Skip to main content
Log in

On the multidimensional Black–Scholes partial differential equation

  • S.I. : Risk in Financial Economics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this article, two general results are provided about the multidimensional Black–Scholes partial differential equation: its fundamental solution is derived, and it is shown how to turn it into the standard heat equation in whatever dimension. A fundamental connection is established between the multivariate normal distribution and the linear second order partial differential operator of parabolic type. These results allow to compute new closed form formulae for the valuation of multiasset options, with possible boundary crossing conditions, thus partially alleviating the « curse of dimensionality », at least in moderate dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Calvetti, D., Golub, G. H., Gragg, W. B., & Reichel, L. (2000). Computation of Gauss-Kronrod quadrature rules. Mathematics of Computation, 69, 1035–1052.

    Article  Google Scholar 

  • Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. Oxford: Oxford University Press.

    Google Scholar 

  • Choi, Y., Jeong, D., Kim, J. S., Kim, Y. R., Lee, S., Seo, S., et al. (2015). Robust and accurate method for the Black–Scholes equations with payoff-consistent extrapolation. Communications of the Korean Mathematical Society, 30(3), 297–311.

    Article  Google Scholar 

  • Contreras, M., Llanquihuen, A., & Villena, M. (2016). On the solution of the multi-asset Black–Scholes model: correlations, eigenvalues and geometry. Journal of Mathematical Finance, 6, 562–579.

    Article  Google Scholar 

  • Craig, I. J. D., & Sneyd, A. D. (1988). An alternating-direction implicit scheme for parabolic equations with mixed derivatives. Computers & Mathematics with Applications, 16(4), 341–350.

    Article  Google Scholar 

  • Duffy, D. G. (2001). Green’s Functions with Applications. Studies in Advanced Mathematics. Boca Raton: Chapman & Hall / CRC.

    Book  Google Scholar 

  • Gazizov, R. K., & Ibragimov, N. H. (1998). Lie symmetry analysis of differential equations in finance. Nonlinear Dynamics, 17(4), 387–407.

    Article  Google Scholar 

  • Glasserman, P. (2003). Monte Carlo methods in financial engineering., Springer series on stochastic modeling and applied probability Berlin: Springer.

    Book  Google Scholar 

  • Guillaume, T. (2008). Making the best of best-of. Review of Derivatives Research, 11(1), 1–39.

    Article  Google Scholar 

  • Guillaume, T. (2010). Step double barrier options. Journal of Derivatives, 18(1), 59–79.

    Article  Google Scholar 

  • Guillaume, T. (2017). Computation of the quadrivariate and pentavariate normal cumulative distribution functions. Communications in Statistics – Simulation and Computation. https://doi.org/10.1080/03610918.2017.1295151.

    Article  Google Scholar 

  • Harrison, J. M., & Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and their Applications, 11(3), 215–260.

    Article  Google Scholar 

  • Hull, J. (2017). Options, futures and other derivatives (10th ed.). London: Pearson.

    Google Scholar 

  • Jeong, D., Kim, J., & Wee, I. S. (2009). An accurate and efficient method for Black-Scholes equations. Communications of the Korean Mathematical Society, 24(4), 617–628.

    Article  Google Scholar 

  • Jo, J., & Kim, Y. (2013). Comparison of numerical schemes on multidimensional Black-Scholes equations. Bulletin of the Korean Mathematical Society, 50(6), 2035–2051.

    Article  Google Scholar 

  • Johnson, H. (1987). Options on the maximum or the minimum of several assets. The Journal of Financial and Quantitative Analysis, 22(3), 277–283.

    Article  Google Scholar 

  • Kronrod, A. S. (1964). (Russian), Doklady Akad. Nauk SSSR, 154, 283–286.

    Google Scholar 

  • O, H. C., Ro, Y. H., & Wan, N. (2013). A method of reducing dimension of space variables in multidimensional Black-Scholes equations. Available at SSRN: https://doi.org/10.2139/ssrn.726623.

  • Protter, P. E. (2005). Stochastic integration and differential equations., Springer series on stochastic modeling and applied probability Berlin: Springer.

    Book  Google Scholar 

  • Singh, J. P., & Prabakaran, S. (2008). Group properties of the Black Scholes equation & its solutions. Electronic Journal of Theoretical Physics, 5(18), 51–60.

    Google Scholar 

  • Stroock, D. W., & Varadhan, S. R. S. (1979). Multidimensional diffusion processes. Berlin: Springer.

    Google Scholar 

  • Stulz, R. (1982). Options on the minimum or the maximum of two risky assets : analysis and applications. Journal of Financial Economics, 10, 161–185.

    Article  Google Scholar 

  • Tong, Y. L. (1990). The Multivariate Normal Distribution., Springer series in Statistics Berlin: Springer.

    Book  Google Scholar 

  • Wilmott, P., Howison, S., & Dewynne, J. (1998). The mathematics of financial derivatives. Cambridge: Cambridge University Press.

    Google Scholar 

  • Zhu, Y. I., Wu, X., & Chern, I.-L. (2004). Derivatives securities and difference methods., Springer series in finance Berlin: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Guillaume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillaume, T. On the multidimensional Black–Scholes partial differential equation. Ann Oper Res 281, 229–251 (2019). https://doi.org/10.1007/s10479-018-3001-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3001-1

Keywords

Navigation