Skip to main content
Log in

Revenue sharing contracts for horizontal capacity sharing under competition

  • S.I.: RealCaseOR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The capacity-sharing strategy is a widely used strategy to alleviate the mismatch between supply and demand. To investigate the performance of the capacity-sharing strategy, we consider two firms competing for business in a single market in this paper. Both firms can choose to join the horizontal capacity-sharing strategy with a revenue-sharing contract. By comparing the equilibrium solutions of analytical models where firms share capacities and firms don’t share capacities respectively, we find that both firms raise their prices with a low revenue sharing rate when the total desired demand can be satisfied by the total capacities; But the change of prices depends on the combined effect of competition intensity and the revenue sharing rate if the capacity sharing can’t satisfy the total desired demand. In addition, we find that the profit of the firm with insufficient capacity increases if capacity sharing is present. However, the profit of the firm with underutilized capacity increases in the revenue sharing rate when it is small, but decreases in it when it becomes relatively large. Thus, capacity sharing is not always better for the firm with underutilized capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anupindi, R., Bassok, Y., & Zemel, E. (2001). A general framework for the study of decentralized distribution systems. Manufacturing and Service Operations Management,3(4), 349–368.

    Google Scholar 

  • Bidault, F., & Schweinsberg, M. (1996). Fiat and Peugeot’s SevelNord Venture (A). IMD Case, 3-0644.

  • Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science,51(1), 30–44.

    Google Scholar 

  • Comez, N., Stecke, K. E., & Cakanyildirim, M. (2012). In-season transshipments among competitive retailers. Manufacturing and Service Operations Management,14(2), 290–300.

    Google Scholar 

  • Dussauge, P., Wassmer, U., & Planellas, M. (2010). How to manage alliances better than one at a time. Post-Print,51(3), 77.

    Google Scholar 

  • Eisenstein, P. A. (2011). BMW, PSA Peugeot Citroen form battery car joint venture. Pleasant Ridge: The Detroit Bureau.

    Google Scholar 

  • Feng, X., Moon, I., & Ryu, K. (2017). Warehouse capacity sharing via transshipment for an integrated two-echelon supply chain. Transportation Research Part E: Logistics and Transportation Review,104, 17–35.

    Google Scholar 

  • Gerchak, Y., & Wang, Y. (2004). Revenue-sharing vs. wholesale-price contracts in assembly systems with random demand. Production and Operations Management,13(1), 23–33.

    Google Scholar 

  • Granot, D., & Sosic, G. (2003). A three-stage model for a decentralized distribution system of retailers. Operations Research,51(5), 771–784.

    Google Scholar 

  • Grauberger, W., & Kimms, A. (2016a). Airline revenue management games with simultaneous price and quantity competition. Computers and Operations Research,75, 64–75.

    Google Scholar 

  • Grauberger, W., & Kimms, A. (2016b). Revenue management under horizontal and vertical competition within airline alliances. Omega,59, 228–237.

    Google Scholar 

  • Guo, L., & Wu, X. (2017). Capacity sharing between competitors. Management Science. https://doi.org/10.1287/mnsc.2017.2796.

    Google Scholar 

  • Hou, Y., Wei, F., Li, S. X., Huang, Z., & Ashley, A. (2017). Coordination and performance analysis for a three-echelon supply chain with a revenue-sharing contract. International Journal of Production Research,55(1), 202–227.

    Google Scholar 

  • Hu, X., Caldentey, R., & Vulcano, G. (2013). Revenue sharing in airline alliances. Management Science,59(5), 1177–1195.

    Google Scholar 

  • Hu, B., Meng, C., Xu, D., & Son, Y. J. (2016). Three-echelon supply chain coordination with a loss-averse retailer and revenue-sharing contracts. International Journal of Production Economics,179, 192–202.

    Google Scholar 

  • Huang, X., Boyacı, T., Gümü, M., Ray, S., & Zhang, D. (2015). United we stand, divided we fall: Strategic supplier alliances under default risk. Management Science,62(5), 1297–1315.

    Google Scholar 

  • Li, L., & Zhang, R. Q. (2015). Cooperation through capacity sharing between competing forwarders. Transportation Research Part E: Logistics and Transportation Review,75, 115–131.

    Google Scholar 

  • Roels, G., & Tang, C. S. (2016). Win–win capacity allocation contracts in coproduction and codistribution alliances. Management Science,63(3), 861–881.

    Google Scholar 

  • Shen, C. (2017). The effects of major U.S. domestic airline code sharing and profit-sharing rule. Journal of Economics and Management Strategy,26(3), 590–609.

    Google Scholar 

  • Van Mieghem, J. A. (1999). Coordinating investment, production, and subcontracting. Management Science,45(7), 954–971.

    Google Scholar 

  • Williamson, O. E. (1991). Comparative economic organization: The analysis of discrete structural alternatives. Administrative Science Quarterly,36(2), 269–296.

    Google Scholar 

  • Wu, X., Kouvelis, P., & Matsuo, H. (2013). Horizontal capacity coordination for risk management and flexibility: Pay ex ante or commit a fraction of ex post demand? Manufacturing and Service Operations Management,15(3), 458–472.

    Google Scholar 

  • Yao, Z., Leung, S. C. H., & Lai, K. K. (2008). Manufacturer’s revenue-sharing contract and retail competition. European Journal of Operational Research,186(2), 637–651.

    Google Scholar 

  • Yin, S. (2010). Alliance formation among perfectly complementary suppliers in a price-sensitive assembly system. Manufacturing and Service Operations Management,12(3), 527–544.

    Google Scholar 

  • Yu, Y., Benjaafar, S., & Gerchak, Y. (2015). Capacity sharing and cost allocation among independent firms with congestion. Production and Operations Management,24, 1285–1310.

    Google Scholar 

  • Zhang, A., Fu, X., & Yang, H. (2010). Revenue sharing with multiple airlines and airports. Transportation Research Part B: Methodological,44(8), 944–959.

    Google Scholar 

Download references

Acknowledgements

This paper is funded by the National Natural Science Foundation of China (Grant Nos. 71302115 and 71502123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

1.1 Proof of Proposition 1

Based on the benchmark model, we have

$$ \left\{ \begin{array}{l} \pi_{1}^{0} (p_{1} ) = (p_{1} - c_{1} )(a_{1} - p_{1} + \beta p_{2} ) \hfill \\ \pi_{2}^{0} (p_{2} ) = (p_{2} - c_{2} )(a_{2} - p_{2} + \beta p_{1} ) \hfill \\ \end{array} \right.. $$

We can conclude that the second derivatives of the profits with respect to the price are as follows:

$$ \left\{ \begin{array}{l} \frac{{\partial^{2} \pi_{1}^{0} }}{{\partial p_{1}^{2} }} = - 2 < 0 \hfill \\ \frac{{\partial^{2} \pi_{2}^{0} }}{{\partial p_{2}^{2} }} = - 2 < 0 \hfill \\ \end{array} \right.. $$

Thus, the firms’ profits are concave with the retailing prices. The optimal pricing strategies \( \left( {p_{1}^{0*} ,p_{2}^{0*} } \right) \) exist.

Assuming \( \left\{ \begin{array}{l} \partial \pi_{1}^{0} /\partial p_{1} = 0 \hfill \\ \partial \pi_{2}^{0} /\partial p_{2} = 0 \hfill \\ \end{array} \right. \), we can thus obtain

$$ \left\{ \begin{array}{l} p_{1}^{0*} = \frac{1}{{4 - \beta^{2} }}\left( {2\left( {a_{1} + c_{1} } \right) + \beta \left( {a_{2} + c_{2} } \right)} \right) \hfill \\ p_{2}^{0*} = \frac{1}{{4 - \beta^{2} }}\left( {2\left( {a_{2} + c_{2} } \right) + \beta \left( {a_{1} + c_{1} } \right)} \right) \hfill \\ \end{array} \right.. $$

Therefore, we have \( \left( {\pi_{1}^{0*} (p_{1}^{0*} ,p_{2}^{0*} ),\pi_{2}^{0*} (p_{1}^{0*} ,p_{2}^{0*} )} \right) \) and \( \left( {d_{1}^{0*} (p_{1}^{0*} ,p_{2}^{0*} ),d_{2}^{0*} (p_{1}^{0*} ,p_{2}^{0*} )} \right) \) as follows:

$$ \begin{aligned} & \left\{ \begin{array}{l} \pi_{1}^{0*} (p_{1}^{0*} ,p_{2}^{0*} ) = \frac{1}{{\left( {4 - \beta^{2} } \right)^{2} }}\left( {2a_{1} + \beta \left( {a_{2} + c_{2} } \right) - \left( {2 - \beta^{2} } \right)c_{1} } \right)^{2} \hfill \\ \pi_{2}^{0*} (p_{1}^{0*} ,p_{2}^{0*} )=\frac{1}{{\left( {4 - \beta^{2} } \right)^{2} }}\left( {2a_{2} + \beta \left( {a_{1} + c_{1} } \right) - \left( {2 - \beta^{2} } \right)c_{2} } \right)^{2} \hfill \\ \end{array} \right.; \\ & \left\{ \begin{array}{l} d_{1} (p_{1}^{0*} ,p_{2}^{0*} ) = \frac{1}{{4 - \beta^{2} }}\left( {2a_{1} + \beta \left( {a_{2} + c_{2} } \right) - \left( {2 - \beta^{2} } \right)c_{1} } \right) \hfill \\ d_{2} (p_{1}^{0*} ,p_{2}^{0*} ) = \frac{1}{{4 - \beta^{2} }}\left( {2a_{2} + \beta \left( {a_{1} + c_{1} } \right) - \left( {2 - \beta^{2} } \right)c_{2} } \right) \hfill \\ \end{array} \right.. \\ \end{aligned} $$

1.2 Proof of Corollary 1

The proof is straightforward and omitted.

1.3 Proof of Proposition 2

If \( K_{1} < d_{1} (p_{1}^{0*} ,p_{2}^{0*} ) \) and \( K_{2} \ge d_{2} (p_{1}^{0*} ,p_{2}^{0*} ) \), then \( \left( {K_{1} ,K_{2} } \right) \) satisfies

$$ \left\{ \begin{array}{l} a_{1} > 2K_{1} + c_{1} \hfill \\ 2a_{2} \le 3K_{2} + c_{2} - a_{1} - c_{1} \hfill \\ \end{array} \right.. $$

If \( K_{1} < d_{1} (p_{1}^{0*} ,p_{2}^{0*} ) \) and \( K_{2} \ge d_{2} (p_{1}^{0*} ,p_{2}^{0*} ) \), the capacity of Firm 1 is limited and that of Firm 2 is not limited. The benchmark model becomes Case 4-1 as follows:

$$ \left\{ \begin{array}{l} \pi_{1}^{1} = (p_{1} - c_{1} )K_{1} \hfill \\ \pi_{2}^{1} = (p_{2} - c_{2} )(a_{2} - p_{2} + \beta p_{1} ) \hfill \\ \end{array} \right.. $$

Thus, the first derivatives of Firm 1’s profit and the second derivatives of Firm 2’s profit with respect to the price are as follows:

$$ \left\{ \begin{array}{l} \partial \pi_{1}^{1} /\partial p_{1} = K_{1} > 0 \hfill \\ \partial^{1} \pi_{2}^{2} /\partial p_{2}^{2} = - 2 < 0 \hfill \\ \end{array} \right.. $$

The profit of Firm 1 increases along with the price and Firm 2 has optimal pricing strategies.

Assuming \( \left\{ \begin{array}{l} K_{1} = a_{1} - p_{1}^{1*} + \beta p_{2}^{1*} \hfill \\ \partial \pi_{2}^{2} /\partial p_{2} = 0 \hfill \\ \end{array} \right. \), we can thus obtain

$$ \left\{ \begin{array}{l} p_{1}^{1*} = \frac{1}{{2 - \beta^{2} }}\left( {2(a_{1} - K_{1} ) + \beta \left( {a_{2} + c_{2} } \right)} \right) \hfill \\ p_{2}^{1*} = \frac{1}{{2 - \beta^{2} }}\left( {a_{2} + c_{2} + \beta \left( {a_{1} - K_{1} } \right)} \right) \hfill \\ \end{array} \right.. $$

Given \( (p_{1}^{1*} ,p_{2}^{1*} ) \), we have \( \left( {\pi_{1}^{1*} (p_{1}^{1*} ,p_{2}^{1*} ),\pi_{2}^{1*} (p_{1}^{1*} ,p_{2}^{1*} )} \right) \) and \( \left( {d_{1}^{1*} (p_{1}^{1*} ,p_{2}^{1*} ),d_{2}^{1*} (p_{1}^{1*} ,p_{2}^{1*} )} \right) \) as follows:

$$ \begin{aligned} & \left\{ \begin{array}{l} \pi_{1}^{1*} = \frac{1}{{2 - \beta^{2} }}\left( {2(a_{1} K_{1} - K_{1}^{2} ) + \beta \left( {a_{2} K_{1} + c_{2} K_{1} } \right) - \left( {2 - \beta^{2} } \right)c_{1} K_{1} } \right) \hfill \\ \pi_{2}^{1*} = \frac{1}{{\left( {2 - \beta^{2} } \right)^{2} }}\left( {a_{2} + \beta (a_{1} - K_{1} ) - \left( {1 - \beta^{2} } \right)c_{2} } \right)^{2} \hfill \\ \end{array} \right.; \\ & \left\{ \begin{array}{l} d_{1} (p_{1}^{1*} ,p_{2}^{1*} ) = K_{1} \hfill \\ d_{2} (p_{1}^{1*} ,p_{2}^{1*} ) = \frac{1}{{2 - \beta^{2} }}\left( {a_{2} + \beta (a_{1} - K_{1} ) - \left( {1 - \beta^{2} } \right)c_{2} } \right) \hfill \\ \end{array} \right.. \\ \end{aligned} $$

1.4 Proof of Corollary 2

The proof is straightforward and then omitted.

1.5 Proof of Proposition 3

Based on the proof of Proposition 2, we have \( \left\{ \begin{array}{l} a_{1} > 2K_{1} + c_{1} \hfill \\ 2a_{2} \le 3K_{2} + c_{2} - a_{1} - c_{1} \hfill \\ \end{array} \right. \).

We can now analyze that the prices and profits of Case 4-1 and the benchmark model are as follows:

$$ \left\{ \begin{array}{l} p_{1}^{0*} - p_{1}^{N * } = \frac{{ - 4a_{1} + \left( {4 - 2\beta^{2} } \right)c_{1} + \left( {8 - 2\beta^{2} } \right)K{}_{1} - 2\beta \left( {a_{2} + c_{2} } \right)}}{{\left( {4 - \beta^{2} } \right)\left( {2 - \beta^{2} } \right)}} \hfill \\ \quad < \frac{{ - 4\left( {2K_{1} + c_{1} } \right) + \left( {4 - 2\beta^{2} } \right)c_{1} + \left( {8 - 2\beta^{2} } \right)K_{1} - 2\beta \left( {a_{2} + c_{2} } \right)}}{{\left( {4 - \beta^{2} } \right)\left( {2 - \beta^{2} } \right)}} \le 0 \hfill \\ p_{2}^{0*} - p_{2}^{N * } = \frac{{ - 2\beta a_{1} + \left( {2\beta - \beta^{3} } \right)c_{1} + \left( {4\beta - 4\beta^{3} } \right)K{}_{1} - \beta^{2} \left( {a_{2} + c_{2} } \right)}}{{\left( {4 - \beta^{2} } \right)\left( {2 - \beta^{2} } \right)}} \hfill \\ \quad< \frac{{ - 2\beta \left( {2K_{1} + c_{1} } \right) + \left( {2\beta - \beta^{3} } \right)c_{1} + \left( {4\beta - 4\beta^{3} } \right)K{}_{1} - \beta^{2} \left( {a_{2} + c_{2} } \right)}}{{\left( {4 - \beta^{2} } \right)\left( {2 - \beta^{2} } \right)}} \le 0 \hfill \\ \end{array} \right.; $$

We denote the following:

$$ \begin{aligned} L_{1} \left( {K_{1} } \right) & = 2\left( {4 - \beta^{2} } \right)^{2} K_{1}^{2} - \left( {4 - \beta^{2} } \right)^{2} \left( {2a_{1} - 2c_{1} + a_{2} \beta + \beta c_{2} + \beta^{2} c_{1} } \right)K_{1} \\ & \quad + \,\left( {2 - \beta^{2} } \right)\left( {2a_{1} - 2c_{1} + a_{2} \beta + \beta c_{2} + \beta^{2} c_{1} } \right)^{2} , \\ \end{aligned} $$
$$ \begin{aligned} L_{2} \left( {K_{1} } \right) & = - \beta^{2} \left( {4 - \beta^{2} } \right)^{2} K_{1}^{2} - 2\beta \left( {4 - \beta^{2} } \right)^{2} \left( {a_{2} - c_{2} + a_{1} \beta + \beta^{2} c_{2} } \right)K_{1} \\ & \quad+ \left( {2a_{1} - 2c_{1} + a_{2} \beta + \beta c_{2} + \beta^{2} c_{1} } \right) \left(2\beta^{4} c_{2} + \beta^{3} \left( {2a_{1} + c_{1} } \right) \right.\\ &\quad \left.+\, 3\beta^{2} \left( {a_{2} - 3c_{2} } \right)- 2\beta \left( {3a_{1} + c_{1} } \right) - 8\left( {a_{2} - c_{2} } \right) \right) \\ \end{aligned} $$

We have

$$ \pi_{1}^{0 * } - \pi_{1}^{N * } = \frac{1}{{\left( {4 - \beta^{2} } \right)^{2} \left( {2 - \beta^{2} } \right)}}\left( {L_{1} \left( {K_{1} } \right)} \right),\quad \pi_{2}^{0 * } - \pi_{2}^{N * } = \frac{1}{{\left( {4 - \beta^{2} } \right)^{2} \left( {2 - \beta^{2} } \right)^{2} }}\left( {L_{2} \left( {K_{1} } \right)} \right). $$
  • If \( L_{1} \ge 0 \), then \( \pi_{1}^{0*} \ge \pi_{1}^{N*} \). If \( L_{1} < 0 \), then \( \pi_{1}^{0*} < \pi_{1}^{N*} \).

  • If \( L_{2} \ge 0 \), then \( \pi_{2}^{0*} \ge \pi_{2}^{N*} \). If \( L_{2} < 0 \), then \( \pi_{2}^{0*} < \pi_{2}^{N*} \).

1.6 Proof of Proposition 4

Based on Model S:

$$ \left\{ \begin{array}{l} \pi_{1}^{s} (p_{1} ) = (p_{1} - c_{1} )K_{1} + (\lambda p_{1} - c_{2} )(a_{1} - p_{1} + \beta p_{2} - K_{1} ) \hfill \\ \pi_{2}^{s} (p_{2} ) = (p_{2} - c_{2} )(a_{1} - p_{2} + \beta p_{1} ) + (1 - \lambda )p_{1} (a_{1} - p_{1} + \beta p_{2} - K_{1} ) \hfill \\ \end{array} \right., $$

we can conclude that the second derivatives of the profits with respect to the price as follows:

$$ \left\{ \begin{array}{l} \partial^{2} \pi_{1}^{s} /\partial p_{1}^{2} = - 2\lambda < 0 \hfill \\ \partial^{2} \pi_{2}^{s} /\partial p_{2}^{2} = - 2 < 0 \hfill \\ \end{array} \right.. $$

The optimal pricing strategies \( \left( {p_{1}^{s*} ,p_{2}^{s*} } \right) \) exist.

Assuming \( \left\{ \begin{array}{l} \partial \pi_{1}^{s} /\partial p_{1} = 0 \hfill \\ \partial \pi_{2}^{s} /\partial p_{2} = 0 \hfill \\ \end{array} \right. \), we can thus obtain

$$ \left\{ \begin{array}{l} p_{1}^{s1 * } = p_{1}^{s * } = \frac{1}{{\lambda \left( {\lambda \beta^{2} - 2\beta^{2} + 4} \right)}}\left( {2a_{1} \lambda + a_{2} \beta \lambda + \left( {2 + \lambda \beta } \right)c_{2} + 2\left( {1 - \lambda } \right)K_{1} } \right) \hfill \\ p_{2}^{s2 * } = p_{2}^{s * } = \frac{1}{{\lambda \left( {\lambda \beta^{2} - 2\beta^{2} + 4} \right)}}\left( {\left( {2 - \lambda } \right)\lambda \beta a_{1} + \left( {1 - \lambda } \right)\left( {2 - \lambda } \right)K_{1} \beta + 2a_{2} \lambda + c_{2} \left( {2\beta + 2\lambda - \lambda \beta } \right)} \right) \hfill \\ \end{array} \right.. $$

Then, we obtain \( \left( {d_{1} (p_{1}^{s1*} ,p_{2}^{s1*} ),d_{2} (p_{1}^{s1*} ,p_{2}^{s1*} )} \right) \) and \( \left( {\pi_{1}^{{{\text{s1}}*}} (p_{1}^{s1*} ,p_{2}^{s1*} ),\pi_{2}^{s1*} (p_{1}^{s1*} ,p_{2}^{s1*} )} \right) \) as follows:

$$ \begin{aligned} & \left\{ \begin{array}{l} d_{1} (p_{1}^{s * } ,p_{2}^{s * } ) = \frac{1}{{\lambda \left( {\lambda \beta^{2} - 2\beta^{2} + 4} \right)}}\left( \begin{array}{l} K_{1} \lambda^{2} \beta^{2} + \lambda \left( {\beta^{2} \left( { - c_{2} - 3K_{1} } \right) + \beta \left( {a_{2} + c_{2} } \right) + 2a_{1} + 2K_{1} } \right) \hfill \\ \quad- \left( {2 - 2\beta^{2} } \right)\left( {c_{2} + K_{1} } \right) \hfill \\ \end{array} \right) \hfill \\ d_{2} (p_{1}^{s * } ,p_{2}^{s * } ) = \frac{1}{{\lambda \beta^{2} - 2\beta^{2} + 4}}\left( {\lambda \left( {a_{2} \beta^{2} + \left( {a_{1} - K_{1} } \right)\beta } \right) + \left( {2 - \beta^{2} } \right)\left( {a_{2} - c_{2} } \right) + \left( {c_{2} + K_{1} } \right)\beta } \right) \hfill \\ \end{array} \right. \\ & \left\{ {\begin{array}{l} {\pi_{1}^{s1*} \, (p_{1}^{s1 * } ) = (p_{1}^{s1 * } - c_{1} )K_{1} + (\lambda p_{1}^{s1 * } - c_{2} )(a_{1} - p_{1}^{s1 * } + \beta p_{2}^{s1 * } - K_{1} )} \\ {\pi_{2}^{s1*} (p_{2}^{s1 * } ) = (p_{2}^{s1 * } - c_{2} )(a_{1} - p_{2}^{s1 * } + \beta p_{1}^{s1 * } ) + (1 - \lambda )p_{1}^{s1 * } (a_{1} - p_{1}^{s1 * } + \beta p_{2}^{s1 * } - K_{1} )} \\ \end{array} } \right.. \\ \end{aligned} $$

In Case 5-1, when \( \lambda = 0 \), we have the following:

$$ \left\{ \begin{array}{l} \pi_{1}^{s1} (p_{1} ) = (p_{1} - c_{1} )K_{1} - c_{2} \left( {d_{1} - K_{1} } \right) \hfill \\ \pi_{2}^{s1} (p_{2} ) = (p_{2} - c_{2} )d_{2} + p_{1} \left( {d_{1} - K_{1} } \right) \hfill \\ \end{array} \right.. $$

We can conclude that the first derivatives of Firm 1’s profit and the second derivatives of Firm 2’s profit with respect to the price are as follows:

$$ \left\{ \begin{array}{l} \partial \pi_{1}^{s1} /\partial p_{1} = K_{1} + c_{2} > 0 \hfill \\ \partial^{2} \pi_{2}^{s1} /\partial p_{2}^{2} = - 2 < 0 \hfill \\ \end{array} \right.. $$

Assuming \( \left\{ \begin{array}{l} K_{1} = a_{1} - p_{1}^{s1*} + \beta p_{2}^{s1*} \hfill \\ \partial \pi_{2}^{s1} /\partial p_{2} = 0 \hfill \\ \end{array} \right. \), then we can obtain

$$ \left\{ \begin{array}{l} p_{1}^{s1 * } = \frac{1}{{2\left( {1 - \beta^{2} } \right)}}\left( {2\left( {a_{1} - K_{1} } \right) + \beta \left( {a_{2} + c_{2} } \right)} \right) \hfill \\ p_{2}^{s1 * } = \frac{1}{{2\left( {1 - \beta^{2} } \right)}}\left( {2\beta \left( {a_{1} - K_{1} } \right) + \left( {a_{2} + c_{2} } \right)} \right) \hfill \\ \end{array} \right.. $$

1.7 Proof of Corollary 4

The proof is straightforward and omitted.

1.8 Proof of Proposition 5

Based on the proof of Proposition 4 and \( d_{2} \left( {p_{1}^{s*} ,p_{2}^{s*} } \right) < K_{2} \), \( d_{1} \left( {p_{1}^{s*} ,p_{2}^{s*} } \right) \le K_{1} + K_{2} - d_{2} \left( {p_{1}^{s*} ,p_{2}^{s*} } \right) \), we have \( a_{1} > 2K_{1} + c_{2} \).

We can analyze that the price and profit of Model N and 5-1 with \( \lambda \ne 0 \) are as follows:

$$ \left\{ \begin{array}{l} p_{1}^{s1*} - p_{1}^{N*} = \frac{{\left( { - \beta^{2} \left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)\lambda^{2} - \left( {2 - \beta^{2} } \right)\left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)\lambda + 2\left( {2 - \beta^{2} } \right)\left( {c_{2} + K_{1} } \right)} \right)}}{{\lambda \left( {\lambda \beta^{2} - 2\beta^{2} + 4} \right)\left( {2 - \beta^{2} } \right)}} \hfill \\ p_{2}^{s1*} - p_{2}^{N*} = \frac{{\left( { - \beta \left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)\lambda^{2} - \left( {2 - \beta^{2} } \right)\left( {c_{2} + K_{1} } \right)\lambda + 2\beta \left( {2 - \beta^{2} } \right)\left( {c_{2} + K_{1} } \right)} \right)}}{{\lambda \left( {\lambda \beta^{2} - 2\beta^{2} + 4} \right)\left( {2 - \beta^{2} } \right)}} \hfill \\ \end{array} \right. $$

We denote

$$ \left\{ \begin{array}{l} \lambda_{1}^{s1} = \frac{\begin{array}{l} \left( {2 - \beta^{2} } \right)\left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right) - \hfill \\ \sqrt {\left( {2 - \beta^{2} } \right)^{2} \left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)^{2} + 8\beta^{2} \left( {2 - \beta^{2} } \right)\left( {c_{2} + K_{1} } \right)\left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)} \hfill \\ \end{array} }{{ - 2\beta^{2} \left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)}} \hfill \\ \lambda_{2}^{s1} = \frac{{\left( {2 - \beta^{2} } \right)\left( {c_{2} + K_{1} } \right) - \sqrt {\left( {2 - \beta^{2} } \right)^{2} \left( {c_{2} + K_{1} } \right)^{2} + 8\beta^{2} \left( {2 - \beta^{2} } \right)\left( {c_{2} + K_{1} } \right)\left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)} }}{{ - 2\beta \left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)}} \hfill \\ \end{array} \right.. $$
  • If \( 0 < \lambda_{1}^{s1} < 1 \), \( \lambda \in \left( {0,\lambda_{1}^{s1} } \right] \), we have \( p_{1}^{s1*} \ge p_{1}^{N*} \); \( \lambda \in \left( {\lambda_{1}^{s1} ,1} \right] \), we have\( p_{1}^{s1*} < p_{1}^{N*} \).

  • If \( \lambda_{1}^{s1} \ge 1 \), \( \lambda \in \left( {0,1} \right] \), we have \( p_{1}^{s1*} \ge p_{1}^{N*} \).

  • If \( 0 < \lambda_{2}^{s1} < 1 \), \( \lambda \in \left( {0,\lambda_{2}^{s1} } \right] \), \( p_{2}^{s1*} \ge p_{2}^{N*} \); \( \lambda \in \left( {\lambda_{2}^{s1} ,1} \right] \), we have\( p_{2}^{s1*} < p_{2}^{N*} \).

  • If \( \lambda_{2}^{s1} \ge 1 \), \( \lambda \in \left( {0,1} \right] \), we have \( p_{2}^{s1*} \ge p_{2}^{N*} \).

1.9 Proof of Proposition 6

In Case 5-2, based on \( d_{2} (p_{1}^{s*} ,p_{2}^{s*} ) < K_{2} \) and \( d_{1} (p_{1}^{s*} ,p_{2}^{s*} ) \ge K_{1} + K_{2} - d_{2} (p_{1}^{s*} ,p_{2}^{s*} ) \), we have \( \frac{{a_{2} + a_{1} - K_{1} - K_{2} - p_{2} + \beta p_{2} }}{1 - \beta } \le p_{1} . \)

The optimal pricing strategies of Firm 1 and Firm 2 can be concluded by

$$ \left\{ {\begin{array}{l} {a_{1} - p_{1} + \beta p_{2} - K_{1} = K_{2} - (a_{2} - p_{2} + \beta p_{1} )} \\ {\partial \pi_{2}^{s} /\partial p_{2} = - (p_{2} - c_{2} ) + (a_{2} - p_{2} + \beta p_{1} ) + (1 - \lambda )\beta p_{1} = 0} \\ \end{array} } \right.. $$

We can obtain two optimal solutions as follows:

$$ \begin{aligned} & \left\{ \begin{array}{l} p_{1}^{s2 * } =p_{1}^{s * } = \frac{{2a_{1} + a_{2} - c_{2} - 2K_{1} - 2K_{2} + a_{2} \beta + c_{2} \beta }}{{(1 - \beta )\left( {2 + 2\beta - \lambda \beta } \right)}} \hfill \\ p_{2}^{s2 * } =p_{2}^{s * } = \frac{{a_{2} + c_{2} + \left( {2a_{1} + a_{2} - c_{2} - 2K_{1} - 2K_{2} } \right)\beta - \left( {a_{1} + a_{2} - K_{1} - K_{2} } \right)\beta \lambda }}{{(1 - \beta )\left( {2 + 2\beta - \lambda \beta } \right)}} \hfill \\ \end{array} \right., \\ & \left\{ {\begin{array}{l} {\pi_{1}^{s2*} \, (p_{1}^{s2 * } ) = (p_{1}^{s2 * } - c_{1} )K_{1} + (\lambda p_{1}^{s2 * } - c_{2} )(a_{1} - p_{1}^{s2*} + \beta p_{2}^{s2*} - K_{1} )} \\ {\pi_{2}^{s2*} (p_{2}^{s2 * } ) = (p_{2}^{s2 * } - c_{2} )(a_{1} - p_{2}^{s2 * } + \beta p_{1}^{s2 * } ) + (1 - \lambda )p_{1}^{s2 * } (a_{1} - p_{1}^{s2*} + \beta p_{2}^{s2*} - K_{1} )} \\ \end{array} } \right.. \\ \end{aligned} $$

The shared capacity quantity is \( (a_{1} - p_{1}^{s2*} + \beta p_{2}^{s2*} - K_{1} ) = (K_{2} - a_{2} - p_{2}^{s2*} + \beta p_{1}^{s2*} ). \)

1.10 Proof of Corollary 5

The proof is straightforward and omitted.

1.11 Proof of Proposition 7

Based on \( d_{2} (p_{1}^{s*} ,p_{2}^{s*} ) < K_{2} \) and \( d_{1} (p_{1}^{s*} ,p_{2}^{s*} ) \ge K_{1} + K_{2} - d_{2} (p_{1}^{s*} ,p_{2}^{s*} ) \), we have

$$ \left\{ \begin{array}{l} a_{1} > 2K_{1} + c_{2} \hfill \\ a_{2} < 2K_{2} + c_{2} \hfill \\ 2a_{1} + a_{2} > 2\left( {K_{1} + K_{2} } \right) + c_{2} \hfill \\ \end{array} \right.. $$

Now, we can analyze that the prices and profits of Model N and 5-2 are as follows:

$$ \left\{ \begin{aligned} p_{1}^{s2*} - p_{1}^{N*} &= \frac{\begin{array}{l} [\beta \left( {1 - \beta } \right)\left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)\lambda + \left( {a_{2} + {\text{c}}_{ 2} } \right)\beta^{3} \hfill \\ + \left( {2a_{1} - a_{2} + c_{2} - 2K_{1} + 2K_{2} } \right)\beta^{2} + 2a_{2} - 2c_{ 2} - 4K_{2} ] \hfill \\ \end{array} }{{\left( {1 - \beta } \right)\left( {2 - \beta^{2} } \right)\left( {2\beta - \lambda \beta + 2} \right)}} \hfill \\ p_{2}^{s2*} - p_{2}^{N*} &= \frac{\begin{array}{l} [ - \beta \left( {2a_{1} + a{}_{2} - c_{2} - 2K_{1} - 2K_{2} - \left( {a_{1} - a_{2} - c_{ 2} - K_{1} } \right)\beta - a_{2} \beta^{2} + K_{2} \beta^{2} } \right)\lambda \hfill \\ + \beta \left( {2a_{1} + 2a{}_{2} - 2c_{2} - 2K_{1} - 4K_{2} + \left( {a_{2} + {\text{c}}_{ 2} } \right)\beta - \left( {a_{2} - c_{2} - 2K_{2} } \right)\beta^{2} } \right)] \hfill \\ \end{array} }{{\left( {1 - \beta } \right)\left( {2 - \beta^{2} } \right)\left( {2\beta - \lambda \beta + 2} \right)}} \hfill \\ \end{aligned} \right. $$

We denote the following:

$$ \begin{aligned} & L_{4} \left( \beta \right) = \left( {a_{2} + {\text{c}}_{ 2} } \right)\beta^{3} + \left( {2a_{1} - a_{2} + c_{2} - 2K_{1} + 2K_{2} } \right)\beta^{2} + 2a_{2} - 2c_{ 2} - 4K_{2} ; \\ & \left\{ \begin{array}{l} \lambda_{1}^{\text{s2}} = \frac{{ - \left( {\left( {a_{2} + {\text{c}}_{ 2} } \right)\beta^{3} + \left( {2a_{1} - a_{2} + c_{2} - 2K_{1} + 2K_{2} } \right)\beta^{2} + 2a_{2} - 2c_{ 2} - 4K_{2} } \right)}}{{\beta \left( {1 - \beta } \right)\left( {2a_{1} - 2K_{1} + a_{2} \beta + {\text{c}}_{ 2} \beta } \right)}} \hfill \\ \lambda_{2}^{s2} = \frac{{2a_{1} + 2a{}_{2} - 2c_{2} - 2K_{1} - 4K_{2} + \left( {a_{2} + {\text{c}}_{ 2} } \right)\beta - \left( {a_{2} - c_{2} - 2K_{2} } \right)\beta^{2} }}{{2a_{1} + a{}_{2} - c_{2} - 2K_{1} - 2K_{2} - \left( {a_{1} - a_{2} - c_{ 2} - K_{1} } \right)\beta - a_{2} \beta^{2} + K_{2} \beta^{2} }} \hfill \\ \end{array} \right.; \\ & \beta_{2} = \frac{{ - a_{2} - c_{ 2} + \sqrt {\hbox{max} \left( {0,\left( {a_{2} + {\text{c}}_{ 2} } \right)^{2} + 8\left( {a_{1} + a{}_{2} - c_{2} - K_{1} - 2K_{2} } \right)\left( {a_{2} - c_{2} - 2K_{2} } \right)} \right)} }}{{2c_{2} + 4K_{2} - 2a_{2} }} < 1. \\ \end{aligned} $$

From \( L_{4} \left( \beta \right) \), we have \( L_{4}^{\prime } \left( \beta \right) \), \( L_{4} \left( \beta \right)\left| {_{\beta = 0} < 0}, \right.L_{4} \left( \beta \right)\left| {_{\beta \to 1} > 0} \right. \), \( \beta_{1} \in \left[ {0,1} \right) \), \( L_{4} \left( \beta \right)=0 \). \( \beta_{1} \in [0,1) \) is solved by \( L_{4} \left( \beta \right)=0 \).

We can obtain

  • If \( \beta \in \left[ {0,\beta_{1} } \right) \), \( \lambda_{1}^{s2} > 0 \), \( \lambda \in \left[ {0,\hbox{min} \left( {\lambda_{1}^{s2} ,1} \right)} \right) \), \( p_{1}^{s2*} < p_{1}^{N*} \), \( \lambda \in \left[ {\hbox{min} \left( {\lambda_{1}^{s2} ,1} \right),1} \right] \), \( p_{1}^{s2*} \ge p_{1}^{N*} \);

  • If \( \beta \in \left[ {\beta_{1} ,1} \right) \), \( p_{1}^{s2*} \ge p_{1}^{N*} \).

  • If \( 2a_{1} + 2a{}_{2} - 2c_{2} - 2K_{1} - 4K_{2} \ge 0 \), \( \lambda_{2}^{s2} > 0 \), \( \lambda \in \left[ {0,\hbox{min} \left( {\lambda_{2}^{s2} ,1} \right)} \right) \), \( p_{2}^{s2*} \ge p_{2}^{N*} \), \( \lambda \in \left[ {\hbox{min} \left( {\lambda_{2}^{s2} ,1} \right),1} \right] \), \( p_{2}^{s2*} \le p_{2}^{N*} \);

  • If \( 2a_{1} + 2a{}_{2} - 2c_{2} - 2K_{1} - 4K_{2} < 0 \), \( \beta \in \left[ {0,\hbox{max} (0,\beta_{2} )} \right) \), \( p_{2}^{s2*} \le p_{2}^{N*} \); \( \beta \in \left[ {\hbox{max} (0,\beta_{2} ),1} \right) \), \( \lambda_{2}^{s2} > 0 \), \( \lambda \in \left[ {0,\hbox{min} \left( {\lambda_{2}^{s2} ,1} \right)} \right) \), \( p_{2}^{s2*} \ge p_{2}^{N*} \), \( \lambda \in \left[ {\hbox{min} \left( {\lambda_{2}^{s2} ,1} \right),1} \right] \), \( p_{2}^{s2*} \le p_{2}^{N*} \);

1.12 Proof of Proposition 8

When \( \lambda = 1 \), with \( d_{2} (p_{1}^{s*} ,p_{2}^{s*} ) < K_{2} \) and \( d_{1} (p_{1}^{s*} ,p_{2}^{s*} ) \ge K_{1} \), we have

$$ \left\{ \begin{array}{l} a_{1} > 2K_{1} + c_{2} \hfill \\ a_{2} < 2K_{2} + c_{2} \hfill \\ \end{array} \right.. $$
$$ \left\{ \begin{array}{l} d_{1} (p_{1}^{s * } ,p_{2}^{s * } ) = \frac{1}{{4 - \beta^{2} }}\left( {2a_{1} + a_{2} \beta - \left( {2 - \beta - \beta^{2} } \right)c_{2} } \right) \hfill \\ d_{2} (p_{1}^{s * } ,p_{2}^{s * } ) = \frac{1}{{4 - \beta^{2} }}\left( {2a_{2} + a_{1} \beta - \left( {2 - \beta - \beta^{2} } \right)c_{2} } \right) \hfill \\ \end{array} \right., $$
$$ d_{1} (p_{1}^{s * } ,p_{2}^{s * } ) + d_{2} (p_{1}^{s * } ,p_{2}^{s * } ) - K_{1} - K_{2} = \frac{1}{2 - \beta }\left( {a_{1} + a_{2} - 2K_{1} - 2K_{2} - 2c_{2} + \beta \left( {K_{1} + K_{2} + 2c_{2} } \right)} \right). $$

We denote the following: \( \beta_{3} =\frac{{ - \left( {a_{1} + a_{2} - 2K_{1} - 2K_{2} - 2c_{2} } \right)}}{{K_{1} + K_{2} + 2c_{2} }}. \)

  1. (1)

    If \( \beta \in [0,\hbox{max} \{ 0,\beta_{3} \} ) \), the capacity shared schemes is under Case 5-1. We have\(p_{1}^{N * } \ge p_{1}^{s1 * } ,p_{2}^{N * } \ge p_{2}^{s1 * } ;\pi_{1}^{N * } < \pi_{1}^{s1 * } ,\pi_{2}^{N * } \ge \pi_{2}^{s1 * } .\)

  2. (2)

    If \( \beta \in [\hbox{max} \{ 0,\beta_{3} \} ,1) \), the capacity shared schemes is under Case 5-2. We have

The optimal pricing strategies of Firm 1 and Firm 2 can be concluded by

$$ \left\{ {\begin{array}{l} {a_{1} - p_{1} + \beta p_{2} - K_{1} = K_{2} - (a_{2} - p_{2} + \beta p_{1} )} \\ {\partial \pi_{2}^{s} /\partial p_{2} = - (p_{2} - c_{2} ) + (a_{2} - p_{2} + \beta p_{1} ) = 0} \\ \end{array} } \right.. $$

We can obtain two optimal solutions as follows:

$$ \begin{aligned} & \left\{ \begin{array}{l} p_{1}^{s2 * } = \frac{{2a_{1} + a_{2} - c_{2} - 2K_{1} - 2K_{2} + a_{2} \beta + c_{2} \beta }}{{(1 - \beta )\left( {2 + \beta } \right)}} \hfill \\ p_{2}^{s2 * } = \frac{{2a_{1} + a_{2} + c_{2} + \left( {a_{1} - c_{2} - K_{1} - K_{2} } \right)\beta }}{{(1 - \beta )\left( {2 + \beta } \right)}} \hfill \\ \end{array} \right.; \\ & \left\{ {\begin{array}{l} {\pi_{1}^{s2*} \, (p_{1}^{s2 * } ) = (p_{1}^{s2 * } - c_{1} )K_{1} + (\lambda p_{1}^{s2 * } - c_{2} )(a_{1} - p_{1}^{s2*} + \beta p_{2}^{s2*} - K_{1} )} \\ {\pi_{2}^{s2*} (p_{2}^{s2 * } ) = (p_{2}^{s2 * } - c_{2} )(a_{1} - p_{2}^{s2 * } + \beta p_{1}^{s2 * } ) + (1 - \lambda )p_{1}^{s2 * } (a_{1} - p_{1}^{s2*} + \beta p_{2}^{s2*} - K_{1} )} \\ \end{array} } \right.. \\ \end{aligned} $$

Now, we can analyze that the prices and profits of Cases 4-1 and 5-1 are as follows:

$$ \left\{ {\begin{array}{l} {p_{1}^{s2 * } - p_{1}^{N * } = \frac{{2\left( {c_{2} + K_{2} } \right)\beta^{2} + 2\left( {a_{1} - K_{1} } \right)\beta + 2a_{2} - 2c_{2} - 4K_{2} }}{{(2 - \beta - \beta^{2} )\left( {2 - \beta^{2} } \right)}}} \\ {p_{2}^{s2 * } - p_{2}^{N * } = \frac{{\left( {c_{2} + K_{2} } \right)\beta^{3} + \left( {a_{1} - K_{1} } \right)\beta^{2} + \left( {a_{2} - c_{2} - 2K_{2} } \right)\beta }}{{(2 - \beta - \beta^{2} )\left( {2 - \beta^{2} } \right)}}=\frac{{\beta \left( {p_{1}^{s2 * } - p_{1}^{1 * } } \right)}}{2}} \\ \end{array} } \right.. $$

We denote the following:

$$ L_{5} \left( \beta \right) = 2\left( {c_{2} + K_{2} } \right)\beta^{2} + 2\left( {a_{1} - K_{1} } \right)\beta + 2a_{2} - 2c_{2} - 4K_{2} . $$

From \( L_{5} \left( \beta \right) \), we have \( 2\left( {c_{2} + K_{2} } \right) > 0,\frac{{\left( {a_{1} - K_{1} } \right)}}{{ - 2\left( {c_{2} + K_{2} } \right)}} < 0 \), \( L_{5} \left( \beta \right)\left| {_{\beta = 0} < 0,} \right.L_{5} \left( \beta \right)\left| {_{\beta \to 1} > 0} \right. \),\( \beta_{4} \in \left[ {0,1} \right) \), \( L_{5} \left( {\beta_{4} } \right)=0 \). \( \beta_{4} = \frac{{ - a_{1} + K_{1} + \sqrt {\left( {a_{1} - K_{1} } \right)^{2} - 4\left( {c_{2} + K_{2} } \right)\left( {a_{2} - c_{2} - 2K_{2} } \right)} }}{{\left( {2c_{2} + 2K_{2} } \right)}} \).

  • If \( \beta \in \left[ {0,\beta_{4} } \right) \), \( p_{1}^{s2 * } < p_{1}^{N * } \); If \( \beta \in \left[ {\beta_{4} ,1} \right) \), \( p_{1}^{s2 * } \ge p_{1}^{N * } \);

  • If \( \beta \in \left[ {0,\beta_{4} } \right) \), \( p_{2}^{s2 * } < p_{2}^{N * } \); If \( \beta \in \left[ {\beta_{4} ,1} \right) \), \( p_{2}^{s2 * } \ge p_{2}^{N * } \);

We also have

$$ \pi_{1}^{s2 * } - \pi_{1}^{N * } = \frac{{L_{6} }}{{\left( {2 - \beta - \beta^{2} } \right)^{2} \left( {2 - \beta^{2} } \right)}}. $$

We denote the following:

$$ \begin{aligned} L_{6} & = \left( { - 2\beta^{4} + 8\beta^{2} - 8} \right)K_{2}^{2} + \left( {2 - \beta^{2} } \right)\left( \begin{array}{l} 4a_{1} + 4a_{2} - 8c_{2} - 8K_{1} + 2a_{1} \beta + 2a_{2} \beta + 4c_{2} \beta - 2a_{1} \beta^{2} \hfill \\ - a_{2} \beta^{2} + 7c_{2} \beta^{2} + 4K_{1} \beta^{2} - a_{2} \beta^{3} - 2c_{2} \beta^{3} - c_{2} \beta^{4} \hfill \\ \end{array} \right)K_{2} \\ & \quad - \left( {a_{2} - c_{2} + a_{1} \beta - K_{1} \beta + c_{2} \beta^{2} } \right)\left( \begin{array}{l} 4a_{1} + 2a_{2} - 6c_{2} - 8K_{1} + 2a_{2} \beta + 4c_{2} \beta + 2K_{1} \beta - 2a_{1} \beta^{2} - a_{2} \beta^{2} \hfill \\ + 5c_{2} \beta^{2} + 4K_{1} \beta^{2} - a_{2} \beta^{3} - 2c_{2} \beta^{3} - c_{2} \beta^{4} \hfill \\ \end{array} \right). \\ \end{aligned} $$

If \( L_{6} < 0 \), \( \pi_{1}^{1 * } > \pi_{1}^{s2 * } \); If \( L_{6} \ge 0 \), \( \pi_{1}^{N * } \le \pi_{1}^{s2 * } \).

We denote the following:

$$ \left\{ \begin{aligned} K_{21}^{s2} = \frac{{\left( { - 2\beta \left( {2 - \beta^{2} } \right)^{2} + \sqrt {2\beta \left( {2 - \beta^{2} } \right)^{2} \left( {4\beta^{4} + 2\beta^{3} - 8\beta^{2} + 1} \right)} } \right)\left( {a_{2} - c_{2} + a_{1} \beta - K_{1} \beta + c_{2} \beta^{2} } \right)}}{{ - 2\beta^{6} + 8\beta^{4} - 8\beta^{2} }} \hfill \\ K_{22}^{s2} =\frac{{\left( { - 2\beta \left( {2 - \beta^{2} } \right)^{2} - \sqrt {2\beta (\left( {2 - \beta^{2} } \right)^{2} \left( {4\beta^{4} + 2\beta^{3} - 8\beta^{2} + 1} \right)} } \right)\left( {a_{2} - c_{2} + a_{1} \beta - K_{1} \beta + c_{2} \beta^{2} } \right)}}{{ - 2\beta^{6} + 8\beta^{4} - 8\beta^{2} }} \hfill \\ \end{aligned} \right.. $$

We also have

$$ \pi_{2}^{s2 * } - \pi_{2}^{N * } =\frac{\begin{array}{l} \left( { - \beta^{6} + 4\beta^{4} - 4\beta^{2} } \right)K_{2}^{2} + 2\beta \left( {2 - \beta^{2} } \right)^{2} \left( {a_{2} - c_{2} + a_{1} \beta - K_{1} \beta + c_{2} \beta^{2} } \right)K_{2} \hfill \\ + \beta \left( {2\beta^{2} + \beta - 4} \right)\left( {a_{2} - c_{2} + a_{1} \beta - K_{1} \beta + c_{2} \beta^{2} } \right)^{2} \hfill \\ \end{array} }{{\left( {2 - \beta - \beta^{2} } \right)^{2} \left( {2 - \beta^{2} } \right)^{2} }}. $$

Thus, when \( \beta \in \left[ {0,0.39} \right] \), if \( K_{2} \in \left( {K_{21}^{s2} ,K_{22}^{s2} } \right) \), \( \pi_{2}^{s2 * } \ge \pi_{2}^{N * } \).

If \( K_{2} \in \left[ {0,K_{21}^{s2} } \right] \cup \left[ {K_{22}^{s2} + \infty } \right) \), \( \pi_{2}^{s2 * } \le \pi_{2}^{N * } \). When \( \beta \in \left( {0.39,1} \right) \), \( \pi_{2}^{s2 * } < \pi_{2}^{N * } \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Wang, K., Wang, Z. et al. Revenue sharing contracts for horizontal capacity sharing under competition. Ann Oper Res 291, 731–760 (2020). https://doi.org/10.1007/s10479-018-3005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3005-x

Keywords

Navigation