Targets 
Slacks Inefficiency scores 

MF I MF II MF III 

x̂1
I
 x̂2

I
 ŷI

 x̂1
II

 x̂2
II

 ŷII
 x̂1

III
 x̂2

III
 ŷIII

 1s


 2s


 s


 SBIx
 SBIy

 SBI  
alloc

SBI  

1 - - - - - - 7 - 30.33 - 3 18.33 1.5 18.33 19.83 9.33 

2 - - - - 2 7 1 - 6 - - - 0.0 0.0 0.0 0.0 

3 - - - - 5 9 3 - 18 - - 9 0.0 9 9 4.31 

4 - - - - - - 5 - 30 - 2 18 1 18 19 5.89 

Table 3. Targets, slacks and inefficiency scores computed by MMF1 and MMF2 models 
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MMF1 

DMU 

MF I MF II MF III  

I
1  I

2  I
3  I

4  
I
j

j

  II
1  II

2  II
3  II

4  
II
j

j

  III
1  III

2  III
3  III

4  
III
j

j

  
 

1 - 0.6 - - 0.6 - - - 0.2 0.2 0.1 - - - 0.1  

2 - 0.3 - - 0.3 - 0.7 - - 0.7 - - - - -  

3 - 0.5 - - 0.5 - - - 0.3 0.3 0.02 - 0.18 - 0.2  

4 - 0.2 - - 0.2 - - - 0.4 0.4 0.16 - 0.24 - 0.4  
                  

MMF2 

DMU 

MF I MF II MF III I

II

III

 

 



 I
1  I

2  I
3  I

4  I  
II
1  II

2  II
3  II

4  II  
III
1  III

2  III
3  III

4  III  

1 - - - - - - - - - - 0.17 - 0.73 - 0.9 0.9 

2 - - - - - - 0.7 - - 0.7 - 0.1 0.2 - 0.3 1.0 

3 - - - - - - - 0.26 0.14 0.4 - - 0.6 - 0.6 1.0 

4 - - - - - - - - - - - - 1.0 - 1 1.0 

Table 4. Intensity variables and time allocation computed by MMF1 and MMF2 models 
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a) 

 

b) 

 

Figure 1. MMF system: a) EM perspective b) Proposed perspective 
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Figure 2. Illustration: system with 3 MFs, 2 inputs and a single output 

 


