Skip to main content
Log in

Managing the supply disruption risk: option contract or order commitment contract?

  • S.I.: RealCaseOR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Supply disruption is a common phenomenon in many industries. Motivated by the cases of “Nokia and Ericsson” and “HP”, our study investigates how a core firm utilizes the option contract and the order commitment contract to share and mitigate the supply disruption risk. In a decentralized supply chain, we establish the Stackelberg game models to explore the option and order commitment contracts in single and dual sourcing cases, respectively. We obtain the optimal production and procurement strategies under the two types of contracts, after which we investigate the value of the option contract and the optimal contract selection strategy of the core firm. The results demonstrate that the firm is insulated from the supply disruption risk, and that its profit is independent of the disruption risk and production investment under the option contract. In the single or dual sourcing case, the preference of the core firm for the two contracts depends on the disruption risk level and switches back and forth as the probability of disruption increases. A relatively low option price or a medium-risk operational environment heightens the value of the option contract; hence, the core firm is likely to choose the option contract correspondingly. When a reliable supplier is available, the existence of a reliable supplier is always beneficial to the core firm, however is a threat to an unreliable supplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. http://www.bbc.com/news/business-36069349, 2016–04–18.

  2. https://www.phonearena.com/news/Huawei-admits-using-different-memory-chips-on-the-P10-and-P10-Plus-blames-shortage-in-supply-chain_id93374, 2017–04–27.

  3. In this paper, we always view the supplier as a ‘‘male’’ and the core firm as a ‘‘female”. Without further instruction, we use “firm” to denote “core firm” in our paper.

  4. The core firm is either a manufacturer or a retailer. If the firm is a manufacturer, the supplier may supply components or parts to the firm. If the firm is a retailer, the supplier may supply products to the firm. For convenience, we assume in this paper that the core firm orders “products” from its supplier(s).

  5. The reason is as follows. Under the option contract, the firm have no right of emergency ordering. If we want to explore the value of the option contract, then we shouldn’t consider the right of emergency ordering under the order commitment contract, either. Therefore, without emergency ordering, the order commitment contract degenerates into the wholesale price contract.

References

  • Babich, V., Burnetas, A. N., & Ritchken, P. H. (2007). Competition and diversification effects in supply chains with supplier default risk. Manufacturing and Service Operations Management,9(2), 123–146.

    Google Scholar 

  • Burnetas, A., & Ritchken, P. (2005). Option pricing with downward-sloping demand curves: The case of supply chain options. Management Science,51(4), 566–580.

    Google Scholar 

  • Cai, J., Zhong, M., Shang, J., & Huang, W. (2017). Coordinating VMI supply chain under yield uncertainty: Option contract, subsidy contract, and replenishment tactic. International Journal of Production Economics,185, 196–210.

    Google Scholar 

  • Cheaitou, A., & Cheaytou, R. (2018). A two-stage capacity reservation supply contract with risky supplier and forecast updating. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2018.01.019.

    Article  Google Scholar 

  • Chen, J. Y., Dada, M., & Hu, Q. (2016). Designing supply contracts: buy-now, reserve, and wait-and-see. IIE Transactions,48(10), 881–900.

    Google Scholar 

  • Chen, X., Hao, G., & Li, L. (2014). Channel coordination with a loss-averse retailer and option contracts. International Journal of Production Economics,150, 52–57.

    Google Scholar 

  • Chen, X., & Shen, Z. J. (2012). An analysis of a supply chain with options contracts and service requirements. IIE Transactions,44(10), 805–819.

    Google Scholar 

  • Cheng, Z., Yang, X., & Tsay, A. A. (2017). Designing structured supply contracts under demand and price uncertainty in an open supply chain. Annals of Operations Research,257(1–2), 519–536.

    Google Scholar 

  • Chiu, C. H., & Choi, T. M. (2016). Supply chain risk analysis with mean-variance models: A technical review. Annals of Operations Research,240(2), 489–507.

    Google Scholar 

  • Dada, M., Petruzzi, N. C., & Schwarz, L. B. (2007). A newsvendor’s procurement problem when suppliers are unreliable. Manufacturing and Service Operations Management,9(1), 9–32.

    Google Scholar 

  • Dong, L., & Tomlin, B. (2012). Managing disruption risk: The interplay between operations and insurance. Management Science,58(10), 1898–1915.

    Google Scholar 

  • DuHadway, S., Carnovale, S., & Hazen, B. (2017). Understanding risk management for intentional supply chain disruptions: Risk detection, risk mitigation, and risk recovery. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2452-0.

    Article  Google Scholar 

  • Fu, Q. (2015). The impact of alternative performance measures on portfolio procurement with contingent option contracts. International Journal of Production Economics,167, 128–138.

    Google Scholar 

  • Fu, Q., Lee, C. Y., & Teo, C. P. (2010). Procurement management using option contracts: random spot price and the portfolio effect. IIE Transactions,42(11), 793–811.

    Google Scholar 

  • Guo, S., Zhao, L., & Xu, X. (2016). Impact of supply risks on procurement decisions. Annals of Operations Research,241, 411–430.

    Google Scholar 

  • Gurnani, H., Ramachandran, K., Ray, S., & Xia, Y. (2013). Ordering behavior under supply risk: An experimental investigation. Manufacturing and Service Operations Management,16(1), 61–75.

    Google Scholar 

  • Hu, B., & Kostamis, D. (2015). Managing supply disruptions when sourcing from reliable and unreliable suppliers. Production and Operations Management,24(5), 808–820.

    Google Scholar 

  • Hu, X., Gurnani, H., & Wang, L. (2013). Managing risk of supply disruptions: Incentives for capacity restoration. Production and Operations Management, 22(1), 137–150.

    Google Scholar 

  • Huang, H., Shen, X., & Xu, H. (2016). Procurement contracts in the presence of endogenous disruption risk. Decision Sciences,47(3), 437–472.

    Google Scholar 

  • Köle, H., & Bakal, I. S. (2017). Value of information through options contract under disruption risk. Computers & Industrial Engineering,103, 85–97.

    Google Scholar 

  • Kumar, M., Basu, P., & Avittathur, B. (2018). Pricing and sourcing strategies for competing retailers in supply chains under disruption risk. European Journal of Operational Research,265(2), 533–543.

    Google Scholar 

  • Latour, A. (2001). Trial by fire: A blaze in Albuquerque sets off major crisis for cell-phone giants. Wall Street Journal,1(29), 2001.

    Google Scholar 

  • Lee, J. (2017). Samsung Galaxy S8 Batteries to be Made By Sony’s Battery Supplier. Available at http://www.itechpost.com/articles/80350/20170203/samsung-galaxy-s8-batteries-made-sonys-battery-supplier.htm. Accessed September 9 2017.

  • Li, X. (2017). Optimal procurement strategies from suppliers with random yield and all-or-nothing risks. Annals of Operations Research,257, 167–181.

    Google Scholar 

  • Li, X., & Li, Y. (2016). On the loss-averse dual-sourcing problem under supply disruption. Computers & Operations Research. https://doi.org/10.1016/j.cor.2016.12.011.

    Article  Google Scholar 

  • Li, Y., Zhen, X., Qi, X., & Cai, G. (2016). Penalty and financial assistance in a supply chain with supply disruption. Omega,61, 167–181.

    Google Scholar 

  • Li, J. C., Zhou, Y. W., & Huang, W. (2017). Production and procurement strategies for seasonal product supply chain under yield uncertainty with commitment-option contracts. International Journal of Production Economics,183, 208–222.

    Google Scholar 

  • Luo, M., Li, G., Wan, C. J., Qu, R., & Ji, P. (2015). Supply chain coordination with dual procurement sources via real-option contract. Computers & Industrial Engineering,80, 274–283.

    Google Scholar 

  • Matta, R. (2017). Contingency planning during the formation of a supply chain. Annals of Operations Research,257, 45–75.

    Google Scholar 

  • Muthukrishnan, R., & Shulman, J. A. (2006). Understanding supply chain risk: a McKinsey global survey. The McKinsey Quarterly,9, 1–9.

    Google Scholar 

  • Nagali, V., Hwang, J., Sanghera, D., Gaskins, M., Pridgen, M., Thurston, T., et al. (2008). Procurement risk management (PRM) at Hewlett-Packard company. Interfaces,38(1), 51–60.

    Google Scholar 

  • Qin, F., Rao, U. S., Gurnani, H., & Bollapragada, R. (2014). Role of random capacity risk and the retailer in decentralized supply chains with competing suppliers. Decision Sciences,45(2), 255–279.

    Google Scholar 

  • Ray, P., & Jenamani, M. (2016). Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach. Annals of Operations Research,237, 237–262.

    Google Scholar 

  • Saghafian, S., & Van Oyen, M. P. (2012). The value of flexible backup suppliers and disruption risk information: Newsvendor analysis with recourse. IIE Transactions,44(10), 834–867.

    Google Scholar 

  • Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain disruptions: A review. IIE Transactions,48(2), 89–109.

    Google Scholar 

  • Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics,103(2), 451–488.

    Google Scholar 

  • Tang, S. Y., Gurnani, H., & Gupta, D. (2014). Managing disruptions in decentralized supply chains with endogenous supply process reliability. Production and Operations Management, 23(7), 1198–1211.

    Google Scholar 

  • Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management Science, 52(5), 639–657.

    Google Scholar 

  • Tomlin, B. (2009). Disruption-management strategies for short life-cycle products. Naval Research Logistics (NRL),56(4), 318–347.

    Google Scholar 

  • Veysey, S. (2011). Majority of companies suffered supply chain disruption in 2011: Survey. Business Insurance. https://www.businessinsurance.com/article/20111102/NEWS06/111109973/Majority-of-companies-suffered-supply-chain-disruption-in-2011-Survey. Accessed 13 Aug 2018.

  • Wang, C., & Chen, X. (2017). Option pricing and coordination in the fresh produce supply chain with portfolio contracts. Annals of Operations Research,248(1–2), 471–491.

    Google Scholar 

  • Wang, Y., Gilland, W., & Tomlin, B. (2010). Mitigating supply risk: Dual sourcing or process improvement? Manufacturing and Service Operations Management,12(3), 489–510.

    Google Scholar 

  • Wang, C., & Yin, Z. (2018). Using backup supply with responsive pricing to mitigate disruption risk for a risk-averse firm. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1427901.

    Article  Google Scholar 

  • Xia, Y., Ramachandran, K., & Gurnani, H. (2011). Sharing demand and supply risk in a supply chain. IIE Transactions,43(6), 451–469.

    Google Scholar 

  • Xu, H. (2010). Managing production and procurement through option contracts in supply chains with random yield. International Journal of Production Economics,126(2), 306–313.

    Google Scholar 

  • Yin, Z., & Wang, C. (2017). Strategic cooperation with a backup supplier for the mitigation of supply disruptions. International Journal of Production Research. https://doi.org/10.1080/00207543.2017.1410246.

    Article  Google Scholar 

  • Yuan, X., Bi, G., Zhang, B., & Yu, Y. (2018). Option contract strategies with risk-aversion and emergency purchase. International Transactions in Operational Research. https://doi.org/10.1111/itor.12519.

    Article  Google Scholar 

  • Zhao, Y., Choi, T. M., Cheng, T. C. E., & Wang, S. (2018). Supply option contracts with spot market and demand information updating. European Journal of Operational Research,266(3), 1062–1071.

    Google Scholar 

  • Zhao, Y., Ma, L., Xie, G., & Cheng, T. E. (2013). Coordination of supply chains with bidirectional option contracts. European Journal of Operational Research,229(2), 375–381.

    Google Scholar 

  • Zhao, Y., Wang, S., Cheng, T. E., Yang, X., & Huang, Z. (2010). Coordination of supply chains by option contracts: A cooperative game theory approach. European Journal of Operational Research,207(2), 668–675.

    Google Scholar 

  • Zhen, X., Li, Y., Cai, G. G., & Shi, D. (2016). Transportation disruption risk management: Business interruption insurance and backup transportation. Transportation Research Part E: Logistics and Transportation Review,90, 51–68.

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincerest thanks to the editors and the anonymous referees for their constructive comments and suggestions which greatly improved this paper. We also acknowledge the support of (i) National Natural Science Foundation of China (NSFC), Research Fund Nos. 71372100 and 71725004, for Y. J. Li; (ii) National Natural Science Foundation of China (NSFC), Research Fund Nos. 71672125 and 71704001, for K. L. Xue; (iii) National Natural Science Foundation of China (NSFC), Research Fund Nos. 71301045, 71571117 and 71602115 for X. P. Zhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Li.

Additional information

Prepared for Annals of Operations Research’s special issue of Advances of Real-Cases Based Operations Research.

Appendix

Appendix

Proof of Proposition 1

Taking the first order and second order derivatives of \( \pi_{S}^{o} (Z_{o} |Q_{o} ) \) with respect to Zo, we have

$$ \begin{aligned} \frac{{\partial \pi_{S}^{o} (Z_{o} { | }Q_{o} )}}{{\partial Z_{o} }} & = - c + (1 - \beta )c_{e} (1 - F(Z_{o} )), \\ \frac{{\partial^{2} \pi_{S}^{o} (Z_{o} |Q_{o} )}}{{\partial Z_{o}^{2} }} & = - (1 - \beta )c_{e} f(Z_{o} ) < 0. \\ \end{aligned} $$

Then, \( \pi_{S}^{o} (Z_{o} |Q_{o} ) \) is concave in Zo. By the first order condition (FOC), we can obtain \( F(Z_{o}^{*} ) = 1 - \frac{c}{{(1 - \beta )c_{e} }} \). Given that Z*o  ≤ Qo, then the optimal reaction of the supplier satisfies \( F(Z_{o}^{*} ) = \hbox{min} \{ F(Q_{o} ),1 - \frac{c}{{(1 - \beta )c_{e} }}\} \).

Taking the first order and second order derivatives of πoB (Qo) with respect to Qo, we have

$$ \begin{aligned} \frac{{\partial \pi_{B}^{o} (Q_{o} )}}{{\partial Q_{o} }} & = - c_{o} + (r - w)(1 - F(Q_{o} )), \\ \frac{{\partial^{2} \pi_{B}^{o} (Q_{o} )}}{{\partial Q_{o}^{2} }} & = - (r - w)f(Q_{o} ) < 0. \\ \end{aligned} $$

Then, πoB (Qo) is concave in Qo. By the FOC, \( F(Q_{o}^{*} ) = 1 - \frac{{c_{o} }}{r - w} \). Then, the optimal production quantity of the supplier is \( F(Z_{o}^{*} ) = \hbox{min} \left\{ {F(Q_{o}^{*} ),1 - \frac{c}{{(1 - \beta )c_{e} }}} \right\} \).

When \( 1 - \frac{{c_{o} }}{r - w} \le 1 - \frac{c}{{(1 - \beta )c_{e} }} \), it can be verified that \( \beta \le 1 - \frac{(r - w)c}{{c_{e} c_{o} }} \). Then we can obtain \( F(Q_{o}^{*} ) = F(Z_{o}^{*} ) = 1 - \frac{{c_{o} }}{r - w} \). When \( 1 - \frac{{c_{o} }}{r - w} > 1 - \frac{c}{{(1 - \beta )c_{e} }} \), that is, \( \beta > 1 - \frac{(r - w)c}{{c_{e} c_{o} }} \), then we can achieve Q*o  > Z*o , \( F(Q_{o}^{*} ) = 1 - \frac{{c_{o} }}{r - w} \) and \( F(Z_{o}^{*} ) = 1 - \frac{c}{{(1 - \beta )c_{e} }} \). We use \( \hat{\beta }_{o} \) to denote \( 1 - \frac{(r - w)c}{{c_{e} c_{o} }} \), then we can achieve Proposition 1. □

Proof of Corollary 1

The proof of Corollary 1 is omitted. □

Proof of Proposition 2

Taking the first order and second order derivatives of \( \pi_{S}^{f} (Z_{f} |Q_{f} ) \) with respect to Zf, we have

$$ \begin{aligned} \frac{{\partial \pi_{S}^{f} (Z_{f} { | }Q_{f} )}}{{\partial Z_{f} }} & = - c + (1 - \beta )w_{e} (1 - F(Z_{f} )), \\ \frac{{\partial^{2} \pi_{S}^{f} (Z_{f} |Q_{f} )}}{{\partial Z_{f}^{2} }} & = - (1 - \beta )w_{e} F(Z_{f} ) < 0. \\ \end{aligned} $$

Then, \( \pi_{S}^{f} (Z_{f} |Q_{f} ) \) is concave inZf. By the FOC, we can derive \( F(Z_{f}^{*} ) = 1 - \frac{c}{{(1 - \beta )w_{e} }} \). Because ofZ*f  ≥ Qf, the optimal reaction of the supplier satisfies \( F(Z_{f}^{*} ) = \hbox{max} \left\{ {F(Q_{f} ),1 - \frac{c}{{(1 - \beta )w_{e} }}} \right\} \).

Taking the second order derivative of \( \pi_{B}^{f} (Z_{f} |Q_{f} ) \) with respect to Qf, we have

$$ \frac{{\partial^{2} \pi_{B}^{f} (Q_{f} )}}{{\partial Q_{f}^{2} }} = \left\{ {\begin{array}{*{20}l} { - (1 - \beta )rf(Q_{f} ) < 0} \hfill & {if} \hfill & {Z_{f}^{*} = Q_{f} } \hfill \\ { - (1 - \beta )w_{e} f(Q_{f} ) { < 0}} \hfill & {if} \hfill & {Z_{f}^{*} > Q_{f} } \hfill \\ \end{array} } \right.. $$

πfB (Qf) is concave in Qf. The first order derivative of πfB (Qf) relies on the optimal reaction of the supplier. Thus, the first order optimality condition is

$$ \frac{{\partial \pi_{B}^{f} (Q_{f} )}}{{\partial Q_{f} }} = \left\{ {\begin{array}{*{20}l} {(1 - \beta )r(1 - F(Q_{f} )) - (1 - \beta )w} \hfill & {if} \hfill & {Z_{f}^{*} = Q_{f} } \hfill \\ { - (1 - \beta )w + (1 - \beta )w_{e} (1 - F(Q_{f} ) )} \hfill & {if} \hfill & {Z_{f}^{*} > Q_{f} } \hfill \\ \end{array} } \right.. $$

The optimal order quantity Q*f of the firm satisfies

$$ F(Q_{f}^{*} )) = \left\{ {\begin{array}{*{20}l} {1 - \frac{w}{r}} \hfill & {if} \hfill & {Z_{f}^{*} = Q_{f}^{*} } \hfill \\ {1 - \frac{w}{{w_{e} }}} \hfill & {if} \hfill & {Z_{f}^{*} > Q_{f}^{*} } \hfill \\ \end{array} } \right.. $$

Then, we can obtain the optimal production quantity Z*f of the supplier as follows

$$ F(Z_{f}^{*} ) = \hbox{max} \left\{ {F(Q_{f}^{*} ),1 - \frac{c}{{(1 - \beta )w_{e} }}} \right\}. $$

Next, we analyze the optimal decisions of the supplier and firm as shown below.

  1. (1)

    When \( 1 - \frac{w}{r} < 1 - \frac{c}{{(1 - \beta )w_{e} }} \), then \( \beta < 1 - \frac{rc}{{ww_{e} }} \). Given that 0 ≤ β ≤ 1, then wwe > rc. Therefore, \( F(Z_{f}^{*} ) = 1 - \frac{c}{{(1 - \beta )w_{e} }} > 1 - \frac{w}{r} > 1 - \frac{w}{{w_{e} }} \). The optimal decisions satisfy Z*f  > Q*f , \( Q_{f}^{*} = F^{ - 1} \left( {1 - \frac{w}{{w_{e} }}} \right) \) and \( Z_{f}^{*} = F^{ - 1} \left( {1 - \frac{c}{{(1 - \beta )w_{e} }}} \right). \)

  2. (2)

    When \( 1 - \frac{w}{{w_{e} }} < 1 - \frac{c}{{(1 - \beta )w_{e} }} \le 1 - \frac{w}{r} \) and \( \beta < 1 - \frac{c}{w} \), then \( 1 - \frac{rc}{{ww_{e} }} \le \beta < 1 - \frac{c}{w} \). Given that β ≥ 0, β should satisfy \( \hbox{max} \left\{ {1 - \frac{rc}{{ww_{e} }},0} \right\} \le \beta < 1 - \frac{c}{w} \). If the firm chooses to order \( Q_{f}^{H} : = Q_{f}^{*} = F^{ - 1} \left( {1 - \frac{w}{r}} \right) \), then the supplier decides to produce \( Z_{f}^{H} : = Z_{f}^{*} = F^{ - 1} \left( {1 - \frac{w}{r}} \right) = Q_{f}^{H} \). If the firm chooses to order \( Q_{f}^{L} : = Q_{f}^{*} = F^{ - 1} \left( {1 - \frac{w}{{w_{e} }}} \right) \), then the suppler decides to produce \( Z_{f}^{L} : = Z_{f}^{*} = F^{ - 1} \left( {1 - \frac{c}{{(1 - \beta )w_{e} }}} \right) > Q_{f}^{L} \). We assume that πfLB and πfHB represent the expected profits of the firm in the above two situations, respectively. Then,

    $$ \begin{aligned} \pi_{B}^{fH} & = (1 - \beta )r\left( {Q_{f}^{H} - \int_{0}^{{Q_{f}^{H} }} {F(x)dx} } \right) - (1 - \beta )wQ_{f}^{H} , \\ \pi_{B}^{fL} & = (1 - \beta )(r - w_{e} )\left( {Z_{f}^{L} - \int_{0}^{{Z_{f}^{L} }} {F(x)dx} } \right) - (1 - \beta )wQ_{f}^{L} \\ & \quad + (1 - \beta )w_{e} \left( {Q_{f}^{L} - \int_{0}^{{Q_{f}^{L} }} {F(x)dx} } \right), \\ \pi_{B}^{fH} - \pi_{B}^{fL} & = (1 - \beta )r\left( {Q_{f}^{H} - \int_{0}^{{Q_{f}^{H} }} {F(x)dx} } \right) - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & - (1 - \beta )(r - w_{e} )\left( {Z_{f}^{L} - \int_{0}^{{Z_{f}^{L} }} {F(x)dx} } \right) - (1 - \beta )w_{e} \left( {Q_{f}^{L} - \int_{0}^{{Q_{f}^{L} }} {F(x)dx} } \right). \\ \end{aligned} $$

We assume that

$$ \begin{aligned} H(t) & = (1 - \beta )r\left( {Q_{f}^{H} - \int_{0}^{{Q_{f}^{H} }} {F(x)dx} } \right) - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & \quad - (1 - \beta )(r - w_{e} )\left( {t - \int_{0}^{t} {F(x)dx} } \right) - (1 - \beta )w_{e} \left( {Q_{f}^{L} - \int_{0}^{{Q_{f}^{L} }} {F(x)dx} } \right). \\ \end{aligned} $$

Then,

$$ \begin{aligned} H\left( {Q_{f}^{L} } \right) & = (1 - \beta )r\left( {\frac{w}{r}Q_{f}^{H} - \frac{w}{{w_{e} }}Q_{f}^{L} + \int_{{Q_{f}^{L} }}^{{Q_{f}^{H} }} {xf(x)dx} } \right) - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & \quad > (1 - \beta )r\left[ {\frac{w}{r}Q_{f}^{H} - \frac{w}{{w_{e} }}Q_{f}^{L} + Q_{f}^{L} \left( {F\left( {Q_{f}^{H} } \right) - F\left( {Q_{f}^{L} } \right)} \right)} \right] - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & \quad = (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & \quad = 0, \\ H\left( {Q_{f}^{H} } \right) & = (1 - \beta )w_{e} \left( {\frac{w}{r}Q_{f}^{H} - \frac{w}{{w_{e} }}Q_{f}^{L} + \int_{{Q_{f}^{L} }}^{{Q_{f}^{H} }} {xf(x)dx} } \right) - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & \quad < (1 - \beta )w_{e} \left[ {\frac{w}{r}Q_{f}^{H} - \frac{w}{{w_{e} }}Q_{f}^{L} + Q_{f}^{H} \left( {F\left( {Q_{f}^{H} } \right) - F\left( {Q_{f}^{L} } \right)} \right)} \right] - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & \quad = (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{L} } \right) \\ & \quad = 0. \\ \end{aligned} $$

Given that \( \frac{dH(t)}{dt} = - (1 - \beta )(r - w_{e} )(1 - F(t)) < 0 \), H(t) is monotone decreasing in t when t ∊ [QLf QHf ]. From the above analysis, we get H(QLf ) > 0 and H(QHf ) < 0. Therefore, there exists a unique t0 ∊ [QLf QHf ] which satisfies H(t0) = 0. We know that \( F(Z_{f}^{L} ) = 1 - \frac{c}{{(1 - \beta )w_{e} }} \). Hence, ZLf is decreasing inβ. When \( \beta = 1 - \frac{rc}{{ww_{e} }} \), then \( F(Z_{f}^{H} ) = 1 - \frac{w}{r} = F(Q_{f}^{H} ) \). When \( \beta = 1 - \frac{c}{w} \), then \( F(Z_{f}^{L} ) = 1 - \frac{w}{{w_{e} }} = F(Q_{f}^{L} ) \). Hence, there exists a unique \( \hat{\beta }_{f} \) that satisfies \( F(t_{0} ) = 1 - \frac{c}{{(1 - \hat{\beta }_{f} )w_{e} }} \) and H(t0) = 0. In the following, we compare πfHB and πfLB in the following two situations.

  1. A.

    When \( 1 - \frac{rc}{{ww_{e} }} < \beta < \hat{\beta }_{f} \), then H(t) < 0 and πfHB  - πfLB  < 0. Hence, we can obtain \( F(Q_{f}^{*} ) = 1 - \frac{w}{{w_{e} }} \) and \( F(Z_{f}^{*} ) = 1 - \frac{c}{{(1 - \beta )w_{e} }} \).

  2. B.

    When \( \hat{\beta }_{f} \le \beta < 1 - \frac{c}{w} \), then H(t) ≥ 0 and πfHB  - πfLB  ≥ 0. Hence, we can obtain \( F(Z_{f}^{*} ) = F(Q_{f}^{*} ) = 1 - \frac{w}{r} \).

Based on (1) and (2) above, the Proposition 2 can be derived. □

Proof of Corollary 2

When the stochastic demand follows a uniform distribution, we assume that \( f(\zeta ) = \frac{1}{D} \), ζ ∊ [0, D], then, \( F(\zeta ) = \frac{\zeta }{D} \), F−1(x) = Dx, \( Q_{f}^{H} = D\left( {1 - \frac{w}{r}} \right) \), \( Q_{f}^{L} = D\left( {1 - \frac{w}{{w_{e} }}} \right) \), \( t_{0} = D\left( {1 - \frac{c}{{(1 - \hat{\beta }_{f} )w_{e} }}} \right) \) and

$$ H(t_{0} ) = (1 - \beta )D\left[ {\frac{r}{2}\left( {1 - \frac{{w^{2} }}{{r^{2} }}} \right) - w\left( {\frac{w}{{w_{e} }} - \frac{w}{r}} \right) - (r - w_{e} )\frac{{t_{0} }}{D}\left( {1 - \frac{{t_{0} }}{2D}} \right) - \frac{{w_{e} }}{2}\left( {1 - \frac{{w^{2} }}{{w_{e}^{2} }}} \right)} \right] = 0. $$

Substituting t0 with \( D\left( {1 - \frac{c}{{(1 - \hat{\beta }_{f} )w_{e} }}} \right) \), we can obtain

$$ \frac{r}{2}\left( {1 - \frac{{w^{2} }}{{r^{2} }}} \right) - w\left( {\frac{w}{{w_{e} }} - \frac{w}{r}} \right) - \frac{{(r - w_{e} )}}{2}\left( {1 - \frac{{c^{2} }}{{(1 - \hat{\beta }_{f} )^{2} w_{e}^{2} }}} \right) - \frac{{w_{e} }}{2}\left( {1 - \frac{{w^{2} }}{{w_{e}^{2} }}} \right) = 0. $$

By performing a simple algebraic operation, we can get \( \hat{\beta }_{f} = 1 - \frac{c}{w}\sqrt {\frac{r}{{w_{e} }}} \). □

Proof of Proposition 3

(I) Under the option contract, (1) based on the expected profit function of the firm, it is easy to conclude that πo*B is independent of β. (2) For the supplier, (a) when \( 0 \le \beta < \hat{\beta }_{o} \), then \( \frac{{\partial \pi_{S}^{o * } }}{\partial \beta } = - c_{e} (Z_{o}^{*} - \int_{0}^{{Z_{o}^{*} }} {F(x)dx} ) < 0 \). Hence, πo*S is decreasing when \( \beta \in [0,\hat{\beta }_{o} ) \). (b) When \( \hat{\beta }_{o} < \beta < 1 - \frac{c}{w} \), then

$$ \begin{aligned} \frac{{\partial \pi_{S}^{o * } }}{\partial \beta } & = - c\frac{{dZ_{o}^{*} }}{d\beta } - c_{e} \left( {Z_{o}^{*} - \int_{0}^{{Z_{o}^{*} }} {F(x)dx} } \right) + (1 - \beta )c_{e} (1 - F(Z_{o}^{*} ))\frac{{dZ_{o}^{*} }}{d\beta } \\ & \quad = - c_{e} \left( {Z_{o}^{*} - \int_{0}^{{Z_{o}^{*} }} {F(x)dx} } \right) \\ & \quad < 0. \\ \end{aligned} $$

Hence, πo*S is decreasing when \( \beta \in [\hat{\beta }_{o} ,1 - \frac{c}{w}) \). Now, we investigate the continuity of πo*S when \( \beta = \hat{\beta }_{o} \). Given that

$$ \begin{aligned} \pi_{S}^{o * } \left( {Z_{o}^{*} } \right)|_{{\beta = \hat{\beta }_{o}^{ - } }} & = - cQ_{o}^{*} + c_{o} Q_{o}^{*} + (w - \beta c_{e} )\left( {Q_{o}^{*} - \int_{0}^{{Q_{o}^{*} }} {F(x)dx} } \right), \\ \pi_{S}^{o * } \left( {Z_{o}^{*} } \right)|_{{\beta = \hat{\beta }_{o}^{ + } }} & = - cQ_{o}^{*} + c_{o} Q_{o}^{*} + (w - \beta c_{e} )\left( {Q_{o}^{*} - \int_{0}^{{Q_{o}^{*} }} {F(x)dx} } \right), \\ \end{aligned} $$

then \( \pi_{S}^{o * } (Z_{o}^{*} )|_{{\beta = \hat{\beta }_{o}^{ - } }} = \pi_{S}^{o * } (Z_{o}^{*} )|_{{\beta = \hat{\beta }_{o}^{ + } }} \). Hence, πo*S is continuous when \( \beta = \hat{\beta }_{o} \). Therefore, πo*S is decreasing when \( \beta \in [0,1 - \frac{c}{w}) \). Given that πo*B is independent of β, the profit of the whole supply chain, πo*SC decreases when \( \beta \in [0,1 - \frac{c}{w}) \).

(II) Under the order commitment contract,

(1) for the supplier, (a) when \( 0 < \beta < \hat{\beta }_{f} \), then

$$ \begin{aligned} \frac{{d\pi_{S}^{f} }}{d\beta } & = - c\frac{{dZ_{f}^{*} }}{d\beta } - wQ_{f}^{*} + w_{e} \left( {Q_{f}^{*} - \int_{0}^{{Q_{f}^{*} }} {F(x)dx} } \right) - w_{e} \left( {Z_{f}^{*} - \int_{0}^{{Z_{f}^{*} }} {F(x)dx} } \right) \\ & \quad + (1 - \beta )w_{e} \left( {1 - F\left( {Z_{f}^{*} } \right)} \right)\frac{{dZ_{f}^{*} }}{d\beta } \\ &= - wQ_{f}^{*} - w_{e} \left( {Z_{f}^{*} - Q_{f}^{*} - \int_{{Q_{f}^{*} }}^{{Z_{f}^{*} }} {F(x)dx} } \right) \\ & \quad < 0. \\ \end{aligned} $$

Hence, πfS is decreasing when \( \beta \in [0,\hat{\beta }_{f} ] \). (b) When \( \hat{\beta }_{f} < \beta < 1 - \frac{c}{w} \), then \( \frac{{d\pi_{S}^{f} }}{d\beta } = - wQ_{f}^{*} { < }0 \). Hence, πfS is decreasing when \( \beta \in [\hat{\beta }_{f} ,1 - \frac{c}{w}) \). Now, we investigate the continuity of πfS when \( \beta = \hat{\beta }_{f} \). Given that

$$ \begin{aligned} \pi_{S}^{f} \left( {Z_{f}^{*} } \right))|_{{\beta = \hat{\beta }_{f}^{ - } }} & = - ct_{0} + (1 - \beta )wQ_{f}^{L} + (1 - \beta )w_{e} \left( {t_{0} - Q_{f}^{L} - \int_{{Q_{f}^{L} }}^{{t_{0} }} {F(x)dx} } \right), \\ \pi_{S}^{f} \left( {Z_{f}^{*} } \right)|_{{\beta = \hat{\beta }_{f}^{ + } }} & = - cQ_{f}^{H} + (1 - \beta )wQ_{f}^{H} , \\ \end{aligned} $$

then \( \pi_{S}^{f} (Z_{f}^{*} )|_{{\beta = \hat{\beta }_{f}^{ - } }} \ne \pi_{S}^{f} (Z_{f}^{*} )|_{{\beta = \hat{\beta }_{f}^{ + } }} \). Hence, πfS is not continuous when \( \beta = \hat{\beta }_{f} \). Therefore, πfS decreases when β is in the domain of \( [0,\hat{\beta }_{f} ] \) and \( [\hat{\beta }_{f} ,1 - \frac{c}{w}) \).

(2) For the firm, (a) when \( 0 < \beta < \hat{\beta }_{f} \), then

$$ \frac{{d\pi_{B}^{f} }}{d\beta } = \left( {\frac{r}{{w_{e} }} - 1} \right)c\frac{{dZ_{f}^{*} }}{d\beta } - (r - w_{e} )\left( {Z_{f}^{*} - \int_{0}^{{Z_{f}^{*} }} {F(x)dx} } \right) + wQ_{f}^{*} - w_{e} \left( {Q_{f}^{*} - \int_{0}^{{Q_{f}^{*} }} {F(x)dx} } \right). $$

Given that

$$ \begin{aligned} H\left( {Z_{f}^{*} } \right) & = (1 - \beta )r\left( {Q_{f}^{H} - \int_{0}^{{Q_{f}^{H} }} {F(x)dx} } \right) - (1 - \beta )w\left( {Q_{f}^{H} - Q_{f}^{*} } \right) \\ & \quad - (1 - \beta )(r - w_{e} )\left( {Z_{f}^{*} - \int_{0}^{{Z_{f}^{*} }} {F(x)dx} } \right) - (1 - \beta )w_{e} \left( {Q_{f}^{*} - \int_{0}^{{Q_{f}^{*} }} {F(x)dx} } \right) < 0, \\ \end{aligned} $$

that is,

$$ \begin{aligned} & - (r - w_{e} )\left( {Z_{f}^{*} - \int_{0}^{{Z_{f}^{*} }} {F(x)dx} } \right) - w_{e} \left( {Q_{f}^{*} - \int_{0}^{{Q_{f}^{*} }} {F(x)dx} } \right) \\ & < - r\left( {Q_{f}^{H} - \int_{0}^{{Q_{f}^{H} }} {F(x)dx} } \right) + w\left( {Q_{f}^{H} - Q_{f}^{*} } \right), \\ \end{aligned} $$

then

$$ \begin{aligned} \frac{{d\pi_{B}^{f} }}{d\beta } & = \left( {\frac{r}{{w_{e} }} - 1} \right)c\frac{{dZ_{f}^{*} }}{d\beta } - (r - w_{e} )\left( {Z_{f}^{*} - \int_{0}^{{Z_{f}^{*} }} {F(x)dx} } \right) + wQ_{f}^{*} - w_{e} \left( {Q_{f}^{*} - \int_{0}^{{Q_{f}^{*} }} {F(x)dx} } \right) \\ & \quad < \left( {\frac{r}{{w_{e} }} - 1} \right)c\frac{{dZ_{f}^{*} }}{d\beta } + wQ_{f}^{*} - r\left( {Q_{f}^{H} - \int_{0}^{{Q_{f}^{H} }} {F(x)dx} } \right) + w\left( {Q_{f}^{H} - Q_{f}^{*} } \right) \\ & = \left( {\frac{r}{{w_{e} }} - 1} \right)c\frac{{dZ_{f}^{*} }}{d\beta } - r\int_{0}^{{Q_{f}^{H} }} {xf(x)dx} \\ & \quad < 0. \\ \end{aligned} $$

Hence, πfB decreases when \( \beta \in [0,\hat{\beta }_{f} ] \).

(b) When \( \hat{\beta }_{f} < \beta < 1 - \frac{c}{w} \),

$$ \begin{aligned} \frac{{d\pi_{B}^{f} }}{d\beta } & = - r\left( {Q_{f}^{*} - \int_{0}^{{Q_{f}^{*} }} {F(x)dx} } \right) + wQ_{f}^{*} \\ & = - r\left( {Q_{f}^{*} - Q_{f}^{*} F\left( {Q_{f}^{*} } \right) + \int_{0}^{{Q_{f}^{*} }} {xf(x)dx} } \right) + wQ_{f}^{*} \\ & = - r\left( {Q_{f}^{*} - Q_{f}^{*} \left( {1 - \frac{w}{r}} \right) + \int_{0}^{{Q_{f}^{*} }} {xf(x)dx} } \right) + wQ_{f}^{*} \\ & = - r\int_{0}^{{Q_{f}^{*} }} {xf(x)dx} \\ & \quad < 0. \\ \end{aligned} $$

Hence, πfB is decreasing when \( \beta \in [\hat{\beta }_{f} ,1 - \frac{c}{w}) \). Now, we investigate the continuity of πfS when \( \beta = \hat{\beta }_{f} \). Given that

$$ \begin{aligned} \pi_{B}^{f} \left( {Q_{f}^{*} } \right)|_{{\beta = \hat{\beta }_{f}^{ - } }} & = (1 - \beta )r\left( {t_{0} - \int_{0}^{{t_{0} }} {F(x)dx} } \right) - (1 - \beta )wQ_{f}^{L} \\ & \quad - (1 - \beta )w_{e} \left( {t_{0} - Q_{f}^{L} - \int_{{Q_{f}^{L} }}^{{t_{0} }} {F(x)dx} } \right), \\ \pi_{B}^{f} \left( {Q_{f}^{*} } \right)|_{{\beta = \hat{\beta }_{f}^{ + } }} & = (1 - \beta )r\left( {Q_{f}^{H} - \int_{0}^{{Q_{f}^{H} }} {F(x)dx} } \right) - (1 - \beta )wQ_{f}^{H} , \\ \end{aligned} $$

then \( \pi_{B}^{f} (Q_{f}^{*} )|_{{\beta = \hat{\beta }_{f}^{ + } }} - \pi_{B}^{f} (Q_{f}^{*} )|_{{\beta = \hat{\beta }_{f}^{ - } }} = \pi_{B}^{fH} - \pi_{B}^{fL} = H(t_{0} ) = 0 \). Hence, πfB is continuous when \( \beta = \hat{\beta }_{f} \). Therefore, πfB is decreasing when \( \beta \in [0,1 - \frac{c}{w}) \). For the profit of the whole supply chain, because of (1) and (2), πfSC is not continuous when \( \beta = \hat{\beta }_{f} \), and πfS is decreasing when β is in the domain of \( [0,\hat{\beta }_{f} ] \) and \( [\hat{\beta }_{f} ,1 - \frac{c}{w}) \). □

Proof of Proposition 4

Taking the first order and second order derivatives of \( \pi_{S}^{od} (Z_{od} |Q_{od} ,R_{od} ) \) with respect to Zod, we have

$$ \begin{aligned} \frac{{\partial \pi_{S}^{od} (Z_{od} |Q_{od} ,R_{od} )}}{{\partial Z_{od} }} & = - c + (1 - \beta )c_{e} (1 - F(R_{od} + Z_{od} )), \\ \frac{{\partial^{2} \pi_{S}^{od} (Z_{od} |Q_{od} ,R_{od} )}}{{\partial Z_{od}^{2} }} & = - (1 - \beta )c_{e} f(R_{od} + Z_{od} ) < 0. \\ \end{aligned} $$

Then \( \pi_{S}^{od} (Z_{od} |Q_{od} ,R_{od} ) \) is concave in Zod. By the FOC, we can derive \( F(R_{od} + Z_{od}^{*} ) = 1 - \frac{c}{{(1 - \beta )c_{e} }} \). Because of Z*od  ≤ Q*od , it can also be written as \( Z_{od}^{*} = \hbox{min} \left\{ {Q_{od} ,F^{ - 1} \left( {1 - \frac{c}{{(1 - \beta )c_{e} }}} \right) - R_{od} } \right\} \).

We can easily verify that the expected profit of the firm πodB (QodRod) is jointly concave in Qod and Rod. R*od and Q*od can be given by the first-order optimality condition

$$ \left\{ \begin{array}{l} \frac{{\partial \pi_{B}^{od} (Q_{od} ,R_{od} )}}{{\partial Q_{od} }} = - c_{o} + (r - w)(1 - F(R_{od} + Q_{od} )) = 0 \hfill \\ \frac{{\partial \pi_{B}^{od} (Q_{od} ,R_{od} )}}{{\partial R_{od} }} = - w_{r} + r(1 - F(R_{od} + Q_{od} )) + w(F(R_{od} + Q_{od} ) - F(R_{od} )) = 0 \hfill \\ \end{array} \right.. $$

Then, we obtain

$$ \left\{ \begin{array}{l} F(R_{od}^{ * } ) = 1 - \frac{{w_{r} - c_{o} }}{w} \hfill \\ F(R_{od}^{ * } + Q_{od}^{ * } ) = 1 - \frac{{c_{o} }}{r - w} \hfill \\ \end{array} \right.. $$

We can also derive

$$ Z_{od}^{*} = \hbox{min} \left\{ {Q_{od}^{ * } ,F^{ - 1} \left( {1 - \frac{c}{{(1 - \beta )c_{e} }}} \right) - F^{ - 1} \left( {1 - \frac{{w_{r} - c_{o} }}{w}} \right)} \right\}. $$

Next, we analyze the optimal decisions of the unreliable supplier and firm below.

(I) If wr ≥ co + w, then \( F(R_{od}^{ * } ) = 1 - \frac{{w_{r} - c_{o} }}{w} < 0 \). Because of R*od  > 0, thenR*od  = 0. When \( 1 - \frac{c}{{(1 - \beta )c_{e} }} > 1 - \frac{{c_{o} }}{r - w} \), that is, F(R*od  + Z*od ) > F(R*od  + Q*od ), then \( Z_{od}^{*} = Q_{od}^{ * } = F^{ - 1} (1 - \frac{{c_{o} }}{r - w}) \). When \( 1 - \frac{c}{{(1 - \beta )c_{e} }} \le 1 - \frac{{c_{o} }}{r - w} \), that is, \( \beta \ge 1 - \frac{c(r - w)}{{c_{e} c_{o} }} \), then F(R*od  + Z*od ) ≤ F(R*od  + Q*od ), Z*od  < Q*od , \( Q_{od}^{ * } = F^{ - 1} \left( {1 - \frac{{c_{o} }}{r - w}} \right) \) and \( Z_{od}^{*} = F^{ - 1} \left( {1 - \frac{c}{{(1 - \beta )c_{e} }}} \right) \).

(II) If co < wr < co + w, then \( 0 < F(R_{od}^{ * } ) = 1 - \frac{{w_{r} - c_{o} }}{w} < 1 \). When \( 1 - \frac{{c_{o} }}{r - w} < 1 - \frac{{w_{r} - c_{o} }}{w} \), that is, \( \frac{{c_{o} }}{r - w} > \frac{{w_{r} - c_{o} }}{w} \), then F(R*od  + Q*od ) < F(R*od ),Z*od  = Q*od  = 0, \( R_{od}^{ * } = F^{ - 1} (1 - \frac{{w_{r} - c_{o} }}{w}) \). When \( 1 - \frac{{c_{o} }}{r - w} \ge 1 - \frac{{w_{r} - c_{o} }}{w} \), that is, \( \frac{{c_{o} }}{r - w} \le \frac{{w_{r} - c_{o} }}{w} \), then F(R*od  + Q*od ) ≥ F(R*od ), Q*od  ≠ 0. For \( 1 - \frac{{c_{o} }}{r - w} < 1 - \frac{c}{{(1 - \beta )c_{e} }} \), that is, \( 0 \le \beta < 1 - \frac{c(r - w)}{{c_{e} c_{o} }} \), then \( Z_{od}^{*} = Q_{od}^{*} = F^{ - 1} \left( {1 - \frac{{c_{o} }}{r - w}} \right) - F^{ - 1} \left( {1 - \frac{{w_{r} - c_{o} }}{w}} \right) \), \( R_{od}^{ * } = F^{ - 1} \left( {1 - \frac{{w_{r} - c_{o} }}{w}} \right) \). For \( 1 - \frac{{c_{o} }}{r - w} \ge 1 - \frac{c}{{(1 - \beta )c_{e} }} \), that is,\( 1 - \frac{c(r - w)}{{c_{e} c_{o} }} \le \beta < 1 - \frac{c}{w} \), thenZ*od  < Q*od . Because ofF(R*od  + Z*od ) ≥ F(R*od ), that is,\( \beta \le 1 - \frac{cw}{{c_{e} (w_{r} - c_{o} )}} \) ,then, in the condition of \( 1 - \frac{c(r - w)}{{c_{e} c_{o} }} \le \beta < \hbox{min} \left\{ {1 - \frac{cw}{{c_{e} (w_{r} - c_{o} )}},1 - \frac{c}{w}} \right\} \), we can get \( Q_{od}^{*} = F^{ - 1} \left( {1 - \frac{{c_{o} }}{r - w}} \right) - F^{ - 1} \left( {1 - \frac{{w_{r} - c_{o} }}{w}} \right) \), \( Z_{od}^{*} = F^{ - 1} \left( {1 - \frac{c}{{(1 - \beta )c_{e} }}} \right) - F^{ - 1} \left( {1 - \frac{{w_{r} - c_{o} }}{w}} \right) \),\( R_{od}^{ * } = F^{ - 1} \left( {1 - \frac{{w_{r} - c_{o} }}{w}} \right) \).

We assume \( \hat{\beta }_{od} = 1 - \frac{c(r - w)}{{c_{e} c_{o} }} \) and \( c \le \frac{{c_{e} c_{o} }}{r - w} < w \) which is used to assure \( 0 \le \hat{\beta }_{od} < 1 - \frac{c}{w} \). In conclusion, Proposition 4 can be derived. □

Proof of Proposition 5

Taking the first order and second order derivatives of \( \pi_{S}^{fd} (Z_{fd} |Q_{fd} ,R_{fd} ) \) with respect toZfd, we have

$$ \begin{aligned} \frac{{\partial \pi_{S}^{fd} (Z_{fd} |Q_{fd} ,R_{fd} )}}{{\partial Z_{fd} }} & = - c + (1 - \beta )w_{e} (1 - F(R_{fd} + Z_{fd} )), \\ \frac{{\partial^{2} \pi_{S}^{fd} (Z_{fd} |Q_{fd} ,R_{fd} )}}{{\partial Z_{fd}^{2} }} & = - (1 - \beta )w_{e} f(R_{fd} + Z_{fd} ) < 0. \\ \end{aligned} $$

\( \pi_{S}^{fd} (Z_{fd} |Q_{fd} ,R_{fd} ) \) is concave in Zfd. From the FOC and Z*fd  ≥ Qfd, we can get

$$ F\left( {R_{fd} { + }Z_{fd}^{*} } \right) = \hbox{max} \left\{ {F(R_{fd} { + }Q_{fd} ),1 - \frac{c}{{(1 - \beta )w_{e} }}} \right\}. $$

To achieve the optimal ordering quantities of the firm, we consider the following two cases.

Case 1 when Z*fd  = Qfd, then

$$ \begin{aligned} \pi_{B}^{fd} (R_{fd} ,Q_{fd} ) & = r\mu - w_{r} R_{fd} - (1 - \beta )wQ_{fd} - \beta w_{e} \left( {Q_{fd} - \int_{{R_{fd} }}^{{R_{fd} + Q_{fd} }} {F(x)dx} } \right) \\ & \quad - w_{e} \left( {\mu - R_{fd} - Q_{fd} + \int_{0}^{{R_{fd} + Q_{fd} }} {F(x)dx} } \right). \\ \end{aligned} $$

We can easily verify that πfdB (RfdQfd) is jointly concave in Qfd and Rfd. From the first-order optimal condition

$$ \left\{ \begin{array}{l} \frac{{\partial \pi_{B}^{fd} (R_{fd} ,Q_{fd} )}}{{\partial Q_{fd} }} = (1 - \beta )(w_{e} - w) - (1 - \beta )w_{e} F(R_{fd} + Q_{fd} ) = 0 \hfill \\ \frac{{\partial \pi_{B}^{fd} (R_{fd} ,Q_{fd} )}}{{\partial R_{fd} }} = w_{e} - w_{r} - (1 - \beta )w_{e} F(R_{fd} + Q_{fd} ) - \beta w_{e} F(R_{fd} ) = 0, \hfill \\ \end{array} \right. $$

we can obtain

$$ \left\{ \begin{array}{l} F\left( {R_{fd}^{ * } + Q_{fd}^{ * } } \right) = 1 - \frac{w}{{w_{e} }} \hfill \\ F\left( {R_{fd}^{ * } } \right) = \hbox{max} \left\{ {\frac{{w_{e} - w_{r} - (1 - \beta )(w_{e} - w)}}{{\beta w_{e} }},0} \right\}. \hfill \\ \end{array} \right. $$

Note that \( F\left( {R_{fd} { + }Z_{f}^{*} } \right) = \hbox{max} \left\{ {F(R_{fd} { + }Q_{fd} ),1 - \frac{c}{{(1 - \beta )w_{e} }}} \right\} \). If the condition of Z*fd  = Qfd holds, then \( 1 - \frac{c}{{(1 - \beta )w_{e} }} \le 1 - \frac{w}{{w_{e} }} \) must be satisfied. However, it is contradictory with \( 0 \le \beta < 1 - \frac{c}{w} \). Then, the condition of Z*fd  = Qfd cannot hold and Case 1 is nonexistent.

Case 2 when Z*fd  > Qfd, then

$$ \begin{aligned} \pi_{B}^{fd} (R_{fd} ,Q_{fd} ) & = r\mu - w_{r} R_{fd} - (1 - \beta )wQ_{fd} - \beta w_{e} \left( {Z_{fd}^{ * } - \int_{{R_{fd} }}^{{R_{fd} + Z_{fd}^{ * } }} {F(x)dx} } \right) \\ & \quad - w_{e} \left( {\mu - R_{fd} - Z_{fd}^{ * } + \int_{0}^{{R_{fd} + Z_{fd}^{ * } }} {F(x)dx} } \right) \\ & \quad - (1 - \beta )w_{e} \left( {Z_{fd}^{ * } - Q_{fd} - \int_{{R_{fd} + Q_{fd} }}^{{R_{fd} + Z_{fd}^{ * } }} {F(x)dx} } \right). \\ \end{aligned} $$

We can easily verify that πfdB (RfdQfd)is jointly concave in Qfd and Rfd. The first-order optimal condition is

$$ \left\{ \begin{array}{l} \frac{{\partial \pi_{B}^{fd} (R_{fd} ,Q_{fd} )}}{{\partial Q_{fd} }} = - (1 - \beta )w + (1 - \beta )w_{e} (1 - F(R_{fd} + Q_{fd} )) = 0 \hfill \\ \frac{{\partial \pi_{B}^{fd} (R_{fd} ,Q_{fd} )}}{{\partial R_{fd} }} = w_{e} - w_{r} - \beta w_{e} F(R_{fd} ) - (1 - \beta )w_{e} F(R_{fd} + Q_{fd} ) = 0. \hfill \\ \end{array} \right. $$

This implies that

$$ \left\{ \begin{array}{l} F\left( {R_{fd}^{ * } + Q_{fd}^{ * } } \right) = 1 - \frac{w}{{w_{e} }} \hfill \\ F(R_{fd}^{ * } ) = \hbox{max} \left\{ {\frac{{w_{e} - w_{r} - (1 - \beta )(w_{e} - w)}}{{\beta w_{e} }},0} \right\}. \hfill \\ \end{array} \right. $$

Given that \( 1 - \frac{w}{{w_{e} }} \le 1 - \frac{c}{{(1 - \beta )w_{e} }} \), the optimal decision of the unreliable supplier satisfies \( F(R_{fd}^{ * } { + }Z_{fd}^{*} ) = 1 - \frac{c}{{(1 - \beta )w_{e} }} \).

Whether R*fd is zero or not, there exists a threshold \( \hat{\beta }_{fd} { = }1 - \frac{{w_{e} - w_{r} }}{{w_{e} - w}} \). Thus, Proposition 5 is proven. □

Proof of Proposition 6

(I) Under the option contract with a reliable supplier, (1) ifwr ≥ co + w, when \( 0 \le \beta < \hat{\beta }_{od} \), then \( \frac{{\partial \pi_{S}^{od} (Z_{od}^{ * } )}}{\partial \beta } = - c_{e} \left( {Q_{od}^{ * } - \int_{0}^{{Q_{od}^{ * } }} {F(x)dx} } \right) < 0 \). Hence, πodS (Z*od ) is decreasing when \( \beta \in [0,\hat{\beta }_{od} ] \). When \( \hat{\beta }_{od} \le \beta < 1 - \frac{c}{w} \), then \( \frac{{\partial Z_{od}^{ * } }}{\partial \beta } = - \frac{c}{{f(Z_{od}^{ * } )(1 - \beta )^{2} c_{e} }} \), \( \frac{{\partial \pi_{S}^{od} (Z_{od}^{ * } )}}{\partial \beta } = - c_{e} \left( {Z_{od}^{ * } - \int_{0}^{{Z_{od}^{ * } }} {F(x)dx} } \right) < 0 \). Hence, πodS (Z*od ) is decreasing when \( \beta \in [\hat{\beta }_{od1} ,1 - \frac{c}{w}) \). Now, we investigate the continuity of πodS (Z*od ) when \( \beta = \hat{\beta }_{od} \). Given that

$$ \begin{aligned} \pi_{S}^{od} \left( {Z_{od}^{*} } \right)|_{{\beta = \hat{\beta }_{od}^{ - } }} & = - cZ_{od}^{ * } + c_{o} Q_{od}^{ * } + (w - \beta c_{e} )\left( {Q_{od}^{ * } - \int_{0}^{{Q_{od}^{ * } }} {F(x)dx} } \right), \\ \pi_{S}^{od} \left( {Z_{od}^{*} } \right)|_{{\beta = \hat{\beta }_{od}^{ + } }} & = - cZ_{od}^{ * } + c_{o} Q_{od}^{ * } + (w - \beta c_{e} )\left( {Q_{od}^{ * } - \int_{0}^{{Q_{od}^{ * } }} {F(x)dx} } \right), \\ \end{aligned} $$

then \( \pi_{S}^{od} (Z_{od}^{*} )|_{{\beta = \hat{\beta }_{od}^{ - } }} = \pi_{S}^{od} (Z_{od}^{*} )|_{{\beta = \hat{\beta }_{od}^{ + } }} \). Hence, πodS (Z*o ) is continuous when \( \beta = \hat{\beta }_{od} \). Therefore, πodS (Z*od ) is decreasing when \( \beta \in [0,1 - \frac{c}{w}) \).

(2) If co < wr < co + w, (a) when \( \frac{{c_{o} }}{r - w} > \frac{{w_{r} - c_{o} }}{w} \), then \( \pi_{S}^{od} (Z_{od}^{ * } ) = \pi_{B}^{od} (Q_{od}^{ * } ,R_{od}^{ * } ){ = 0} \). (b) When \( \frac{{c_{o} }}{r - w} \le \frac{{w_{r} - c_{o} }}{w} \), for \( 0 \le \beta < \hat{\beta }_{od} \), then \( \frac{{\partial \pi_{S}^{od} (Z_{od}^{ * } )}}{\partial \beta } = - c_{e} (Q_{od}^{ * } - \int_{{R_{od}^{ * } }}^{{R_{od}^{ * } + Q_{od}^{ * } }} {F(x)dx} ) < 0 \). Hence, πodS (Z*od ) is decreasing when \( \beta \in [0,\hat{\beta }_{od} ] \). For \( \hat{\beta }_{od} \le \beta < 1 - \frac{c}{w} \), Z*od  < Q*od , there exists

$$ \frac{{\partial \pi_{S}^{od} (Z_{od}^{ * } )}}{\partial \beta } = - c_{e} \left( {Z_{od}^{ * } - \int_{{R_{od}^{ * } }}^{{R_{od}^{ * } + Z_{od}^{ * } }} {F(x)dx} } \right) < 0. $$

Hence, πodS (Z*od ) is decreasing when \( \beta \in [\hat{\beta }_{od} ,1 - \frac{c}{w}) \). Now, we investigate the continuity of πodS (Z*od ) when \( \beta = \hat{\beta }_{od} \). Given that

$$ \begin{aligned} \pi_{S}^{od} \left( {Z_{od}^{*} } \right)|_{{\beta = \hat{\beta }_{od}^{ - } }} & = - cZ_{od}^{ * } + c_{o} Q_{od}^{ * } + (w - \beta c_{e} )\left( {Q_{od}^{ * } - \int_{{R_{od}^{ * } }}^{{R_{od}^{ * } + Q_{od}^{ * } }} {F(x)dx} } \right), \\ \pi_{S}^{od} \left( {Z_{od}^{*} } \right)|_{{\beta = \hat{\beta }_{od}^{ + } }} & = - cZ_{od}^{ * } + c_{o} Q_{od}^{ * } + (w - \beta c_{e} )\left( {Q_{od}^{ * } - \int_{{R_{od}^{ * } }}^{{R_{od}^{ * } + Q_{od}^{ * } }} {F(x)dx} } \right), \\ \end{aligned} $$

then \( \pi_{S}^{od} (Z_{od}^{*} )|_{{\beta = \hat{\beta }_{od}^{ - } }} = \pi_{S}^{od} (Z_{od}^{*} )|_{{\beta = \hat{\beta }_{od}^{ + } }} \). Hence, πodS (Z*o ) is continuous when \( \beta = \hat{\beta }_{od} \). Therefore, πodS (Z*od ) is decreasing when \( \beta \in [0,1 - \frac{c}{w}) \).

From the expected profit function of the firm, we can easily conclude thatπodB (Q*od R*od ) is independent of β. As πodS (Z*od ) is decreasing when \( \beta \in [0,1 - \frac{c}{w}) \), the profit πo*SC of the whole supply chain is decreasing when \( \beta \in [0,1 - \frac{c}{w}) \).

(II) Under the order commitment contract with reliable supplier, (1) when0 < β < βfd, then

$$ \frac{{\partial \pi_{S}^{fd} (Z_{fd}^{ * } )}}{\partial \beta } = - wQ_{fd}^{ * } - w_{e} (Z_{fd}^{ * } - Q_{fd}^{ * } - \int_{{Q_{fd}^{ * } }}^{{Z_{fd}^{ * } }} {F(x)dx} ) < 0. $$

Hence, πfdS (Z*fd ) is decreasing when β ∊ [0, βfd]. For the firm, there exists

$$ \frac{{\partial \pi_{B}^{fd} (R_{fd}^{ * } ,Q_{fd}^{ * } )}}{\partial \beta } = wQ_{fd}^{ * } - w_{e} \left( {Q_{fd}^{ * } - \int_{0}^{{Q_{fd}^{ * } }} {F(x)dx} } \right). $$

If \( wQ_{fd}^{ * } - w_{e} (Q_{fd}^{ * } - \int_{0}^{{Q_{fd}^{ * } }} {F(x)dx} ) < 0 \) (> 0), then \( \frac{{\partial \pi_{B}^{fd} (R_{fd}^{ * } ,Q_{fd}^{ * } )}}{\partial \beta } < 0 \) (> 0). Hence, πfdB (R*fd Q*fd ) is decreasing (increasing) when β ∊ [0, βfd]. For the whole supply chain, because of \( \frac{{\partial (\pi_{S}^{fd} + \pi_{B}^{fd} )}}{\partial \beta } = - w_{e} (Z_{fd}^{ * } - \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} ) < 0 \), then πfdSC  = πfdS  + πfdB is decreasing when β ∊ [0, βfd].

(2) When \( \beta_{fd} \le \beta < 1 - \frac{c}{w} \), there exists

$$ \frac{{\partial \pi_{S}^{fd} (Z_{fd}^{ * } )}}{\partial \beta } = - wQ_{fd}^{ * } - ((1 - \beta )w - c)\frac{{\partial R_{fd}^{ * } }}{\partial \beta } - w_{e} \left( {Z_{fd}^{ * } - Q_{fd}^{ * } - \int_{{R_{fd}^{ * } + Q_{fd}^{ * } }}^{{R_{fd}^{ * } + Z_{fd}^{ * } }} {F(x)dx} } \right). $$

Given that \( \frac{{\partial R_{fd}^{ * } }}{\partial \beta } = \frac{{w_{r} - w}}{{\beta^{2} w_{e} f(R_{fd}^{ * } )}} > 0 \), then \( \frac{{\partial \pi_{S}^{fd} (Z_{fd}^{ * } )}}{\partial \beta } < 0 \). Hence, πfdS (Z*f ) is decreasing when \( \beta \in [\beta_{fd} ,1 - \frac{c}{w}) \). For the firm, there exists

$$ \frac{{\partial \pi_{B}^{fd} (R_{fd}^{ * } ,Q_{fd}^{ * } )}}{\partial \beta } = wQ_{fd}^{ * } - w_{e} \left( {Q_{fd}^{ * } - \int_{{R_{fd}^{ * } }}^{{R_{fd}^{ * } + Q_{fd}^{ * } }} {F(x)dx} } \right). $$

If \( wQ_{fd}^{ * } - w_{e} (Q_{fd}^{ * } - \int_{{R_{fd}^{ * } }}^{{R_{fd}^{ * } + Q_{fd}^{ * } }} {F(x)dx} ) < 0 \) (> 0), then \( \frac{{\partial \pi_{B}^{fd} (R_{fd}^{ * } ,Q_{fd}^{ * } )}}{\partial \beta } < 0 \) (> 0). Hence, πfdB (R*fd Q*fd ) is decreasing (increasing) when \( \beta \in [\beta_{fd} ,1 - \frac{c}{w}) \). For the whole supply chain, because of

$$ \begin{aligned} \frac{{\partial (\pi_{S}^{fd} + \pi_{B}^{fd} )}}{\partial \beta } & = - ((1 - \beta )w - c)\frac{{\partial R_{fd}^{ * } }}{\partial \beta } - w_{e} \left( {Z_{fd}^{ * } - Q_{fd}^{ * } - \int_{{R_{fd}^{ * } + Q_{fd}^{ * } }}^{{R_{fd}^{ * } + Z_{fd}^{ * } }} {F(x)dx} } \right) \\ & \quad - w_{e} \left( {Q_{fd}^{ * } - \int_{{R_{fd}^{ * } }}^{{R_{fd}^{ * } + Q_{fd}^{ * } }} {F(x)dx} } \right) \\ & \quad < 0, \\ \end{aligned} $$

then πfdSC  = πfdS  + πfdB is decreasing when \( \beta \in [\beta_{fd} ,1 - \frac{c}{w}) \). Now, we investigate the continuity of πfdS (Z*fd ), πfdB (R*fd Q*fd ) and πfdSC when \( \beta = \hat{\beta }_{od} \). Given that

$$ \begin{aligned} \pi_{S}^{fd} \left( {Z_{fd}^{ * } } \right)|_{{\beta = \hat{\beta }_{fd}^{ - } }} & = - cZ_{fd}^{ * } + (1 - \beta )wQ_{fd}^{ * } + (1 - \beta )w_{e} \left( {Z_{fd}^{ * } - Q_{fd}^{ * } - \int_{{Q_{fd}^{ * } }}^{{Z_{fd}^{ * } }} {F(x)dx} } \right), \\ \pi_{S}^{fd} \left( {Z_{fd}^{ * } } \right)|_{{\beta = \hat{\beta }_{fd}^{ + } }} & = - cZ_{fd}^{ * } + (1 - \beta )wQ_{fd}^{ * } + (1 - \beta )w_{e} \left( {Z_{fd}^{ * } - Q_{fd}^{ * } - \int_{{Q_{fd}^{ * } }}^{{Z_{fd}^{ * } }} {F(x)dx} } \right), \\ \pi_{B}^{fd} \left( {R_{fd}^{ * } ,Q_{fd}^{ * } } \right)|_{{\beta = \hat{\beta }_{fd}^{ - } }} & = r\mu - (1 - \beta )wQ_{fd}^{ * } - \beta w_{e} \left( {Z_{fd}^{ * } - \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right) \\ & \quad - w_{e} \left( {\mu - Z_{fd}^{ * } + \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right) - (1 - \beta )w_{e} \left( {Z_{fd}^{ * } - Q_{fd}^{ * } - \int_{{Q_{fd}^{ * } }}^{{Z_{fd}^{ * } }} {F(x)dx} } \right), \\ \pi_{B}^{fd} \left( {R_{fd}^{ * } ,Q_{fd}^{ * } } \right)|_{{\beta = \hat{\beta }_{fd}^{ + } }} & = r\mu - (1 - \beta )wQ_{fd}^{ * } - \beta w_{e} \left( {Z_{fd}^{ * } - \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right) \\ & \quad - w_{e} \left( {\mu - Z_{fd}^{ * } + \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right) \\ & \quad - (1 - \beta )w_{e} \left( {Z_{fd}^{ * } - Q_{fd}^{ * } - \int_{{Q_{fd}^{ * } }}^{{Z_{fd}^{ * } }} {F(x)dx} } \right), \\ \pi_{SC}^{fd} |_{{\beta = \hat{\beta }_{fd}^{ - } }} & = r\mu - cZ_{fd}^{ * } - \beta w_{e} \left( {Z_{fd}^{ * } - \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right) - w_{e} \left( {\mu - Z_{fd}^{ * } + \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right), \\ \pi_{SC}^{fd} |_{{\beta = \hat{\beta }_{fd}^{ + } }} & = r\mu - cZ_{fd}^{ * } - \beta w_{e} \left( {Z_{fd}^{ * } - \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right) - w_{e} \left( {\mu - Z_{fd}^{ * } + \int_{0}^{{Z_{fd}^{ * } }} {F(x)dx} } \right). \\ \end{aligned} $$

Then \( \pi_{S}^{fd} (Z_{fd}^{ * } )|_{{\beta = \hat{\beta }_{fd}^{ - } }} = \pi_{S}^{fd} (Z_{fd}^{ * } )|_{{\beta = \hat{\beta }_{fd}^{ + } }} \), \( \pi_{B}^{fd} (R_{fd}^{ * } ,Q_{fd}^{ * } )|_{{\beta = \hat{\beta }_{fd}^{ - } }}~=~\pi_{B}^{fd} (R_{fd}^{ * } ,Q_{fd}^{ * } )|_{{\beta = \hat{\beta }_{fd}^{ + } }} \), and \( \pi_{SC}^{fd} |_{{\beta = \hat{\beta }_{fd}^{ - } }} = \pi_{SC}^{fd} |_{{\beta = \hat{\beta }_{fd}^{ + } }} \). Hence, πfdS (Z*fd ), πfdB (R*fd Q*fd ), and πfdSC are all continuous when β = βfd. Therefore, πod*S and πfd*SC are decreasing in β, and when \( wQ_{fd}^{ * } - w_{e} (Q_{fd}^{ * } - \int_{{R_{fd}^{ * } }}^{{R_{fd}^{ * } + Q_{fd}^{ * } }} {F(x)dx} ) < 0 \) (> 0), πod*B is decreasing (increasing) in β. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Li, Y., Zhen, X. et al. Managing the supply disruption risk: option contract or order commitment contract?. Ann Oper Res 291, 985–1026 (2020). https://doi.org/10.1007/s10479-018-3007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3007-8

Keywords

Navigation