Skip to main content

Advertisement

Log in

Transboundary pollution control and environmental absorption efficiency management

  • S.I.: Game theory and optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we suggest a two-player differential game model of transboundary pollution that accounts for time-dependent environmental absorption efficiency, which allows the biosphere to switch from a carbon sink to a source. We investigate the impact of negative externalities resulting from a transboundary pollution non-cooperative game wherein countries are dynamically involved. Based on a linear-quadratic specification for the instantaneous revenue function, we assess differences related to both transient path and steady state between cooperative solution, open-loop and Markov perfect Nash equilibria (MPNE). Regarding the methodological contribution of the paper, we suggest a particular structure of the conjectured value function to solve MPNE problems with multiplicative interaction between state variables in one state equation, so that third-order terms that arise in the Hamilton–Jacobi–Bellman equation are made negligible. Using a collocation procedure, we confirm the validity of the particular structure of the conjectured value function. The results suggest unexpected contrasts in terms of pollution control and environmental absorption efficiency management: (i) in the long run, an open-loop Nash equilibrium (OLNE) allows equivalent emissions to the social optimum but requires greater restoration efforts; (ii) although an MPNE is likely to end up with lower emissions and greater restoration efforts than an OLNE, it has a much greater chance of falling in the emergency area; (iii) the absence of cooperation and or precommitment becomes more costly as the initial absorption efficiency decreases; (iv) more heavily discounted MPNE strategies are less robust than OLNE to prevent irreversible switching of the biosphere from a carbon sink to a source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This prescription, which results in multiple equilibria, is confirmed by Rowat (2006), moderated by Rubio and Casino (2002) and opposed by Wirl (2007).

  2. By an application of Gronwall’s lemma to the differential inequality \( \dot{P}(t) \ge - A(t)P(t) \) which is implied by (1), one obtains, indeed, \( P(t) \ge 0, \, \forall t. \).

  3. For more details, see El Ouardighi et al. (2014).

  4. Unlike most game studies with nonlinear absorption function, our study does not use a logarithmic revenue function (Mäler et al. 2003; Kossioris et al. 2008; Dockner and Wagener 2014). Note that a logarithmic function provides quite similar results to those obtained with our quadratic function.

  5. The result depends partly on the neighborhood size. For larger sizes, a larger relative error is usually obtained.

  6. Figures 2, 3 and 4, as the final check of the validity of the local quadratic approximation, refer to a specific choice of the parameter values inside the ranges considered in Table 1, for which it was possible to find a solution of the non-linear system in **Proposition 7 that also satisfies the feasibility requirements provided in **Appendix A9. However, the robustness of our approach was also confirmed by the results obtained for other choices of the parameter values inside such ranges, for which a feasible solution was obtained.

  7. In an initial phase, we also tested the application of the method of successive approximations, using a discrete-time version of the HJB Eq. (39), and following a procedure similar to the one proposed in (Cacace et al. 2013) for another dynamic game model. However, that approach demonstrated to be much slower than the collocation method, and suffered from boundary effects, due to the need to discretize and bound all the state and control variables. A similar finding about such boundary effects was reported in (Cacace et al. 2013).

References

  • Azariadis, C., & Stachurski, J. (2005). Poverty traps. In S. Durlauf & P. Aghion (Eds.), Handbook of economic growth. Amsterdam: North-Holland.

    Google Scholar 

  • Benchekroun, H., & Chaudhuri, A. R. (2014). Transboundary pollution and clean technologies. Resource and Energy Economics,36(2), 601–619.

    Google Scholar 

  • Benchekroun, H., & Long, N. V. (2011). Game theory: Static and dynamic games. In A. A. Batabyal & P. Nijkamp (Eds.), Research tools in natural resource and environmental economics. Singapore: World Scientific Publishing.

    Google Scholar 

  • Benchekroun, H., & Martín-Herrán, G. (2016). The impact of foresight in a transboundary pollution game. European Journal of Operational Research,251(1), 300–309.

    Google Scholar 

  • Boucekkine, R., Pommeret, A., & Prieur, F. (2013). Optimal regime switching and threshold effects. Journal of Economic Dynamics and Control,37(12), 2979–2997.

    Google Scholar 

  • Cacace, S., Cristiani, E., & Falcone, M. (2013). Numerical approximation of Nash equilibria for a class of non-cooperative differential games. In L. Petrosjan & V. Mazalov (Eds.), Game theory and applications (Vol. 16). New York: Nova Publishers.

    Google Scholar 

  • Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., et al. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences,104(47), 18866–18870.

    Google Scholar 

  • Cox, P. M., Betts, R. A., Jones, C., Spall, S. A., & Totterdell, I. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature,408, 184–187.

    Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., et al. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology,7(4), 357–373.

    Google Scholar 

  • Dawid, H., Keoula, M. Y., Kopel, M., & Kort, P. M. (2015). Product innovation incentives by an incumbent firm: A dynamic analysis. Journal of Economic Behavior & Organization,117, 411–438.

    Google Scholar 

  • Dockner, E. (1985). Local stability in optimal control problems with two state variables. In G. Feichtinger (Ed.), Optimal control theory and economic analysis (Vol. 2). Amsterdam: North Holland.

    Google Scholar 

  • Dockner, E., Jørgensen, S., Long, N. V., & Sorger, G. (2000). Differential games in economics and management science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dockner, E. J., & Long, N. V. (1993). International pollution control: Cooperative versus non-cooperative strategies. Journal of Environmental Economics and Management,25(1), 13–29.

    Google Scholar 

  • Dockner, E. J., & Wagener, F. (2014). Markov perfect Nash equilibria in models with a single capital stock. Economic Theory,56(3), 585–625.

    Google Scholar 

  • Doraszelski, U. (2003). An R&D race with knowledge accumulation. RAND Journal of Economics,34(1), 19–41.

    Google Scholar 

  • El Ouardighi, F., Benchekroun, H., & Grass, D. (2014). Controlling pollution and environmental, absorption capacity. Annals of Operations Research,220(1), 111–133.

    Google Scholar 

  • El Ouardighi, F., Benchekroun, H., & Grass, D. (2015a). Self-regenerating environmental absorption efficiency and the Soylent Green scenario. Annals of Operations Research,238(1), 179–198.

    Google Scholar 

  • El Ouardighi, F., Sim, J. E., & Kim, B. (2015b). Pollution accumulation and abatement policy in a supply chain. European Journal of Operational Research,248(3), 982–996.

    Google Scholar 

  • Fudenberg, D., & Levine, D. K. (1988). Open-loop and closed-loop equilibria of dynamic games with many players. Journal of Economic Theory,44(1), 1–18.

    Google Scholar 

  • Fünfgelt, J., & Schulze, G. G. (2016). Endogenous environmental policy for small open economies with transboundary pollution. Economic Modelling,57, 294–310.

    Google Scholar 

  • Grass, D., Caulkins, J. P., Feichtinger, G., Tragler, G., & Behrens, D. A. (2008). Optimal control of nonlinear processes with applications in drugs, corruption, and terror. Heidelberg: Springer.

    Google Scholar 

  • Huang, X., He, P., & Zhang, W. (2016). A cooperative differential game of transboundary industrial pollution between two regions. Journal of Cleaner Production,120(1), 43–52.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2007). Fourth IPCC assessment report: Climate change 2007. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jaakkola, N. (2015). Green technologies and the protracted end to the age of oil: A strategic analysis. OxCarre Research Paper,99, 50.

    Google Scholar 

  • Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., et al. (2001). Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles,15(4), 891–907.

    Google Scholar 

  • Jørgensen, S., Martín-Herrán, G., & Zaccour, G. (2010). Dynamic games in the economics and management of pollution. Environmental Modelling and Assessment,15(6), 433–467.

    Google Scholar 

  • Judd, K. L. (1998). Numerical methods in economics. Cambridge: MIT Press.

    Google Scholar 

  • Kossioris, G., Plexousakis, M., Xepapadeas, A., de Zeeuw, A. J., & Mäler, K.-G. (2008). Feedback Nash equilibria for non-linear differential games in pollution control. Journal of Economic Dynamics and Control,32(4), 1312–1331.

    Google Scholar 

  • Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., et al. (2007). Saturation of the Southern ocean CO2 sink due to recent climate change. Science,316(5832), 1735–1738.

    Google Scholar 

  • Lenton, T. M., Williamson, M. S., Edwards, N. R., Marsh, R., Price, A. R., Ridgwell, A. J., et al. (2006). Millennial timescale carbon cycle and climate change in an efficient Earth system model. Climate Dynamics,26(7/8), 687–711.

    Google Scholar 

  • Li, S. (2014). A differential game of transboundary industrial pollution with emission permits trading. Journal of Optimization Theory and Applications,163(2), 642–659.

    Google Scholar 

  • Long, N. V. (1992). Pollution control: A differential game approach. Annals of Operations Research,37(1), 283–296.

    Google Scholar 

  • Long, N. V. (2010). A survey of dynamic games in economics. Singapore: World Scientific.

    Google Scholar 

  • Mäler, K.-G., Xepapadeas, A., & de Zeeuw, A. J. (2003). The economics of shallow lakes. Environmental & Resource Economics,26(4), 603–624.

    Google Scholar 

  • Piao, S. L., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., et al. (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature,451, 49–52.

    Google Scholar 

  • Rowat, C. (2006). Nonlinear strategies in a linear quadratic differential game. Journal of Economic Dynamics and Control,31(10), 3179–3202.

    Google Scholar 

  • Rubio, S., & Casino, B. (2002). A note on cooperative versus noncooperative strategies in international pollution control. Resource and Energy Economics,24(3), 251–261.

    Google Scholar 

  • Stern, N. (2006). Stern review report on the economics of climate change. London: HM Treasury.

    Google Scholar 

  • Stern, N. (2015). Why are we waiting? The logic, urgency, and promise of tackling climate change. Cambridge: MIT Press.

    Google Scholar 

  • Tahvonen, O., & Withagen, C. (1996). Optimality of irreversible pollution accumulation. Journal of Economic Dynamics and Control,20(9), 1775–1795.

    Google Scholar 

  • Van der Ploeg, F., & de Zeeuw, A. J. (1991). A differential game of international pollution control. Systems & Control Letters,17(6), 409–414.

    Google Scholar 

  • Van der Ploeg, F., & de Zeeuw, A. J. (1992). International aspects of pollution control. Environmental & Resource Economics,2(2), 117–139.

    Google Scholar 

  • Vaughan, N. E., & Lenton, T. M. (2011). A review of climate geoengineering proposals. Climatic Change,109(3–4), 745–790.

    Google Scholar 

  • Wirl, F. (2007). Do multiple Nash equilibria in Markov strategies mitigate the tragedy of the commons? Journal of Economic Dynamics and Control,31(10), 3723–3740.

    Google Scholar 

Download references

Acknowledgements

This research was supported by ESSEC Business School Research Centre (France). Giorgio Gnecco and Marcello Sanguineti are members of GNAMPA-INdAM (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni—Istituto Nazionale di Alta Matematica). The authors acknowledge very helpful comments from two anonymous referees. They also thank Hassan Benchekroun and Michèle Breton for constructive suggestions on an early draft. The usual disclaimer applies. The first author dedicates this paper to the memory of Professor Engelbert J. Dockner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad El Ouardighi.

Appendix

Appendix

A1. To determine the (non-trivial) cooperative steady state, we solve the canonical system (8)–(11) in the state-costate space. Using (6) and (7) leads to the system’s steady state in (12), \( i = 1,\;2 \). Note that since:

$$ \begin{aligned} \mathop {\lim }\limits_{t \mapsto + \infty } e^{ - rt} \eta_{1} (t)P(t) & = \mathop {\lim }\limits_{t \mapsto + \infty } \left[ { - {{r\gamma \left( {r^{2} \gamma + h} \right)e^{ - rt} } \mathord{\left/ {\vphantom {{r\gamma \left( {r^{2} \gamma + h} \right)e^{ - rt} } {4\left( {4c + \gamma^{2} } \right)}}} \right. \kern-0pt} {4\left( {4c + \gamma^{2} } \right)}}} \right] = 0 \\ \mathop {\lim }\limits_{t \mapsto + \infty } e^{ - rt} \eta_{2} (t)A(t) & = \mathop {\lim }\limits_{t \mapsto + \infty } \left[ {{{\gamma \left( {2a - r\gamma } \right)e^{ - rt} } \mathord{\left/ {\vphantom {{\gamma \left( {2a - r\gamma } \right)e^{ - rt} } 2}} \right. \kern-0pt} 2}} \right] = 0 \\ \end{aligned} $$

the cooperative steady-state solution satisfies the limiting transversality conditions. □

A2. Plugging the expressions of \( e_{i\infty } \), \( P_{\infty } \) and \( w_{i\infty } \) from (12) in the integrand of (4) and simplifying gives (13). □

A3. Writing the variables in the order \( P,A,\eta_{1} ,\eta {}_{2} \), the Jacobian matrix associated with the canonical system (8)–(11) is:

$$ J = \left[ {\begin{array}{*{20}c} { - A} & { - P} & 2 & 0 \\ { - \gamma } & 0 & 0 & 2 \\ {2c} & {\eta_{1} } & {r + A} & \gamma \\ {\eta_{1} } & 0 & P & r \\ \end{array} } \right] $$

The determinant of the Jacobian matrix is:

$$ \left| J \right| = \left( {4c + \gamma^{2} } \right)P_{\infty }^{2} + r\gamma A_{\infty } P_{\infty } = {{\left( {r^{2} \gamma + h} \right)^{2} } \mathord{\left/ {\vphantom {{\left( {r^{2} \gamma + h} \right)^{2} } {4\left( {4c + \gamma^{2} } \right)}}} \right. \kern-0pt} {4\left( {4c + \gamma^{2} } \right)}} + r\gamma \left( {2a - r\gamma } \right) $$

Using Dockner’s formula (Dockner 1985), the sum of the principal minors of \( J \) of order 2 minus the squared discount rate, denoted by \( K \), is:

$$ K = - A_{\infty } \left( {r + A_{\infty } } \right) - 4c - 2\gamma P_{\infty } = - \frac{{\left[ {2\left( {2a - r\gamma } \right)\left( {4c + \gamma^{2} } \right) + r\left( {r^{2} \gamma + h} \right)} \right]^{2} }}{{\left( {r^{2} \gamma + h} \right)^{2} }} - \frac{{\gamma h + 4c\left( {4c + \gamma^{2} - r^{2} } \right)}}{{\left( {4c + \gamma^{2} } \right)}} $$

Because \( \left| J \right| > 0 \) and \( K < 0 \), the cooperative steady state is a saddle-point. We compute:

$$ \varOmega = K^{2} - 4\left| J \right| = A_{\infty } \left( {r + A_{\infty } } \right)\left[ {A_{\infty } \left( {r + A_{\infty } } \right) + 8c} \right] + 4\gamma A_{\infty }^{2} P_{\infty } + 16c\left( {c + \gamma P_{\infty } } \right) - 16cP_{\infty }^{2} $$

The sign of \( \varOmega \) can be either negative or positive. In the first case, the steady state is a saddle-focus with transient oscillations. Otherwise, it is a saddle-node and the optimal solution monotonically converges to the steady state. □

A4. The linear approximation of the system (8)–(11) around its steady state is:

$$ \begin{aligned} \dot{\eta }_{1} &= 2cP + \eta_{1} \left( {r + A_{\infty } } \right) + \eta_{1\infty } \left( {A - A_{\infty } } \right) + \gamma \eta_{2} \\ \dot{\eta }_{2} & = r\eta_{2} + \eta_{1\infty } P + P_{\infty } \left( {\eta_{1} - \eta_{1\infty } } \right) \\ \dot{P} & = 2\left( {a + \eta_{1} } \right) - P_{\infty } \left( {A - A_{\infty } } \right) - A_{\infty } P \\ \dot{A} & = 2\eta_{2} - \gamma P \\ \end{aligned} $$

The four eigenvalues associated with the Jacobian matrix of the canonical system are:

$$ \begin{aligned} &{}_{1}^{3} \chi_{2}^{4} = \frac{r}{2} \pm \sqrt {\frac{{r^{2} }}{4} - \frac{K}{2} \pm \frac{1}{2}\sqrt {K^{2} - 4\left| J \right|} } \\ &\quad = \frac{r}{2} \pm \sqrt {\frac{{\left( {r + A_{\infty } } \right)^{2} + A_{\infty }^{2} }}{4} + \gamma P_{\infty } + \frac{8ac}{{r^{2} \gamma^{2} }} \pm \sqrt {\left( {A_{\infty }^{2} + \frac{8ac}{{r^{2} \gamma^{2} }}} \right)\left( {\gamma P_{\infty } + \frac{8ac}{{r^{2} \gamma^{2} }}} \right) + \left[ {\frac{{\left( {r + A_{\infty } } \right)^{2} A_{\infty } }}{4} + \frac{8ac}{{r\gamma^{2} }}} \right]A_{\infty } - 4cP_{\infty }^{2} } } \\ \end{aligned} $$

where \( A_{\infty } \) and \( P_{\infty } \) are given in (12). As expected, two eigenvalues, \( \chi_{1} \) and \( \chi_{3} \), have negative real part and two have positive real part, \( \chi_{2} \) and \( \chi_{4} \). Choosing the roots with negative real part for convergence, the time paths of the costate and state variables are written as:

$$ \begin{aligned} \eta_{1} (t) & = \eta_{1\infty } + B_{1} e^{{\chi_{1} t}} + B_{2} e^{{\chi_{3} t}} \\ \eta_{2} (t) & = \eta_{2\infty } + B_{3} e^{{\chi_{1} t}} + B_{4} e^{{\chi_{3} t}} \\ P(t) & = P_{\infty } + B_{5} e^{{\chi_{1} t}} + B_{6} e^{{\chi_{3} t}} \\ A(t) & = A_{\infty } + B_{7} e^{{\chi_{1} t}} + B_{8} e^{{\chi_{3} t}} \\ \end{aligned} $$

These equations involve 10 unknowns (\( B_{1} , \ldots ,B_{8} \),\( \eta_{1} (0),\;\eta_{2} (0) \)) that can be solved with the 10 following equations, which are drawn from the above expressions and the linearized versions of (8)–(11):

$$ \begin{aligned} \eta_{1} \left( 0 \right) & = \eta_{1\infty } + B_{1} + B_{2} \\ \eta_{2} \left( 0 \right) & = \eta_{2\infty } + B_{3} + B_{4} \\ \end{aligned} $$
$$ \begin{aligned} P_{0} & = P_{\infty } + B_{5} + B_{6} \\ A_{0} & = A_{\infty } + B_{7} + B_{8} \\ \end{aligned} $$
$$ \begin{aligned} \dot{\eta }_{1} \left( 0 \right) & = 2cP_{0} + \eta_{1} \left( 0 \right)\left( {r + A_{\infty } } \right) + \eta_{1\infty } \left( {A_{0} - A_{\infty } } \right) + \gamma \eta_{2} \left( 0 \right) = B_{1} \chi_{1} + B_{2} \chi_{3} \\ \dot{\eta }_{2} \left( 0 \right) & = r\eta_{2} \left( 0 \right) + \eta_{1\infty } \left( {P_{0} - P_{\infty } } \right) + \eta_{1} \left( 0 \right)P_{\infty } = B_{3} \chi_{1} + B_{4} \chi_{3} \\ \dot{P}\left( 0 \right) & = 2\left( {a + \eta_{1} \left( 0 \right)} \right) - P_{\infty } \left( {A_{0} - A_{\infty } } \right) - A_{\infty } P_{0} = B_{5} \chi_{1} + B_{6} \chi_{3} \\ \dot{A}\left( 0 \right) & = 2\eta_{2} \left( 0 \right) - \gamma P_{0} = B_{7} \chi_{1} + B_{8} \chi_{3} \\ & 2\left( {B_{3} \chi_{1} + B_{4} \chi_{3} } \right) - \gamma \left( {B_{5} \chi_{1} + B_{6} \chi_{3} } \right) = B_{7} \chi_{1}^{2} + B_{8} \chi_{3}^{2} \end{aligned} $$
$$ 2\left( {B_{1} \chi_{1} + B_{2} \chi_{3} } \right) - A_{\infty } \left( {B_{5} \chi_{1} + B_{6} \chi_{3} } \right) - P_{\infty } \left( {B_{7} \chi_{1} + B_{8} \chi_{3} } \right) = B_{5} \chi_{1}^{2} + B_{6} \chi_{3}^{2} $$

This system of equations can be solved numerically to determine real-valued solutions. Finally, using (6)–(7) yields (14)–(17). □

A5. To compute the (non-trivial) OLNE steady state, we solve the system in the state-costate space (21)–(24). Using (19) and (20) leads us to derive the steady state in (25), \( i = 1,\;2 \). Note that since:

$$ \begin{aligned} \mathop {\lim }\limits_{t \mapsto + \infty } e^{ - rt} \lambda_{1} (t)P(t) & = \mathop {\lim }\limits_{t \mapsto + \infty } \left[ { - {{r\gamma \left( {r^{2} \gamma + k} \right)e^{ - rt} } \mathord{\left/ {\vphantom {{r\gamma \left( {r^{2} \gamma + k} \right)e^{ - rt} } {4\left( {2c + \gamma^{2} } \right)}}} \right. \kern-0pt} {4\left( {2c + \gamma^{2} } \right)}}} \right] = 0 \\ \mathop {\lim }\limits_{t \mapsto + \infty } e^{ - rt} \lambda_{2} (t)A(t) & = \mathop {\lim }\limits_{t \mapsto + \infty } \left[ {{{\gamma \left( {2a - r\gamma } \right)e^{ - rt} } \mathord{\left/ {\vphantom {{\gamma \left( {2a - r\gamma } \right)e^{ - rt} } 2}} \right. \kern-0pt} 2}} \right] = 0 \\ \end{aligned} $$

the OLNE steady-state solution satisfies the limiting transversality conditions. □

A6. Plugging the expressions of \( e_{i\infty }^{on} \), \( P_{\infty }^{on} \) and \( w_{i\infty }^{on} \) from (25) in the integrand of (3) and simplifying gives (26). □

A7. Writing the variables in the order \( P,A,\lambda_{1} ,\lambda {}_{2} \), the Jacobian matrix associated with the canonical system (21)–(24) is:

$$ J^{on} = \left[ {\begin{array}{*{20}c} { - A} & { - P} & 2 & 0 \\ { - \gamma } & 0 & 0 & 2 \\ c & {\lambda_{1} } & {r + A} & \gamma \\ {\lambda_{1} } & 0 & P & r \\ \end{array} } \right] $$

The determinant of \( J^{on} \) is:

$$ \left| {J^{on} } \right| = \left( {2c + \gamma^{2} } \right)P_{\infty }^{on2} + r\gamma A_{\infty }^{on} P_{\infty }^{on} = \frac{{\left( {r^{2} \gamma + k} \right)^{2} }}{{4\left( {2c + \gamma^{2} } \right)}} + r\gamma \left( {2a - r\gamma } \right) $$

Further, the sum of the principal minors of \( J^{on} \) of order 2 minus the squared discount rate is:

$$ K^{on} = - A_{\infty }^{on} \left( {r + A_{\infty }^{on} } \right) - 2c - 2\gamma P_{\infty }^{on} = - \frac{{2\left( {2a - r\gamma } \right)\left( {2c + \gamma^{2} } \right)}}{{r^{2} \gamma + k}}\left[ {r + \frac{{2\left( {2a - r\gamma } \right)\left( {2c + \gamma^{2} } \right)}}{{r^{2} \gamma + k}}} \right] - \frac{{\gamma \left( {r^{2} \gamma + k} \right)}}{{\left( {2c + \gamma^{2} } \right)}} - 2c $$

which is strictly negative. Hence, the OLNE steady state is a saddle-point. We now compute:\( \varOmega^{on} = \left( {K^{on} } \right)^{2} - 4\left| {J^{on} } \right| = A_{\infty }^{on2} \left[ {\left( {r + A_{\infty }^{on} } \right)^{2} + 4\gamma P_{\infty }^{on} } \right] + \frac{16ac}{{r^{2} \gamma^{2} }}\left[ {A_{\infty }^{on} \left( {r + A_{\infty }^{on} } \right) + \frac{4ac}{{r^{2} \gamma^{2} }}} \right] + 8c\left( {\frac{4a}{{r^{2} \gamma }} - P_{\infty }^{on} } \right)P_{\infty }^{on} \) where \( A_{\infty }^{on} \) and \( P_{\infty }^{on} \) are given in (25). The sign of this expression, which is unclear, determines whether the saddle path converges monotonically or oscillates towards the steady state. □

A8. The linear approximation of system (21)–(24) around its steady state is:

$$ \begin{aligned} \dot{\lambda }_{1} & = cP + \lambda_{1} \left( {r + A_{\infty } } \right) + \lambda_{1\infty } \left( {A - A_{\infty } } \right) + \gamma \lambda_{2} \\ \dot{\lambda }_{2} & = r\lambda_{2} + \lambda_{1\infty } P + P_{\infty } \left( {\lambda_{1} - \lambda_{1\infty } } \right) \\ \dot{P} & = 2\left( {a + \lambda_{1} } \right) - P_{\infty } \left( {A - A_{\infty } } \right) - A_{\infty } P \\ \dot{A} & = 2\lambda_{2} - \gamma P \\ \end{aligned} $$

The eigenvalues associated with the Jacobian of the non-cooperative canonical system are:

$$\begin{aligned} &{}_{1}^{3} \xi_{2}^{4} = {r \mathord{\left/ {\vphantom {r 2}} \right. \kern-0pt} 2} \pm \\ &\quad \sqrt {{{\left[ {\left( {r + A_{\infty }^{on} } \right)^{2} + \left( {A_{\infty }^{on} } \right)^{2} } \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {r + A_{\infty }^{on} } \right)^{2} + \left( {A_{\infty }^{on} } \right)^{2} } \right]} 4}} \right. \kern-0pt} 4} + \gamma P_{\infty }^{on} + {{4ac} \mathord{\left/ {\vphantom {{4ac} {r^{2} \gamma^{2} }}} \right. \kern-0pt} {r^{2} \gamma^{2} }} \pm \sqrt {\left[ {{{A_{\infty }^{on} \left( {r + A_{\infty }^{on} } \right)} \mathord{\left/ {\vphantom {{A_{\infty }^{on} \left( {r + A_{\infty }^{on} } \right)} 2}} \right. \kern-0pt} 2} + {{2ac} \mathord{\left/ {\vphantom {{2ac} {r^{2} \gamma^{2} }}} \right. \kern-0pt} {r^{2} \gamma^{2} }} + \gamma P_{\infty }^{on} } \right]^{2} - \left( {2c + \gamma^{2} } \right)\left( {P_{\infty }^{on} } \right)^{2} - 4a} } \end{aligned}$$

where \( A_{\infty }^{on} \) and \( P_{\infty }^{on} \) are given in (25). Choosing roots with negative real part, \( \xi_{1} \) and \( \xi_{3} \), and using similar methods as in the cooperative case leads us to find \( D_{1} , \ldots ,D_{8} \), and \( \lambda_{1} (0),\lambda_{2} (0) \). □

A9. Assuming a second order Taylor-polynomial approximation of the value function centered on \( \left( {A_{\infty }^{mp} ,P_{\infty }^{mp} } \right) \), i.e.,

$$ V = \alpha_{1} + \alpha_{2} \left( {A - A_{\infty }^{mp} } \right) + \alpha_{3} \left( {P - P_{\infty }^{mp} } \right) + \alpha_{4} \left( {A - A_{\infty }^{mp} } \right)^{2} + \alpha_{5} \left( {P - P_{\infty }^{mp} } \right)^{2} + \alpha_{6} \left( {A - A_{\infty }^{mp} } \right)\left( {P - P_{\infty }^{mp} } \right) $$

we obtain constant second order derivatives for \( V \). We assume that its unknown coefficients \( \alpha_{1} ,..,\alpha_{6} \) and the problem parameters are such that the steady state is positive. Plugging (37) and (38) in (1)–(2), respectively, gives the MPNE controlled system, that is:

$$ \begin{aligned} \dot{P} & = 2\left[ {a + \alpha_{3} + 2\alpha_{5} \left( {P - P_{\infty }^{mp} } \right) + \alpha_{6} \left( {A - A_{\infty }^{mp} } \right)} \right] - AP \\ \dot{A} & = 2\left[ {\alpha_{2} + 2\alpha_{4} \left( {A - A_{\infty }^{mp} } \right) + \alpha_{6} \left( {P - P_{\infty }^{mp} } \right)} \right] - \gamma P \\ \end{aligned} $$

The resulting approximation of the HJB Eq. (35) is:

$$ \begin{aligned} & r\left[ {\alpha_{1} + \alpha_{2} \left( {A - A_{\infty }^{mp} } \right) + \alpha_{3} \left( {P - P_{\infty }^{mp} } \right) + \alpha_{4} \left( {A - A_{\infty }^{mp} } \right)^{2} + \alpha_{5} \left( {P - P_{\infty }^{mp} } \right)^{2} + \alpha_{6} \left( {A - A_{\infty }^{mp} } \right)\left( {P - P_{\infty }^{mp} } \right)} \right] \\ & = \left[ {\alpha_{3} + 2\alpha_{5} \left( {P - P_{\infty }^{mp} } \right) + \alpha_{6} \left( {A - A_{\infty }^{mp} } \right)} \right]\left\{ {\frac{3}{2}\left[ {\alpha_{3} + 2\alpha_{5} \left( {P - P_{\infty }^{mp} } \right) + \alpha_{6} \left( {A - A_{\infty }^{mp} } \right)} \right] - AP + 2a} \right\} \\ & \quad + \left[ {\alpha_{2} + 2\alpha_{4} \left( {A - A_{\infty }^{mp} } \right) + \alpha_{6} \left( {P - P_{\infty }^{mp} } \right)} \right]\left\{ {3{{\left[ {\alpha_{2} + 2\alpha_{4} \left( {A - A_{\infty }^{mp} } \right) + \alpha_{6} \left( {P - P_{\infty }^{mp} } \right)} \right]} \mathord{\left/ {\vphantom {{\left[ {\alpha_{2} + 2\alpha_{4} \left( {A - A_{\infty }^{mp} } \right) + \alpha_{6} \left( {P - P_{\infty }^{mp} } \right)} \right]} 2}} \right. \kern-0pt} 2} - \gamma P} \right\}\\ &\quad- {{cP^{2} } \mathord{\left/ {\vphantom {{cP^{2} } 2}} \right. \kern-0pt} 2} + {{a^{2} } \mathord{\left/ {\vphantom {{a^{2} } 2}} \right. \kern-0pt} 2} \\ \end{aligned} $$

Rearranging its terms, this can be expressed as a third-order polynomial in \( \left( {A - A_{\infty }^{mp} } \right) \) and \( \left( {P - P_{\infty }^{mp} } \right) \). Then, the unknown parameters of the approximation of the value function are found by setting to 0 the coefficients, up to the second order, of such a third-order polynomial (its third-order terms are locally negligible, by construction). To do so, one solves the system:

$$ \begin{aligned} r\alpha_{1} - 3\alpha_{2}^{2} /2 - \alpha_{3} \left( {3\alpha_{3} /2 + 2a} \right) - a^{2} /2 + \gamma \alpha_{2} P_{\infty }^{mp} + \alpha_{3} A_{\infty }^{mp} P_{\infty }^{mp} + c\left( {P_{\infty }^{mp} } \right)^{2} /2 = 0 \hfill \\ \alpha_{2} \left( {\gamma - 3\alpha_{6} } \right) + r\alpha_{3} - 2\alpha_{5} \left( {3\alpha_{3} + 2a} \right) + \alpha_{3} A_{\infty }^{mp} + \left( {c + \gamma \alpha_{6} } \right)P_{\infty }^{mp} + 2\alpha_{5} A_{\infty }^{mp} P_{\infty }^{mp} = 0 \hfill \\ {c \mathord{\left/ {\vphantom {c 2}} \right. \kern-0pt} 2} + \alpha_{5} \left( {r - 6\alpha_{5} + 2A_{\infty }^{mp} } \right) + \alpha_{6} \left( {\gamma - {{3\alpha_{6} } \mathord{\left/ {\vphantom {{3\alpha_{6} } 2}} \right. \kern-0pt} 2}} \right) = 0 \hfill \\ \alpha_{2} \left( {r - 6\alpha_{4} } \right) - \alpha_{6} \left( {3\alpha_{3} + 2a} \right) + \left( {\alpha_{3} + 2\gamma \alpha_{4} } \right)P_{\infty }^{mp} + \alpha_{6} A_{\infty }^{mp} P_{\infty }^{mp} = 0 \hfill \\ \alpha_{3} + 2\gamma \alpha_{4} - 6\alpha_{6} \left( {\alpha_{4} + \alpha_{5} } \right) + \alpha_{6} \left( {r + A_{\infty }^{mp} } \right) + 2\alpha_{5} P_{\infty }^{mp} = 0 \hfill \\ \alpha_{4} \left( {r - 6\alpha_{4} } \right) - \alpha_{6} \left( {3\alpha_{6} /2 - P_{\infty }^{mp} } \right) = 0 \hfill \\ \end{aligned} $$

We have 6 equations in 8 unknowns \( \alpha_{1} , \ldots ,\alpha_{6} ,A_{\infty }^{mp} ,P_{\infty }^{mp} \). To get two other equations, we use (37)–(38), imposing a steady state solution for the MPNE:

$$ 2\left( {a + \alpha_{3} } \right) - A_{\infty }^{mp} P_{\infty }^{mp} = 0 $$
$$ 2\alpha_{2} - \gamma P_{\infty }^{mp} = 0 $$

Finally, we obtain a non-linear system of 8 equations in 8 unknowns, which in general might be solved numerically, but not analytically. When it can be solved, its solution provides:

$$ \left[ {P_{\infty }^{mp} ,A_{\infty }^{mp} ,e_{\infty }^{mp} ,w_{\infty }^{mp} } \right]^{T} = \left[ {2\alpha_{2} /\gamma ,\gamma \left( {a + \alpha_{3} } \right)/\alpha_{2} ,a + \alpha_{3} ,\alpha_{2} } \right]^{T} $$

Clearly, the necessary conditions for the positivity of the steady state values and the positivity of each player’s instantaneous revenue are \( \alpha_{2} > 0 \) and \( \alpha_{3} > - a \). In general, the non-linear system above may admit multiple solutions (or even no solutions at all). To solve the system, we use the Matlab function fsolve, using default options, and starting with a random initialization of the 8 unknowns, initially chosen as realizations of independent and uniformly distributed random variables on the interval \( [0,10] \). To check whether a numerically found solution of the non-linear system above is likely also a steady state solution for the MPNE, we perform the following additional checks:

  1. (1)

    Positivity of the state and control variables, and positivity of each player’s instantaneous revenue: \( \alpha_{2} > 0 \) and \( - a < \alpha_{3} < 0 \);

  2. (2)

    Global asymptotical stability for the linearized dynamical system: the eigenvalues of the Jacobian matrix (40) should have negative real parts;

  3. (3)

    Comparison between the value of \( \alpha_{1} \) assumed in \( \left( {A_{\infty }^{mp} ,P_{\infty }^{mp} } \right) \) by the local quadratic approximation of the value function, and the one obtained by replacing the resulting steady state values in (3), the latter being equal to \( \left[ {e_{\infty }^{mp} \left( {a - e_{\infty }^{mp} /2} \right) - c\left( {P_{\infty }^{mp} } \right)^{2} /2 - \left( {w_{\infty }^{mp} } \right)^{2} /2} \right]/r \): in the case where \( P_{\infty }^{mp} ,A_{\infty }^{mp} ,e_{\infty }^{mp} ,w_{\infty }^{mp} \) is really an approximation of a steady state solution for the MPNE, and the local quadratic approximation is a good approximation of the value function, then the two values should be approximately the same. In practice, we check whether the relative error of the first expression with respect to the second one is smaller than 0.01.

In the case where multiple solutions are obtained that satisfy the requirements (1), (2), and (3) above, one can choose the one associated with the largest value of \( \left.\left[ {e_{\infty }^{mp} \left( {a - e_{\infty }^{mp} /2} \right) - c\left( {P_{\infty }^{mp} } \right)^{2} /2 - \left( {w_{\infty }^{mp} } \right)^{2} /2} \right]\right/r \). □

A10. To perform an additional check for the validity of the local quadratic approximation of the value function, we also exploit an alternative method to approximate the HJB equation and then we check whether the two obtained approximations are similar. As the alternative approximation method,Footnote 7 we use the collocation method for PDEs, applied to the HJB Eq. (35), on a small neighborhood of the steady state solution determined by the local quadratic approximation (in our implementation, we chose the box \( \left[ {0.75A_{\infty }^{mp} ,1.25A_{\infty }^{mp} } \right] \times \left[ {0.75P_{\infty }^{mp} ,1.25P_{\infty }^{mp} } \right] \) as such a neighborhood). The collocation method approximates locally on that neighborhood the unknown value function as a high-order polynomial in \( \left( {A - A_{\infty }^{mp} } \right) \) and \( \left( {P - P_{\infty }^{mp} } \right) \), with unknown coefficients. These are determined by imposing that the HJB Eq. (35) holds exactly on a finite number of fixed points (“collocation points”) inside the neighborhood (or equivalently, that its Bellman residual error is 0 on such points). The number of these points is equal to the number of unknown coefficients of the high-order polynomial. In this way, to find the values of the coefficients, one is reduced to solving a non-linear system (due to the non-linearity of the HJB equation), where each equation is associated with one collocation point. For the implementation of the collocation method, we follow the procedure proposed in (Doraszelski 2003), that is:

  • We construct a polynomial approximation of order \( K = 12 \), using a tensor-product basis of univariate Chebyshev polynomials. This choice of the approximation order is guided by the need to find a suitable trade-off between the accuracy of the approximation, and the computational effort needed to find it (as in the cited reference, the number of coefficients in the expansion is \( (K + 1)^{2} \));

  • Likewise in Doraszelski (2003), we employ a two-dimensional expanded Chebyshev array (as defined in Judd 1998) to define the \( (K + 1)^{2} \) collocation points.

To initialize the collocation method, at first we fit the initial local quadratic approximation of the value function by a linear combination of the same basis functions used by the collocation method itself (in practice, we apply the collocation method itself to this function approximation problem, instead of to the PDE). Then, we apply the collocation method to the PDE, starting from the resulting vector of coefficients. Finally, to check for the validity of the resulting high-order polynomial approximation and for the validity of the original local quadratic approximation, we compute, for both approximations, the Bellman residual error on a larger uniform grid of \( N^{2} \) points in the same neighborhood (with \( N = 30 \)), which are different from the collocation points, checking whether this error is small. We also evaluate, on each grid point, the relative error of the quadratic approximation with respect to the high-order polynomial approximation obtained using the collocation method. The results of all these comparisons are reported in Sect. 5, for a specific choice of the problem parameters. We conclude by mentioning that, in contrast with Doraszelski (2003), it is not necessary to check a posteriori whether the partial derivatives of the approximation of the value function obtained by the collocation method are good approximations of the corresponding partial derivatives of the value function, which are needed to express the optimal controls [see the expressions (37) and (38)]. Indeed, in the case where the local quadratic approximation and the one found by the collocation method are similar, we can use the partial derivatives of the local quadratic approximation itself. In any case, it is worth mentioning that the numerical results have shown good agreement between the approximations of the partial derivatives obtained by the two methods, as one can infer from Fig. 2 in Sect. 5. □

A11. The results in (41)–(45) follow from the respective comparisons of (12) and (25). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ouardighi, F., Kogan, K., Gnecco, G. et al. Transboundary pollution control and environmental absorption efficiency management. Ann Oper Res 287, 653–681 (2020). https://doi.org/10.1007/s10479-018-2927-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2927-7

Keywords

Navigation