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Abstract This article introduces a sustainable integrated bi-objective location-routing
model, its two-phase solution approach and an analysis procedure for the distribution side
of three-echelon logistics networks. The mixed-integer programming model captures several
real-world factors by introducing an additional objective function and a set of new constraints
in themodel that outbound logistics channels find difficult to reconcile. The sustainablemodel
minimises CO2 emissions from transportation and total costs incurred in facilities and the
transportation channels. Design of Experiment (DoE) is integrated to themeta-heuristic based
optimiser to solve the model in two phases. The DoE-guided solution approach enables the
optimiser to offer the best stable solution space by taking out solutions with poor design
features from the space and refining the feasible solutions using a convergence algorithm
thereby selecting the realistic results. Several alternative solution scenarios are obtained by
prioritising and ranking the realistic solution sets through a multi-attribute decision analysis
tool, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The robust
model provides the decision maker the ability to take decisions on sustainable open alterna-
tive optimal routes. The outcomes of this research provide theoretical and methodological
contributions, in terms of integrated bi-objective location-routing model and its two-phase
DoE-guidedmeta-heuristic solution approach, for the distribution side of three-echelon logis-
tics networks.
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1 Introduction

Sustainable logistics operations and their effect on carbon emissions and costs are a current
strategic challenge in modern supply chains (SCs) (Du et al. 2017; McKinnon et al. 2015;
Brandenburg and Rebs 2015; Kumar et al. 2012; Srivastava 2007). Logistics activities have
been identified as one of the most significant sources of air pollution and greenhouse gas
emissions (Sheu andLi 2014;Wang et al. 2011). Efficient and effective design of the outbound
logistic system is one of the critical success factors for sustainable movement of products to
multiple retailers and consumers (Lopes et al. 2008). Therefore, sustainable location-routing
problem (LRP) is of major concern in logistics networks design (Srivastava 2007; Seuring
and Müller 2008).

A sustainable transportation strategy within a logistics network promotes an approach that
seeks to achieve mutually reinforcing benefits for the economy, the environment and society
(Ilbery and Maye 2005). The Paris Agreement (United Nations Treaty Collection 2017) sets
out a global action plan to reduce member states’ carbon emission through a legally binding
global climate deal and encourages businesses to significantly reduce carbon emissions from
their operations. Transportation activities on the demand side of the SC via roadways leave
harmful effects on human health and the environment. Therefore, the transportation routes
should be planned so as to minimise CO2 emissions and costs resulted from transportation
activities.

Driven by the current laws and regulations and competitive business opportunities on
the sustainable transportation mechanism, this article addresses three inter-linked aspects of
sustainable location-routing. First a sustainable bi-objective three-echelon integrated optimi-
sation model is proposed, next a Design of Experiment (DoE)-guided meta-heuristic-based
robust solution approach is provided to solve the computationally NP-hard integrated model,
and the Decision-Makers’ (DMs’) prioritisation and ranking of the realistic solution sets, and
various routing scenarios of the three-echelon sustainable location-routing are illustrated.

The model addresses all three echelons on the distribution side of the logistics network
responsible for carbon emission. The weighting procedures of Analytic Hierarchy Process
(AHP) (Saaty 1994) is infused into the bi-objective 0–1 integer programming in order to
provide flexibility in the vehicle selection decision-making process. The computational com-
plexity of the NP-hard model necessitates the solution approach to divide the model into two
inter-connected phases. While Phase-I deals with the sustainable transportation mechanism
from the processing plants to the multiple distribution centres (DCs) and DCs to multiple
retailers, Phase-II uses the outcome of Phase-I to locate the non-dominated Pareto realistic
optimal routes among retailers. The DoE-guided Multiple-Objective Genetic Algorithm of
kind II (MOGA-II) optimiser enables the model to obtain the best set of realistic solutions.
Disparate scenarios of the realistic vehicle routes are captured with alternative possible out-
comes from both the phases. The final set of optimal and realistic solutions is then obtained
from the synergistic effect resulted from both phases. The best set of realistic sustainable
optimal solutions is then obtained.

The remainder of this paper is organised as follows. Section 3 formulates the sustain-
able three-echelon location-routing model. The two-phase solution approach to the NP-hard
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Table 1 Applications of location-routing problems

Publications Applications

Perl and Daskin (1984, 1985) Goods distribution

Jacobsen and Madsen (1980), Madsen (1983),
Mantel and Fontein (1993)

Newspaper distribution

Or and Pierskalla (1979) Blood bank location

Watson-Gandy and Dohrn (1973) Food and drink distribution

Labbé and Laporte (1986) Post-box location

Aksen and Altinkemer (2008) Distribution logistics

Kulcar (1996), Caballero et al. (2007), Vidović et al.
(2016), Asgari et al. (2017)

Waste collection

Chan et al. (2001) Medical evacuation

Alumur and Kara (2007), Chang et al. (2005) Collection, transportation, treatment and disposal of
hazardous material

Cappanera et al. (2004), Stowers and Palekar (1993) Obnoxious facility location-routing

Murty and Djang (1999) Military application

Bruns et al. (2000), Wasner and Zäpfel (2004) Parcel delivery

Lin et al. (2002) Bill delivery services

Sbihi and Eglese (2010), Zhang and Zhao (2011) Hazardous waste location-routing

Stenger et al. (2012) Small package shippers

Gunnarsson et al. (2006) Shipping industry

Validi et al. (2012, 2014a, b, 2015) Perishable food product distribution (low-carbon
logistics)

model is explained in Sect. 4. Next section implements the model and its two-phase solution
approach on a three-echelon dairy processing logistics network based in Ireland. The results
and analysis of the implemented model are illustrated in Sect. 6. A critical discussion on the
results is also included in this section. Finally, Sect. 7 concludes the paper with an implica-
tion of the proposed approach on sustainable location-routing on the demand side of logistics
network.

2 Theoretical background

Literature on conventional LRPs is rich in terms of both methodologies and applications.
Prominent reviews can be found in Madsen (1983), Nagy and Salhi (2007), Dekker et al.
(2012), Demir et al. (2014), Prodhon and Prins (2014), Eskandarpour et al. (2015), Drexl
and Schneider (2015), Vega-Mejía et al. (2017). The purpose of LRP methodologies is the
simultaneous determination of the location of facilities and the routes of vehicles for product
transportation (Laporte et al. 1988; Nagy and Salhi 2007; Yu et al. 2010). A broad range of
LRP applications is found in the literature. A synopsis of these applications is illustrated in
Table 1.

The nature of the LRP problems stimulates practitioners to use a range of optimisation
techniques. Stochastic (Laporte et al. 1989; Albareda-Sambola et al. 2007) and deterministic
(Albareda-Sambola et al. 2005) optimisation models are reported in the literature. For exam-
ple, a mixed-integer programming technique is reported for minimising the sum of the fixed
costs and distribution costs (Diabat and Simchi-Levi 2009) in LRP. Belenguer et al. (2011)

123



194 Ann Oper Res (2020) 290:191–222

propose an exact approach using a 0–1 linear model based on a branch-and-cut algorithm
for solving the LRP with capacity constraints on DCs and vehicles. Rath and Gutjahr (2014)
report a three-objective warehouse location–routing problem for disaster relief. Karaoglan
et al. (2011) propose an exact algorithm based on a branch-and-cut technique. Berger et al.
(2007) propose a branch and price algorithm. Integer-linear programming is very common in
solving LRP. Applications of integer-linear programming are found in multi-level location-
routing-inventory (Ambrosino and Scutellà 2005), “road-train” routing (Semet 1995) and
Eulerian location (Ghiani and Laporte 1999) etc. LRP has been viewed also as a Lagrangian
relaxation model (Cappanera et al. 2004) and mixed-integer programming (Alumur and Kara
2007).

The optimisation formulations of efficient LRPs are NP-hard by nature (Nagy and Salhi
2007; Marinakis and Marinaki 2008; Yu et al. 2010). One of the characteristics of these NP-
hard problems is that the solution grows exponentially with increasing problem size (Erdoğan
and Miller-Hooks 2012). Therefore, in order to tackle this situation, the application of meta-
heuristics in LRP is necessary (Golden and Skiscim 1986; Tuzun and Burke 1999; Prins et al.
2007; Bräysy et al. 2009; Prins et al. 2009). Examples on the use of meta-heuristics in LRP
are abundant. This includes the use of particle swarm optimisation (Liu et al. 2012), tabu
search (Russell et al. 2008), simulated annealing (Stenger et al. 2012), greedy randomised
adaptive search procedure (Nguyen et al. 2012), variable neighbourhood search algorithms
(Derbel et al. 2011), ant colony optimisation (Ting and Chen 2013) and honey bees mating
optimisation (Marinakis et al. 2008). The use of genetic algorithms in LRPs are reported
in Zhou and Liu (2007), Marinakis and Marinaki (2008), Jin et al. (2010), Karaoglan et al.
(2012). Some variants of genetic algorithms are also reported in LRP literature (Hwang 2002;
Zhou and Liu 2007;Marinakis et al. 2008; Jin et al. 2010). Table 2 lists some of the prominent
literature on the use of meta-heuristics in LRPs.

It is reported that outbound logistics is more complicated than inbound logistics in a
logistics network due to the product values, customer delivery requirements and stringent
regulations (Wu andDunn 1995). The environmental impact of product transportation to DCs
and retailers can be reduced substantially with effective logistics management (Wu and Dunn
1995). Conventional logistics system does not serve this purpose effectively as it does not
consider the environmental impact of the outbound logistics mechanism. Consideration of
the environmental aspect of LRP in outbound logistics requires substantial changes in LRP
formulation procedures.

Although literature on general sustainable operations is growing, literature specifically
on sustainable location-routing is scant. Reverse logistics and green-vehicle routing method-
ologies are found in (Zhu et al. 2008; Erdoğan and Miller-Hooks 2012). Wang et al. (2005)
reports a trade-offs model between the cost factors and the environmental impact of a sup-
ply chain. A two-layer multi-objective sustainable location-routing model with its solution
approach is reported in Validi et al. (2014a, b, 2015). Literature on conventional LRPs is
rich in terms of both methodologies and applications (Laporte et al. 1988; Demir et al. 2014;
Prodhon and Prins 2014; Drexl and Schneider 2015). The purpose of LRP methodologies
is the simultaneous determination of the location of facilities and the routes of vehicles for
product transportation (Laporte et al. 1988; Yu et al. 2010). A broad range of LRP appli-
cations is found in the literature (Perl and Daskin 1985; Alumur and Kara 2007; Govindan
et al. 2014). Awide range of optimisation techniques, including applications of integer-linear
programming are found in literature (Semet 1995; Ambrosino and Scutellà 2005).
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Table 2 Examples of reported optimisation techniques used in location-routing problems

Optimisation techniques Publications

Honey bees mating optimisation Marinakis et al. (2008)

Ant colony optimisation Bell and McMullen (2004), Bin et al. (2009), Ting
and Chen (2013), Yu and Yang (2011), Yang and
Zhuang (2010), Zhang et al. (2017)

Particle swarm optimisation Marinakis et al. (2008), Yang and Zi-Xia (2009),
Liu et al. (2012), Yao et al. (2016)

Tabu search Gendreau et al. (1994), Tuzun and Burke (1999),
Chiang and Russell (2004), Melechovský et al.
(2005), Albareda-Sambola et al. (2005), Lin and
Kwok (2006), Caballero et al. (2007), Russell
et al. (2008)

Simulated annealing Lin et al. (2002), Wu et al. (2002), Lin and Kwok
(2006), Yu et al. (2010), Stenger et al. (2012)

Greedy randomised adaptive search optimisation Prins et al. (2006a), Duhamel et al. (2010), Nguyen
et al. (2012)

Memetic algorithm Prins et al. (2006b), Asgari et al. (2017)

Variable neighborhood search optimisation Melechovský et al. (2005), Ghodsi and Amiri
(2010), Derbel et al. (2011)

Genetic algorithms Zhou and Liu (2007), Marinakis and Marinaki
(2008), Jin et al. (2010), Karaoglan et al. (2012)

Variants of genetic algorithms Hwang (2002), Prins et al. (2006b), Zhou and Liu
(2007), Marinakis and Marinaki (2008),
Marinakis et al. (2008), Jin et al. (2010),
Karaoglan and Altiparmak (2010)

Imperialist competitive algorithm and variable
neighborhood search

Devika et al. (2014)

Hybrid cross entropy algorithm Wu et al. (2017)

Mixed integer linear programming with the classical
epsilon constraint technique

Toro et al. (2017)

Bi-objective mixed-integer non-linear programming
model with a modified archived multi-objective
simulated annealing meta-heuristic algorithm

Rayat et al. (2017)

Two-stage stochastic programming model Rezaee et al. (2017)

2.1 Contribution and objectives

Driven by growing social awareness, current laws and regulations and competitive business
opportunities, this article contributes to the current bodyof knowledgeby addressing anumber
of inter-linked decisions in logistics network design, location decisions, routing decisions and
sustainability. This article contributes to the state-of-the-art of location-routing literature in
the following aspects evolved from the literature review:

(a) How a bi-objective optimisation model for three-echelon distribution networks with
sustainable low-cost outcome can be developed that captures several real-world factors
difficult to reconcile by organisations?
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(b) How are decision makers’ preferences accommodated with regard to costs and CO2

emission in optimising the logistics network design based on varying organisational
strategies?

(c) What is the effective approach to solve the proposed bi-objective three-echelon location-
routing optimisation model?

To address these research aspects a sustainable three-echelon bi-objective integrated
location-routing optimisation model is proposed that addresses the demand side of three
echelon SCs. The weighting procedures of Analytic Hierarchy Process (AHP) (Saaty 1994)
is infused into the bi-objective 0–1 integer programming optimisation model in order to
reflect the DMs’ priorities in the vehicle selection decision-making process. The computa-
tional complexity of the NP-hard model necessitates the solution method to divide it into two
inter-connected phases. Phase-I deals with the transportationmechanism from the processing
plants to the multiple Distribution Centres (DCs) and from DCs to multiple retailers. Phase-
II uses the outcome of Phase-I to locate the non-dominated Pareto realistic optimal routes
among retailers. A Design of Experiment (DoE)-guided meta-heuristic-based robust solution
approach, integrated with the Multi-Objective Genetic Algorithm of kind II (MOGA-II), is
adopted to solve the computationally NP-hard integrated model. The final set of optimal and
realistic solutions is obtained from the combination of both phases. The realistic solutions
are prioritised through Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) (Hwang and Yoon 1981) by reflecting DMs’ priorities. To the authors’ knowledge,
literature is scant in combining three inter-linked aspects of sustainable location-routing.

3 The proposed sustainable integrated model

The purpose of this three-echelon bi-objective sustainable model is to minimise the level
of CO2 emission caused from transportation and minimise a combination of costs on the
demand side of distribution networks. The proposed model is formulated based on a set of
realistic assumptions. The model considers three key players on the distribution side of a SC,
viz., plants, DCs and retailers. Two fleets of vehicles/trucks are considered for transporting
the products throughout the SC network. A fleet of trucks transport products from plants
to DCs, and another fleet of trucks transport products from DCs to retailers and then from
retailers to other retailers. Each route may be a combination of different types of roads. In
every country different speed limits apply to different types of roads. Speeds in different
types of routes are captured in the model by the use of an appropriate variable.

Theproposedmodel allocatesDCs to the plants and retailers toDCs, and routes the vehicles
from plants to DCs, DCs to retailers and retailers to retailers thereby serving the demand-side
of the SC. The problem is to identify open and closed facilities and the optimised routing
pattern throughout the network while minimising: (a) the CO2 emissions from transportation,
and (b) the total costs of operating facilities, satisfying demand at each facility and total
transportation costs. The DMs’ subjective opinions are considered to identify the optimal
location-routing pattern. Themodel is generic as it is applicable to any three-echelon logistics
network.

The routes on the demand side of the SC start from plants to DCs, DCs to retailers and then
from retailer to retailer. The sustainable element of the location-routing design is addressed
in the model by introducing two sustainable components, viz. (i) a sustainable objective
function, and (ii) an AHP-integrated sustainable constraint.
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The three-echelon bi-objective AHP-integrated 0–1 mixed integer location-routing model
is associated with 10 operational constraints. A set of 0–1 integer decision variables defines
open/close plants and DCs (Fs and E j ) and all real feasible routes from plants to DCs,
DCs to retailers and routes connecting retailers to retailers (Vsjtnk , L jitnk and Oii ′tnk). A
set of parameters (ptnks j , ptnk ji and ptnkii ′ ) represents the amount of CO2 emission in each
real feasible route from plants to DCs, DCs to retailers, and among retailers. Two sets of
variables represent the sum of fixed costs ( fs and f j ) and sum of the variable costs (vs and
v j ). Another set of parameters represents the cost of serving DCs from plants, retailers from
DCs and retailers from other retailers (ctnks j , ctnk ji and ctnkii ′ ) (Table 3).

3.1 Objective functions

The objective function (1) of the model minimises total CO2 emission from transportation
between facilities i.e. plants to DCs, DCs to retailers and retailers to retailers:

minimise
∑

s∈S

∑

j∈J

∑

tn∈T

∑

k∈K
ptnks j Vs j tnk +

∑

j∈J

∑

i∈I

∑

tn∈T

∑

k∈K
ptnk ji L ji tnk +

∑

i∈I

∑

i ′∈I

∑

tn∈T

∑

k∈K
ptnkii ′ Oii ′tnk

(1)

The objective function (2) minimises costs of operating a facility, cost of serving DCs and
retailers and vehicle-routing costs:

minimise

⎡

⎣
∑

s∈S
fs Fs +

∑

j∈J

f j E j

⎤

⎦ +

⎡

⎣
∑

s∈S
vs Fs +

∑

j∈J

v j E j

⎤

⎦

+

⎡

⎣
∑

s∈S

∑

j∈J

∑

tn∈T

∑

k∈K
ctnks j Vs j tnk +

∑

j∈J

∑

i∈I

∑

tn∈T

∑

k∈K
ctnk ji L ji tnk +

∑

i∈I

∑

i ′∈I

∑

tn∈T

∑

k∈K
ctnkii ′ Oii ′tnk

⎤

⎦

(2)

3.2 Constraints and decision variables

Each DC is connected to only one plant, each retailer is connected to only one DC and each
retailer is connected to only one other retailer (if on a multi-route):

∑

j∈J

∑

tn∈T

∑

k∈K
Vsjtnk � 1 ∀s ∈ S,

∑

i∈I

∑

tn∈T

∑

k∈K
L jitnk � 1 ∀ j ∈ J and

∑

i ′∈I

∑

tn∈T

∑

k∈K
Oii ′tn k � 1, ∀i ∈ I

(3)

Constraint (4) limits the length of each multi-stop route. One route comprises a start point
from a DC to a retailer and then serving another retailer. Multi-stops are considered from the
DCs to the retailers and from one retailer to another retailer:

∑

j∈J

∑

i∈I
d ji L ji tnk +

∑

i∈I

∑

i ′∈I
dii ′Oii ′tnk ≤ τk,∀k ∈ K , ∀tn ∈ T (4)
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Table 3 Variable and parameter definitions

Sets and indices

S Set of plants indexed by s ptnkii ′ CO2 emission from
transportation from retailer
i ∈ I to retailer i ′ ∈ I using
vehicle k ∈ K and tn ∈ T

J Set of DCs indexed by j ds j Distance from plant s ∈ S to DC
j ∈ J

I Set of retailer locations
indexed by i and i ′

d ji Distance from DC j ∈ J to
retailer i ∈ I

K Set of candidate vehicles
indexed by k

dii ′ Distance from retailer i ∈ I to
retailer i ′ ∈ I

M Set of decision-making
attributes indexed by m

σk Capacity of vehicle k ∈ K

T Set of alternative
trucks/vehicles indexed by
tn

τk Length of combined routes limit

Parameters z Average speed limit of the
vehicles on different roads

fs Sum of fixed costs of locating
at plant s ∈ S

wmn Weight matrix for trucks/vehicles

vs Sum of variable costs of
serving customers at each
plant s ∈ S

Bm Limits of the decision-making
attributes; set by DM

f j Sum of fixed costs of locating
at DC j ∈ J

Sm parameter that takes the average
values of ptnks j , ptnk ji and
ptnkii ′ , and ctnks j , ctnk ji and
ctnkii ′

v j Sum of variable costs of
serving retailers at DC
j ∈ J

Decision variables

as Variable cost of providing a
DC with the products at a
plant; per unit s ∈ S

Fs �1 if plant s ∈ S is open
= 0 if not

a j Variable cost of providing a
retailer with the products at
a DC; per unit j ∈ J

E j �1 if DC j ∈ J is open
= 0 if not

r j Capacity at DC j ∈ J Vs jtnk = 1 if vehicle k ∈ K and tn ∈ T
goes directly from plant s ∈ S
to DC j ∈ J

= 0 if not

ri , ri ′ Demand at retailer location
i ∈ I, i ′ ∈ I

L ji tnk = 1 if vehicle k ∈ K and tn ∈ T
goes directly from DC j ∈ J to
retailer i ∈ I

= 0 if not

ctnks j Cost of serving DC j ∈ J
using vehicle k ∈ K from
plant s ∈ S

Oii ′tnk = 1 if vehicle k ∈ K and tn ∈ T
goes directly from retailer i ∈ I
to retailer i ′ ∈ I

= 0 if not
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Table 3 continued

ctnk ji Cost of serving retailer i ∈ I
using vehicle k ∈ K from
DC j ∈ J

Qs j Fraction of demand at plant s ∈ S
that is served by DC j ∈ J

ctnkii ′ Cost of serving retailer i ′ ∈ I
using vehicle k ∈ K and
tn ∈ T from retailer i ∈ I

Q ji Fraction of demand at DC j ∈ J
that is served at retailer i ∈ I

ptnks j CO2 emission from
transportation tn ∈ Tn ,
from plant s ∈ S to DC
j ∈ J using vehicle k ∈ K
and tn ∈ T

Qii ′ Fraction of demand at retailer
i ∈ I that is served by retailer
i ′ ∈ I

ptnk ji CO2 emission from
transportation from DC
j ∈ J to retailer i ∈ I using
vehicle k ∈ K and tn ∈ T

Each route on the demand side of the logistics network is connected to a facility:
∑

s∈S

∑

j∈J

Vs jtnk ≥ 1 ∀k ∈ K , ∀tn ∈ T (routes from plant to DCs) ,

∑

j∈J

∑

i∈I
L ji tnk ≥ 1 ∀k ∈ K , ∀tn ∈ T (routes from DCs to retailers) , and

∑

i∈I

∑

i ′∈I
Oii ′tnk ≥ 1, ∀k ∈ K , ∀tn ∈ T (routes from retailers to retailers) . (5)

A route entering a node (i.e., DC and retailer) must exit the same node:
∑

j∈J

∑

i∈I
L ji tnk −

∑

i∈I

∑

j∈J

Li j tnk � 0,∀k ∈ K , ∀tn ∈ T (from DCs to retailers) and

∑

i∈I

∑

i ′∈I
Oii ′tnk −

∑

i ′∈I

∑

i∈I
Oi ′i tnk � 0,∀k ∈ K , ∀tn ∈ T (from retailers to retailers). (6)

The sustainable three-echelon model considers that a route can operate out of only one
facility:

∑

s∈S

∑

j∈J

Vs jtnk ≤ 1, ∀k ∈ K , ∀tn ∈ T (routes from plants to DCs) ,

∑

j∈J

∑

i∈I
L ji tnk ≤ 1, ∀k ∈ K (routes from DCs to retailers)

∑

i∈I

∑

i ′∈I
Oii ′tnk ≤ 1, ∀k ∈ K , ∀tn ∈ T (routes connecting retailers). (7)

The flow of the products from the supply nodes (plants and DCs) into the facilities is
ensured:

∑

s∈S
Qsj −

∑

j∈J

r j E j � 0 , ∀ j ∈ J (from plants to DCs) , and

∑

j∈J

Q ji −
∑

i∈I
ri E j � 0 , ∀i ∈ I (from DCs to retailers) . (8)
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There is a restriction of throughput at each facility up to the allowable maximum limit at
each node that links the flow variables to the facility location variables:

∑

s∈S
Qsj − r j Fs ≤ 0, ∀ j ∈ J (from plants to DCs) and

∑

j∈J

Q ji − ri E j ≤ 0,∀i ∈ I (from DCs to retailers) . (9)

A retailer must be assigned to a facility if the route leaves the facility:
∑

j∈J

L ji tn k
+

∑

i∈I
Oii ′tnk − Y j ≤ 0, ∀i ′ ∈ I, ∀ j ∈ J, ∀k ∈ K , ∀tn ∈ T (10)

Constraint (10) is applied to multi-stop routes connecting an open DC to a retailer and
then through the first retailer serving other retailer(s). Assuming that the retailers have no
supply of products, open DCs and routes connecting DCs to served retailers are included in
this constraint.

Capacity for each vehicle is restricted:
∑

j∈J

r j
∑

s∈S
Vs jtnk ≤ σk, ∀k ∈ K , ∀tn ∈ T (routes from plants to DCs) ,

∑

i∈I
ri

∑

j∈J

L ji tnk ≤ σk, ∀k ∈ K , ∀tn ∈ T (routes from DCs to retailers) , and

∑

i ′∈I
ri ′

∑

i∈I
Oii ′tnk ≤ σk, ∀k ∈ K , ∀tn ∈ T (routes from DCs to retailers) . (11)

The sustainable constraint is formulated by infusing the pair-wise comparison matrices
of the AHP technique into the mixed-integer programming model to introduce flexibility in
the form of prioritising the vehicles to be used for the transportation:

Sm

(
∑

m∈M

∑

n∈N
wmnTn

)
≤ Bm (12)

where wmn is associated with the priorities of the DMs regarding the type of vehicles (Tn)
and Bm contributes to the parameters of the objective functions.

The decision variables are:

Vsjtnk �
{
1, if vehicle k ∈ K&tn ∈ T goes directly from plant s ∈ S to DC j ∈ J
0, if not

(13)

L jitnk �
{
1, if vehicle k ∈ K&tn ∈ T goes directly from DC j ∈ J to retailer i ∈ I
0, if not

(14)

Oii ′tnk �
{
1, if vehicle k ∈ K&tn ∈ T goes directly from retailer i ∈ I to retailer i ′ ∈ I
0, if not

(15)

E j �
{
1, if DC j ∈ J is open
0, if not

(16)

Fs �
{
1, if plant s ∈ S is open
0, if not

(17)
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Tn �
{
1, if vehicle/truck tn ∈ Tn is selected to transport the products
0, if not

(18)

4 Case of a dairy processing firm

A case of a dairy processing industry’s three-echelon SC, operating in the east of Ireland, is
considered for implementing the model and its solution approach. The SC has 2 processing
plants, 6 DCs and supplies 22 retailers. The model considers variable costs as the total costs
of serving each DC at each plant and each retailer at each DC. The variable costs of the
processing plants (vs) is defined as:

vs � (as . r j ). Vsjtnk (19)

where as �variable cost (e)/unit of product shipped from a plant to a DC; r j �demand
(units of product) at each DC. One ‘unit’ refers to a two-litre carton of milk.

Variable costs at the DCs (v j ) is defined as:

v j � (a j . ri ). L j i tnk, (20)

where a j �variable cost (e)/unit of product shipped from a supply point (here DC) to a
consumption point (i.e., retailer); ri �demand at each retailer.

Average demand at each retailer is assumed as 2/3 of the total population at the location
of the retailers. Heavy duty Diesel fuelled fully loaded refrigerated vehicles are considered
for the transportation activities. An average speed on the road is assumed.

The volume of burnt diesel is calculated using Eq. (21). The fuel efficiency is considered
as 0.35 based on the report of the UK’s Department of Energy and Climate Change (2010)
and Nylund and Erkkilä (2005). Guidelines to DEFRA’s (2008) greenhouse gas conversion
factors aid in calculating the CO2 emission from the diesel vehicles [Eq. (22)]:

Litres of diesel burnt in each path � Fuel efficiency (L/km) × Distance (km) (21)

CO2emission from a diesel vehicle (kg) � Litres of diesel burnt × 2.64 (22)

The cost of serving each of the routes from the plants to the DCs and from the DCs to
the retailers is the sum of fuel costs and driver’s wage. Equation (23) considers e1.53/l and
e11.50/h as the cost of Diesel in Ireland and average wage of a heavy-duty vehicle driver:

(23)

Cost of serving a route � e
(
1.53 × Litres of diesel bunt per km

)

+ e (11.5 ×
(
Disance (km)

z

)
.

The variable ‘z’ represents the average speed in each path.
The CO2 emission during transportation between the DCs and retailers and among the

retailers, and corresponding costs of serving each route (ptnk ji and ctnk ji ) are computed. The
costs of serving each route among retailers (ptnkii ′ and ctnkii ′ ) are determined. For illustrative
purpose three different types of vehicle with different levels of CO2 emission and costs, are
considered for transportation.

The weight matrix (wmn) is determined using the pair-wise comparison matrix of AHP.
The right hand side matrix of constraint (12), i.e.,Bm , is found considering the average round
off values of the CO2 emission. The boundary values of CO2 emission and costs of serving
the routes are found. Tables 16, 17, 18, 19, 20, 21, 22, 23 and 24 of appendix provide the
collated data utilised for the dairy processing industry’s three-echelon SC.
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Two-phased DoE-guided solution approach
Initial population table: generated by DoE
Optimisers: Multi-objective GA-based (MOGA-II)

Identical optimiser setting for Phase-I and Phase-II 

Phase–I
Model in Phase-I considers plants, 
DCs and retailers

Phase-I results: 

- Facility location (plants & DCs)

- Vehicle routing patterns (plants 
to DCs and DCs to retailers)

Link between Phase-II and 
Phase-I:

- Objective function and 
constraint elements

- Result of Phase-I used for 
model modification in 
Phase-II

Final results

Phase–II
Model in Phase-II considers 
retailers, and results from Phase-I

Phase-II results: 

- Vehicle routing patterns 
(between retailers)

Fig. 1 Two-phased DoE-guided solution approach

5 Two-phase solution approach

The proposed sustainablemodel isNP-complete. A two-phase approach (like Przybylski et al.
2008) is found to be the most efficient way to solve the model. A two-phase DoE-guided
solution approach (Fig. 1) has been developed to solve the proposed sustainable three-echelon
model.

The model solved in Phase-I finds the optimised set of open/close plants and DCs, and the
optimised routing pattern connecting open plants to open DCs and open DCs to retailers. The
model solved inPhase-II uses the results fromPhase-I as inputs andfinds the optimised routing
pattern in between the retailers. DoE is invoked during the start point of the implementation
process to ensure that theMOGA-II optimiser provides the best stable solution space. Table 4
illustrates a snapshot of the technical details for the two phases.

TOPSIS is utilised to analyse the selected feasible optimal solution sets (designs) from
Phase-I and Phase-II. It prioritises the results with refined result sets facilitating identification
of open routes among retailers along with the type of the vehicles for transportation and
its costs and CO2 emission. Phase-I of the sustainable bi-objective three-echelon location-
routing model considers a set of realistic assumptions, as illustrated in Table 5.

Vehicle routes among retailers are not considered in Phase-I. This is because of the com-
putational difficulty for the NP-hard nature of the model. Therefore, the demands of the
unserved retailers are met through other retailers in Phase-II. In order to formulate Phase-II
of the model the following set of realistic assumptions are considered (Table 6).
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Table 4 A snapshot of the technical details for the two-phase sustainable three-echelon model

Phase-I Model scope ‘Facility location’ and ‘vehicle routing’
within:

Plants
DCs
Retailers (connection between retailers not
considered in this phase)

Goals Facility location decision: Open/close DCs
(Plants are considered always open)

Vehicle routing decision:
Routes connecting plants to DCs
Routes connecting open DCs to retailers

Objective functions Objective function-I: Minimises CO2
emission caused form transporting
products between plants and DCs

Objective function-II: Minimises total cost
of operating plants and DCs and serving
routes

Constraints Constraint 1: Each demand node on one
route

Constraint 3: Each route to be connected to a
facility

Constraint 4: Any route entering a node must
exit the same node

Constraint 5: A route can operate out of only
one facility

Constraint 6: Defines the flow into a facility
from the supply points (in terms of
demand)

Constraint 7: Restricts throughput at each
facility to the maximum allowed at that site
and links the flow variables and facility
location variables

Constraint 9: AHP-infused constraint
considering the stakeholders’ priorities

Non-negativity constraints
Integer constraints

Outcomes from Phase-I Open/close DCs
Vehicle routes connecting plants to DCs
Vehicle routes connecting open DCs to
retailers

Link between the two
phases

Results from Phase-I: Open DCs,
served retailers

Model: Constraints related to DCs
from Phase-I

Phase-II Model scope ‘Vehicle routing’ within:
Open DCs and the routes connecting DCs to
retailers from Phase-I

Served retailers from Phase-I to un-served
retailers

Goal Vehicle routing decision: Finding routes
connecting served retailers to un-served
retailers based on the results from Phase-I
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Table 4 continued

Objective functions Objective function-I: Minimises CO2
emission caused form transporting
products between plants and DCs

Objective function-II: Minimises total cost
of operating plants and DCs and serving
routes

Constraints Constraint 1: Each demand node on one
route

Constraint 2: Limits the length of each road
(multi-stop vehicle routes)

Constraint 3: Each route to be connected to a
facility

Constraint 4: Any route entering a node must
exit the same node

Constraint 5: A route can operate out of only
one facility

Constraint 6: Defines the flow into a facility
from the supply points (in terms of
demand)

Constraint 7: Restricts throughput at each
facility to the maximum allowed at that site
and links the flow variables and facility
location variables

Constraint 8: If a route leaves retailer node
i ∈ I and retailer node i ′ ∈ I , then retailer
i ′ ∈ I must be assigned to retailer node
i ∈ I and consequently to facility (serving
retailer i ∈ I )

Constraint 9: AHP-infused constraint
considering the stakeholders’ priorities

Non-negativity constraints
Integer constraints

Outcomes from Phase-II Routes connecting served retailers to
un-served retailers from Phase-I

As served retailers don’t supply products, the
routes connecting them to open DCs from
Phase-I are considered in Phase-II

6 Results and analysis

MOGA-II optimiser is selected to implement the sustainable bi-objective location-routing
model as it has smart multi-search elitism and rapid convergence. Table 7 elucidates the
optimiser parameter set up.

6.1 Phase-I: Results and analysis

Phase-I is implemented with an initial population of 50 different designs in the DoE table
consisting of 10 DoE sequences. Phase-I is executed with 250 generations that generates
12,500 real feasible results. A statistical solution summary (Table 8) on the computed max-
imum and minimum levels of CO2 emission and costs based on the DoE tables is obtained.
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Table 5 Realistic assumptions considered for the design of Phase-I model

Demand side of logistics network is considered

Single product type, multiple processing plants, multiple DCs and multiple retailers based logistics
channel is considered

All the processing plants remain always open

Locations of the plants, DCs and retailers are known

All routes are defined and have known start and end points

A part of the variable costs is dependent on the demand at DCs and retailers

Two fleets of vehicles are used in transportation – first fleet connects plants to DCs and the second fleet
connects DCs to retailers

The number of vehicles required to transport products in each route are considered as an objective function
coefficient

Each route is served by at least one vehicle

A ‘node’ is defined by either a DC or a retailer

Vehicles are heavy duty trucks

Refrigerated vehicles required for transportation are operated in Diesel

CO2 emission occurs during transporting products between processing plants to DCs, DCs to retailers and
retailers to retailers

Fuel consumption of a vehicle is dependent on the total mass of each vehicle

Table 6 Realistic assumptions for the design of Phase-II model

Vehicle routes among retailers are only considered

Demand of each retailer is known

A vehicle can serve up to a maximum length of 400 km

If a route opens up to cover a retailer, the demand transporting through the route is known

The number of vehicles required to transport products in each route are considered as an objective function
coefficient

Table 7 MOGA-II optimiser parameter setup (Reproduced with permission from Validi 2014)

Initial population DoE guided

Number of generations 250

Population size 12,500

Probability of directional cross-over 0.5

Probability of selection 0.05

Probability of mutation 0.1

DNA string mutation ratio 0.05

Random generator seed 1

Elitism Enabled

Treat constraints Penalizing objectives

Algorithm type MOGA—Generational evolution

Initial population size 50
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Table 8 Statistical summary of different DoE tables for Phase-I

Type of results in Phase-I
of MOGA-II optimiser

Number of real
feasible results

CO2 emission (kg) Cost (e)

Min Max Min Max

Design table 12,500 26,689 63,164 2,487,644 2,671,661

Realistic results table 5540 26,689 45,179 2,487,644 2,671,149

Refined realistic results
table

412 26,689 45,179 2,487,644 2,671,149

Selected results table 20 26,689 37,632 2,487,644 2,529,290
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Fig. 2 Phase-I convergence for MOGA-II optimiser with reference to generations. a CO2 emission. b Costs

MOGA-II optimiser’s performance is analysed using convergence plots (Fig. 2a, b).
MOGA-II starts converging with mild fluctuations after 65 generations. The solution for
CO2 emissions converges in a steady manner as compared with costs.

The optimiser generates a feasible space of solutions guided by the DoE tables. Figure 3a,
b illustrates the characteristics plot of CO2 versus costs on the realistic result tables. In these
plots colours and diameters of the bubbles are related to the objective functions of the model.
In Fig. 3a F2 values refer to costs, whereas in Fig. 3b F1 values refer to CO2 emission. The
colour schemes of the plots indicate the feasible solutions, infeasible solutions and solutions
with errors. These colour schemes are illustrated in the legends of the plots. Further, the
plots contain unique identity (ID) numbers in green colours. The red coloured bubbles in the
plots are not realistic in nature as these solutions involve high CO2 emission and high costs.
Therefore, selection of alternative solutions is confined within the blue coloured optimum
realistic solutions of Fig. 3.

In order to evaluate the realistic results, 20 out of the 5540 realistic solutions are selected
guided by box-whiskers. This selection refers to the results table represented by the 4-D
bubble plots in Fig. 3a, b. The red coloured solutions, in the 4-D bubble plots, are not realistic
in nature as those involve high CO2 emission and high costs. Therefore, selected realistic
solutions are taken from the blue coloured bubbles for further evaluation using TOPSIS.

The sustainable bi-objective location-routing model for a three-echelon logistics network
is a strategic decision-making procedure. In such strategic decision-making processes, it is
desirable to elucidate the ranking of the set of selected feasible realistic optimal designs
according to the stakeholders’ preferences. Nine different weight matrices are considered to
compare the selected results. It is found that extreme decisionmatrices are those that represent
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Fig. 3 Phase-I solution characteristics for CO2 emission and costs. a Costs versus CO2 emission. b Costs
versus CO2 emission

Table 9 The best three results
selected by TOPSIS for
W5 � (

0.5 0.5
)
weight matrix

Rank CO2 emission (kg) Costs (e)

1st 26,689 2,487,644

2nd 27,354 2,509,288

3rd 29,354 2,507,950

a situation where the stakeholder believes minimising CO2 emissions is more important and
minimisation of costs is less important to the stakeholder, or vice versa. Therefore, using a
moderate weight matrix W5 � (

0.5 0.5
)
in TOPSIS the selected results are prioritised. 20

results out of 412 realistic results generated by MOGA-II are selected using TOPSIS and the
top three selected designs are shown in Table 9.

A routing scheme for the first ranked result is obtained (Table 10). Further, in order to
perform a test on the robustness of the model a scenario analysis (Table 11) on the closed
routes is conducted. This scenario analysis for Phase-I of the model shows the effect on the
CO2 emission and total costs if the closed routes are open considering the moderate TOPSIS
weight matrix, viz., W5 � (

0.5 0.5
)
.

Performance evaluation of MOGA-II shows that the 20 selected results lie on the Pareto
frontier (Fig. 4) that follows the Pareto optimality, and it is very efficient.

6.2 Phase-II: Results and analysis

Phase-I of the model provides information on the open and closed DCs, routes the processing
plants to the openDCs and routes the openDCs to the open retailers. The physical significance
of the Phase-II of the model is to locate the open retailer routes and serve the un-served open
retailers from Phase-I through other open retailers based on the constraints of the model.
Therefore, the results from Phase-I are utilised in Phase-II. Although the capability of the
Phase-II of the model is to provide solutions for all the selected realistic solutions, in this
article the first-ranked solution of Phase-I is used as a representative case.

The selected result fromPhase-I is the first ranked result. The correspondingCO2 emission
and costs are 26,689 kg and e2,487,644 respectively. The open DCs are DC#3 and DC#5,
and the open routes are VI2, VI3, VI4, VII1, VII5, VII6, L302, L303, L304, L305, L306, L307,
L311, L318, L321, L501, L509, L510, L512, L516, L517, L519, L520 and L522. In Phase-I the routes
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Table 10 Routing scheme in Phase-I for the top ranked three results

Result (design) Open routes Transportation
option

CO2 emission Costs

1st ranked Plant-I to: DCs 2, 3
Plant-II to: DCs 1, 4, 5, 6
Open DCs: 3, 5
DC 3 serving retailers: 02, 03, 04, 05,
06, 07, 11, 13, 18, 21

DC 5 serving retailers: 1, 9, 10, 12,
16, 17, 19, 20, 22

T2 26,689 2,487,644

2nd ranked Plant-I to: DC 2, 3, 4
Plant-II to: DC 1, 5, 6
Open DCs: 1, 3, 5
DC 1 serving retailers: 02, 08
DC 3 serving retailers: 03, 04, 05, 06,
07, 11, 18

DC 5 serving retailers: 1, 9, 12, 16,
17, 20

T3 27,354 2,509,288

3rd ranked Plant-I to: DCs 1, 2, 3, 4
Plant-II to: DCs 5, 6
Open DCs: 1, 3, 5
DC 1 serving retailers: 01, 02, 03, 19
DC 3 serving retailers: 05, 07, 08, 09,
10, 11, 20, 21, 22

DC 5 serving retailers: 06, 12

T3 29,354 2,507,950

connecting DC #3 to the retailers 02, 03, 04, 05, 06, 07, 11, 18 and 21 and DC #5 to the
retailers 01, 09, 10, 12, 16, 17, 19, 20 and 22 are served. Therefore, retailers 08, 13, 14 and
15 are left un-served. The MOGA-II optimiser is again executed to solve the Phase-II of the
model with 250 generations and 50 different results on DoE table. A statistical summary for
Phase-II is elucidated in Table 12.

A feasible space of solutions guided by the DoE tables is obtained (Fig. 5a, b) illustrating
linear relationships between CO2 emission and costs. The objective functions of the model
solved in Phase-II do not consider plants and DCs as they were already covered in Phase-I.
Therefore, the fixed and variable costs of operating plant and DCs and the CO2 emissions
from transportation (plants to DCs) are not considered in these objective functions. The
feasible and optimal results are chosen from the blue coloured bubbles of Fig. 5 guided by a
set of history diagrams and box-whisker plots.

A total of 20 selected results are prioritised by TOPSIS using weight matrix W5 �(
0.5 0.5

)
, and the top three are picked for further analysis. These three results cover the

rest of the retailers. Phase-II of the solution approach is designed to find the optimal realistic
designs for serving the following un-served retailers from Phase-I, viz. retailers #08, 13,
14 and 15. Considering these three results, open routes among retailers are identified along
with the type of the vehicles used for transportation and their corresponding costs and CO2

emission (Table 13).

6.3 Final results

The final result is a combination of the Phase-I and Phase-II results. Table 14 presents
the sustainable location-routing plan while Table 15 shows the number of vehicles and the
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Table 11 Scenario analysis for the first ranked result from Phase-I

All routes CO2 emission if route opens Costs if route opens

Processing plants to DCs

Plant-I

DC 1 1836 1296

DC 2 –

DC 3 – –

DC 4 7236 5226

DC 5 2585 1927

DC 6 4422 3216

Plant-II

DC 1 – –

DC 2 6834 5025

DC 3 13,534 9514

DC 4

DC 5 – –

DC 6 – –

DCs to retailers

DC 3

Retailer 1 92 56

Retailer 2 – –

Retailer 3 – –

Retailer 4 – –

Retailer 5 – –

Retailer 6 – –

Retailer 7 – –

Retailer 8 87 61

Retailer 9 40 28

Retailer 10 65 48

Retailer 11 – –

Retailer 12 28 21

Retailer 13

Retailer 14 435 291

Retailer 15 163 105

Retailer 16 226 142

Retailer 17 121 72

Retailer 18 – –

Retailer 19 48 48

Retailer 20 130 100

Retailer 21 – –

Retailer 22 228 168

DC 5

Retailer 1 – –

Retailer 2 216 152

123



210 Ann Oper Res (2020) 290:191–222

Table 11 continued

All routes CO2 emission if route opens Costs if route opens

Retailer 3 140 98

Retailer 4 108 79

Retailer 5 44 26

Retailer 6 56 37

Retailer 7 34 24

Retailer 8 96 68

Retailer 9 – –

Retailer 10 – –

Retailer 11 40 33

Retailer 12 – –

Retailer 13 173 122

Retailer 14 501 354

Retailer 15 157 115

Retailer 16 – –

Retailer 17 – –

Retailer 18 90 55

Retailer 19 – –

Retailer 20 – –

Retailer 21 336 204

Retailer 22 – –

Fig. 4 Pareto optimal frontier for selected results in Phase-I
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Table 12 Statistical summary of different DoE tables for Phase-II

Result types for Phase-II
of MOGA-II optimiser

Number of results CO2 emission (kg) Costs (e)

Min Max Min Max

Results table 12,500 988 3622 701 2515

Realistic results table 3499 988 1778 701 1245

Refined realistic results
table

399 988 1778 701 1245

Selected results table 20 988 1514 701 1031

Fig. 5 Phase-II solution characteristics for CO2 emission and costs. a Costs versus CO2 emission. b Costs
versus CO2 emission

Table 13 Analysis of the TOPSIS-prioritised designs in Phase-II

Results Open routes Vehicle type CO2 emission (kg) Costs (e)

1st ranked O0608, O1613,
O1714, O1415

T2 988 701

2 ranked O0608, O1613,
O1315, O1714

T3 1036 722

3 ranked O0408, O1613,
O1714, O1415

T3 1058 755

transported quantities in each open route for the first ranked result from Phase-I which was
solved in Phase-II.

It is noted that the selected 20 different optimal and feasible design IDs for Phase-II of
the integrated model (as shown in Table 12) lie on the Pareto front (Fig. 6).

The selected 20 different optimal and feasible results (designs) for Phase-II of the inte-
gratedmodel lie on the Pareto front (Fig. 6). The realistic optimum routes from the processing
plants, through DCs, to the retailers are mapped in Fig. 7. Figure 7 is an illustrative example
of the final results for the proposed sustainable three-echelon bi-objective location-routing
model for the demand side of the supply chain.
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Table 14 The sustainable location-routing plan

Phase-I Phase-II CO2 emission Costs

Open routes Vehicle type Open routes Vehicle type

Plant-I to: DC 2 and DC 3
Plant-II to: DC 1, DC 4, DC 5
and DC 6

Open DCs: DC 3 and DC 5
DC 3 serving retailers: 02, 03,
04, 05, 06, 07, 11, 13, 18
and 21

DC 5 serving retailers: 01, 09,
10, 16, 17, 19, 20 and 22

T2 Retailer 06 to
retailer 08

Retailer 16 to
retailer 13

Retailer 17 to
retailer 14

Retailer 14 to
retailer 15

T2 27,677 2,488,345

7 Managerial implications

The supply chain distribution system consists of processing plants, DCs and retailers. The
considered case is representative of many other real-world logistics networks with interme-
diate DCs between production facilities and retailers. With the help of this three-echelon
bi-objective AHP-integrated location-routing model logistics managers will be able to allo-
cate DCs to the plants and retailers to DCs, and routes the vehicles from plants to DCs, DCs
to retailers and retailers to retailers. By using the model and its solution approach logistics
managers can identify open and closed facilities and the optimised routing pattern through-
out the network. The optimised routing pattern provides two advantages to managers while
satisfying the demand at each facility and total transportation costs, viz. minimisation of (a)
CO2 emissions from transportation, and (b) total costs of operating facilities. The logistics
managers can utilise the benefits from this model as it captures several real-world factors
that organisations find difficult to reconcile. The proposed model bridges the gap between
the existing distribution solutions and the environmental impact of distribution. The model
considers capacities of the processing plants, DCs, retailers and the routes connecting them
and allocates plants to DCs, DCs to retailers and retailer to retailers suitably. The routing
of the vehicles serves the demand-side of the SC and simultaneously minimises the CO2

emissions from the vehicles during transportation. Both the fixed and variable costs have
been optimised. Further, the model eliminates organisational estimation from contrasting
objectives (i.e. cost versus environmental impact). The sustainable model has been designed
to be robust with an ability for logistics managers to take immediate decisions by opening
alternative closed feasible routes during SC disruptions.

8 Conclusions

From a practical viewpoint, sustainable business development has become the norm for gen-
eral organisational development. Such organisational activity is generally driven by necessity
rather than for altruistic reasons. Such developments are generally driven by a combination
of dictate (e.g. legislative rules and polluter pay principles), competitive pressures (e.g. con-
sumers and competitors) and for identified efficiencies (e.g. reduced cost of operations). This
article contributes to this growing sustainable business development domain through the for-
mulation of a sustainable location-routing solution approach for a three-echelon logistics
network. More specifically, an innovative sustainable integrated bi-objective 0–1 mixed-
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Table 15 Transported quantities and the number of vehicles in open routes

Open routes Quantity shipped Number of vehicles

Plants to DCs

Plant-I

DC 2 800,000 67

DC 3 1,000,000 67

DC 4 1,000,000 67

Plant-II

DC 1 1,000,000 54

DC 5 700,000 47

DC 6 1,000,000 67

DCs to retailers

DC 3

Retailer 02 25,000 2

Retailer 03 19,000 2

Retailer 04 9000 1

Retailer 05 14,000 1

Retailer 06 14,500+9000 2

Retailer 07 10,000 1

Retailer 11 7000 1

Retailer 18 7000 1

Retailer 21 182,000 13

DC 5

Retailer 01 25,000 2

Retailer 09 21,000 2

Retailer 10 9000 1

Retailer 12 11,000 1

Retailer 16 16,000+12,000 2

Retailer 17 13,000+35,000+7,000 4

Retailer 19 350,000 24

Retailer 20 138,000 10

Retailer 21 177,000 12

Retailers connections Retailer 06 to retailer 08

Retailer 16 to retailer 13

Retailer 17 to retailer 14 to retailer 15

Total CO2 emission (kg) 26,689+988�27,677

Total Costs (e) 2,487,644+701�2,488,345

integer programmingmethod has been presented based for the three-echelon dairy processing
logistics network. The implemented solution approach consists of a DoE guided efficient
genetic algorithm based meta-heuristic with TOPSIS being used for the purpose of ranking
sets of selected results. The solution approach has been developed to allow decision makers
to develop routing plans based on varying organisational strategies. For example, decision
makers can input into themodel their own organisational preferences in terms of the influence
of costs with respect to environmental performance. Organisations that face strong environ-
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Fig. 6 Pareto optimal front for selected results in Phase-II
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Fig. 7 Schematic representation of the sustainable location-routing pattern

mental influences (e.g. consumer pressure, legislation, etc.) can place a heavier weight on
this factor through AHP in the model. Likewise, an organisation that favours cost or even
a more balanced approach can influence these in similar fashions. Each setup of the model
will provide a set of results that are attuned to the organisations strategic preferences.
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The model presented in this paper has been specifically tested in the case of the three-
echelon dairy logistics network. Although this model has been illustrated in this way, the
underlying DoE-guided unique solution approach and the analysis procedure do not have any
geographical nor specific structural limitations in terms of the number of entities in each of the
three echelons (e.g. processing plants, DCs, retailers). In short, the sustainable bi-objective
three-echelon location-routing model, its solution approach and analysis procedure can be
implemented to any three-echelon logistics network.

8.1 Future scope of research

The presented model clearly presents a novel procedure for evaluating the bi-objectives,
viz. cost and environmental impact associated with CO2 emissions for logistics distri-
bution system. Although the model is innovative in nature and extends the current LRP
domain, there are a number of extensions which would add additional value. In the first
instance a fourth echelon to the model, incorporating grocery shops/super markets would
be a useful extension to the current presented model. Furthermore, an extension to the cur-
rent representation of environmental impact as CO2 emissions would provide for a more
comprehensive depiction. Such an extended representation could include the introduction
of carbon taxes, carbon caps and trading and carbon offsets in the proposed model using
appropriate objective functions. In addition, collaborative partnership among the multiple
processing plants, distribution centres and retailers also provides opportunity for future
research. The proposed model does not currently consider variability of demand under
dynamic conditions. The variability in demand could possibly have a significant effect on
the selection of the type of vehicle based on capacity. Concerns over the NP-hardness of
the current model limited the inclusion of demand variability in the proposed methodology,
but would be a useful area for further research. Inclusion of uncertainty issues can also be
another area for future research directions. Uncertain issues like catastrophes can be used
in the dynamic model to detect the vulnerability of individual nodes (i.e., open and closed
routes).
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Table 16 Locations of the plants, DCs and retailers (Validi 2014)

SC elements Geographical locations

Plants (2 numbers) Drogheda, Ballitore

Distribution Centres (6 numbers) Dundalk, Drogheda, Dublin City, Tullamore, Bray, Waterford

Customers (22 numbers) Drogheda, Dundalk, Navan, Tullamore, Naas, Newbridge, Leixlip,
Port Laoise, Bray, Arklow, Wicklow, Greystones, Clonmel,
Waterford, Tramore, Kilkenny, Wexford, Ennoscorthy, Dublin
City, Dun Laogharie/Rathdawn, Fingal, South Dublin

Table 17 Costs for operating plants (Validi 2014)

Plants

Plant-I (Drogheda) Plant-II (Ballitore)

Fixed costs (e) 1500 2000

Variable costs per unit (vs ) (e) 0.20 0.24

Table 18 Costs for distribution centres (Validi 2014)

Distribution centres (DCs)

DC a
Dundalk

DC b
Drogheda

DC c
Dublin City

DC d
Tullamore

DC e
Bray

DC f
Waterford

Fixed costs (e) 200 250 250 250 100 250

Variable costs per unit (e)
(v j )

0.02 0.03 0.03 0.03 0.01 0.04

Table 19 Capacity of the
distribution centres (Validi 2014)

DCs Capacity (unit)

a. Dundalk 800,000

b. Drogheda 1,000,000

c. Dublin City 1,000,000

d. Tullamore 1,000,000

e. Bray 700,000

f. Waterford 1,000,000

Table 20 Speed limits and average speeds of the vehicles (Validi et al. 2014a, b, 2015; Validi 2014)

Type of road Speed limits in km/h (as per Road
Traffic Act 2004)

Average speeds (km/h)

Motorway 120 100

National primary and secondary routes
(dual carriageways included)

100 80

Regional and local roads 80 50

Built up areas (town and city) 50 30
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Table 22 Vehicle types (Validi
et al. 2014a, b, 2015; Validi 2014)

Vehicle type CO2 emission Costs

Vehicle-1 (T1) Medium Medium

Vehicle-2 (T2) Low High

Vehicle-3 (T3) High Low

Table 23 Weight matrix (Validi
et al. 2014a, b, 2015; Validi 2014)

Attributes Candidate-alternatives

T1 T2 T3 Sum

CO2
emission

0.33 0.24 0.43 1.00

Costs 0.32 0.43 0.25 1.00

Table 24 Limits of the attributes
(Validi et al. 2014a, b, 2015;
Validi 2014)

Attributes Limits of CO2 emission and cost

Min Max

CO2 emission (kg) 2 215

Costs (e) 2 150
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