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Abstract
Interior/exterior-point methods have been widely used for solving Optimal Reactive Power
Flow problems (ORPF). However, the utilization of such methods becomes difficult when
transformer taps and/or capacitor/reactor banks are more rigorously represented in the prob-
lem formulation bymeans of discrete control variables. This work investigates the solution of
theORPFproblemwhen transformer tap ratios aremodeled as discrete variables. The solution
method proposed handles discrete variables by means of sinusoidal penalty function, while
the penalized problems are solved by an exterior-point method. An inertia correction strategy
is proposed in order to assure that only local minima are obtained for the penalized problems.
New search directions are also investigated that combine predictor and corrector directions.
Numerical simulations are performed involving the IEEE 14, 30 and 57 bus systems. The
results show the efficiency of the proposed inertia correction strategy and also reveals that
the proposed exterior-point method outperforms traditional interior-point methods in terms
of the number of iterations and computation times.
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Nomenclature
Constants
gkm Series conductance of branch km that connects buses k and m;
bkm Series susceptance of branch km that connects buses k and m;
bshkm Shunt susceptance of branch km that connects buses k and m;
bshk Shunt susceptance associated with a capacitor/reactor bank connected to bus

k;
PGk Active power generated at bus k;
PCk Active power demanded at bus k
QGk Reactive power generated at bus k;
QCk Reactive power demanded at bus k;
Qmin

Gk
Minimum reactive power generated at bus k;

Qmax
Gk

Maximum reactive power generated at bus k;

Vmin
k Minimum voltage magnitude limit at bus k;

Vmax
k Maximum voltage magnitude limit at bus k.

Sets
L Transmission lines of the system;
T Power transformers of the system;
Γkm Discrete set for transformer tap ratios in branch km;
Λ Branches (power transformers and transmission lines);
G Buseswith voltagemagnitude control (generation and synchronous condenser

buses);
G ′ Buses with voltage magnitude control except the slack bus;
C Load buses;
B All system buses;
Ωk Buses belonging to the first neighborhood of bus k.

Variables and Functions
Vk Voltage magnitude at bus k;
Vm Voltage magnitude at bus m;
V Vector of voltage magnitudes of all buses;
θk Voltage angle at bus k;
θkm Difference in voltage angles at buses k and m;
θ Vector of voltage angles of all buses;
tkm Transformer tap ratio of branch km;
t Vector of transformer tap ratios of all power transformer;
Pkm Active power flow in branch km;
Qkm Reactive power flow in branch km;
Qsh

k Reactive power generated by the shunt capacitor/reactor bank connected to
bus k.

1 Introduction

The Optimal Reactive Power Flow (ORPF) problem is concerned with the calculation of
reactive control variables that minimizes a specific criteria associated with a power system,
while ensuring its physical and operational limits. This problem has been solved by using
various optimization approaches, which involve reduced-gradient methods (Carpentier 1962;
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Dommel and Tinney 1968), Newton methods (Sasson et al. 1973; Sun et al. 1984), interior-
point methods (Granville 1994;Wu et al. 1994), exterior-point methods (Pinheiro et al. 2015),
among many others.

When transformer tap ratios and/or capacitor/reactor banks are represented in detail by
means of discrete variables, the ORPF becomes a mixed-discrete nonlinear programming
problem, here referred to as D-ORPF (Discrete ORPF) problem. The solution of the D-ORPF
problem is complicated by the presence of discrete variables, which introduce additional
combinatorial issues to the problem,whose solutionmay be hard to find bymeans of available
optimization packages.Therefore, strategies for copingwith discrete variables in theD-ORPF
problem have been recently investigated.

Threemain approaches havebeenused for solving theD-ORPFproblems: i)meta-heuristic
based methods, which generally work over a discrete set (set of possible values that a discrete
variable can assume) by initially setting specific discrete values for the discrete variables,
according to some heuristic rule, and subsequently solving for the resulting iterative nonlinear
optimization problems. Particle swarm (AlRashidi and El-Hawary 2007), genetic algorithms
(Bakirtzis et al. 2002) and hybrid methods (Yan et al. 2006) are some of the examples of
algorithms of such approach used for solving the D-ORPF. ii) approaches that are based on
a initial relaxation of the discrete set, by treating the discrete variables as continuous, and
thereafter adopting additional constraints so that these variables are progressively taken to
feasibility in the discrete set. Benders decomposition (Rabiee and Parniani 2013), progres-
sively rounding techniques (Macfie et al. 2010; Platbrood et al. 2014), and hybrid methods,
such as the one that integrates cutting-plane algorithms and interior-point methods (Liu et al.
2009) are some examples of this approach for solving the D-ORPF problem; iii) recent meth-
ods solve a relaxed version of the D-ORPF problem by handling the discrete variables as
continuous, together with penalty functions that aim at penalizing infeasible discrete values
(Lage 2013; Soler et al. 2013). When the penalty function is minimized together with the
objective function, discrete variables tend to iteratively assume feasible discrete values in the
optimal solution. Thismethod is gaining recent attention because it can be easily implemented
by means of commercial optimization solvers with good numerical results.

The solutions provided by the methods associated with the first approach may be sub-
optimal, since meta-heuristic approaches generally do not account for optimality conditions.
Another drawback of such approaches is the computation time, whichmay become extremely
large for large-scale power systems. The methods associated with the second and third
approaches seem more promising for solving real problems.

In this paper, we propose an optimizationmethod based on the third approach for handling
the discrete values associated with transformer tap ratios. In Soler et al. (2013), a sinusoidal
penalty function was specifically proposed for the D-ORPF problem. The basic idea is to
adjust a sinusoidal function so that its minimum values coincide with the values of the dis-
crete set. A penalized optimization problem is defined by adding such penalty function to the
objective function of the original problem and also relaxing the constraints associated with
discrete variables. The iterative solutions of the penalized problems tend to become feasible
in relation to the discrete set. This adjustment is easily performed when the discrete set is
composed of equally spaced values, which is generally the case for the set of transformer tap
ratios. The utilization of the sinusoidal penalty function for handling more general D-ORPF
problems, that involves the representation of discrete values for susceptances associated with
capacitor/reactor banks must be appropriately adapted, since the discrete set for such sus-
ceptances is generally composed by non-equally spaced values. This problem is not handled
in this paper, and is left for future research.

123



Annals of Operations Research

Thepenalty function has been successfully used for handling discrete values of transformer
tap ratios in Soler et al. (2013). However, its utilization introduces additional nonlinearities
and also new maxima and minima to the D-ORPF problem. In this paper, we show that some
solutions obtained for the penalized problems via solution of the KKT nonlinear equations
may result in points of maximum of the penalty function, thus resulting in non-discrete
values for some discrete variables. Therefore, robust nonlinear techniques are necessary so
that maxima are avoided and only local minima are found. In this paper we investigate
the computational performance of predictor-corrector primal-dual interior and exterior-point
methods for solving the problem together with an inertia correction strategy that aims at
escaping from local maxima and finding only local minima associated with the problem.

The main contributions of the paper are summarized as follows. (i) We propose a specific
predictor-corrector primal-dual exterior-point method for solving the D-ORPF problem; (ii)
We propose a technique to scape from local maxima and find only local minima associated
with the problem, which is based on the inertia correction of the reduced Hessian matrix of
the problem; (iii) We propose new search directions, based on the predictor and corrector
directions, and evaluate them in the context of the D-ORPF problem; (iv) We compare the
computation performance of proposed exterior-point method with the traditional interior-
point method for solving the problem.

In Sect. 2 the D-ORPF problem is mathematically formulated, taking into account the
representation of transformer tap ratios as discrete variables. The solution approach proposed
for solving the problem is described in Sect. 3. The handling of discrete variables is described
in Sect. 3.1 while the exterior-point method is detailed in Sect. 3.2. Numerical results are
described in Sect. 4. Final conclusions are drawn in Sect. 5.

2 Optimal reactive power flow problem

The Optimal Reactive Power Flow (ORPF) problem bas been used as an important tool for
both planning and operation of electrical power systems. TheD-ORPF version of the problem
involves the detailed representation of transformer tap ratios and/or capacitor/reactor banks
by means of discrete variables. The D-ORPF problem is mathematically formulated as in (1).
It is concerned with the minimization of active power losses in the transmission system (1a),
while representing: active and reactive power balance equations (1b) and (1c), respectively;
limits in the reactive power generation of voltage-controlled buses (1d); limits in voltage
magnitudes (1e) and also constraints on the discrete values for transformer tap ratios (1f).

Min P(V , t, θ) (1a)

s.a: ΔPk(V , t, θ) = 0,∀k ∈ G′ ∪ C (1b)

ΔQk(V , t, θ) = 0,∀k ∈ C (1c)

Qmin
Gk

≤ QGk (V , t, θ) ≤ Qmax
Gk

,∀k ∈ G (1d)

Vmin
k ≤ Vk ≤ Vmax

k ,∀k ∈ B (1e)

tkm ∈ Γkm,∀ (k,m) ∈ T , (1f)

where constants, sets, variables and functions associated with the problem are defined in
the Nomenclature section. We emphasize that the formulation of the D-ORPF given in (1)
disregards the discrete nature of susceptances associated with capacitor/reactor banks, which
is left as future research.
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The D-ORPF problem may involve various objective functions, such as: total real power
losses, variable and fixed reactive power costs, fuel costs, deviation of a given voltage sched-
ule, voltage stability margin, or a combination of different objectives as a multi-objective
model. In this paper, we use real power losses, which is mathematically described in (2):

P (V , t, θ) =
∑

(km)∈Λ

gkm

((
Vk
tkm

)2

+ V 2
m

)
−2gkm

tkm
VkVm cos θkm . (2)

Mathematical functions for active and reactive power balance equations (1b) and (1c) are
described in equations (3)–(4), respectively:

ΔP (V , t, θ) =
∑

m∈Ωk

Pkm − PGk + PCk (3)

ΔQ(V , t, θ) =
∑

m∈Ωk

Qkm − QGk + QCk − Qsh
k . (4)

When k is associated with the bus where the transformer tap ratio is altered, expressions
for active and reactive power flows Pkm and Qkm in a power transformer located at branch
km are described as in (5) and (6), respectively:

Pkm = gkm

(
Vk
tkm

)2

− VkVm
tkm

gkm cos (θkm) − VkVm
tkm

bkm sin (θkm) (5)

Qkm = −
(
bkm
t2km

+ bshkm

)
V 2
k + VkVm

tkm
bkm cos (θkm)

VkVm
tkm

gkm sin (θkm) , (6)

otherwise, the expressions for Pkm and Qkm are as in(7) and (8), respectively:

Pkm = gkmVk
2 − VkVm

tkm
gkm cos (θkm) − VkVm

tkm
bkm sin (θkm) (7)

Qkm = −
(
bkm + bshkm

)
V 2
k + VkVm

tkm
bkm cos (θkm) − VkVm

tkm
gkm sin (θkm) . (8)

Expressions for the reactive power generation in voltage controlled buses are given as in
(9):

QGk (V , t, θ) =
∑

m∈Ωk

Qkm + QCk − Qsh
k , (9)

where capacitor/reactor banks provide a reactive power injection given as in (10):

Qsh
k = bshk V 2

k . (10)

In the D-ORPF problem formulated here, the shunt susceptance bshk is considered fixed
in (10). Therefore, the reactive power injections do not vary with the shunt susceptance, but
only with voltage magnitude. In more representative models, the values of such susceptances
are allowed to vary within a set of discrete values, which is not under consideration in the
present model. The discrete sets are under analysis in this paper only in what concerns the
representation of the transformer tap ratios, which generally have constant range of variation
in their discrete sets, and therefore, are directly handled by the sinusoidal penalty function
described in Soler et al. (2013), which is also adopted in this paper.

The discrete values of transformer tap ratios in (1f) introduce some additional complex-
ities in the solution of the D-ORPF problem, and turns it into a mixed-discrete nonlinear
optimization problem. The method proposed here for solving this problem is described in
the next section.
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3 Solution approach

The solution approach here proposed for solving the D-ORPF problem involves the refor-
mulation of problem (1), by means of relaxing the discrete constraints, (i.e. enabling the
discrete variables to assume continuous values), and also by adding new terms in the objec-
tive function which penalize infeasible discrete variables (those that do not belong to their
respective discrete sets). The Relaxed Optimal Reactive Power Flow (R-ORPF) problem that
results from this procedure is a nonlinear programming problem that presents multiple local
minimizers, and is difficult to solve. In this paper we adopt an exterior-point method which is
based on the classic Lagrangian function for handling equality constraints, and on the mod-
ified logarithmic barrier function (Polyak 1992, 2014) for handling inequality constraints.
The sinusoidal penalty function approach is described in Sect. 3.1. The exterior-point method
is detailed in Sect. 3.2.

3.1 Sinusoidal penalty function and penalty methods

The basic idea of the penalty approach proposed in this paper consists in relaxing the discrete
constraints and also adding new terms in the objective function so as to penalize unfeasible
discrete variables. To handle such discrete variables, the penalty function must have some
good numerical properties, such as: (i) be smooth and differentiable in its domain; (ii) have
their minima coinciding with the values fixed in the discrete set; (iii) have finite, preferably
small, values in all its domain; (iv) do not present Runge’s phenomenon (large oscillations
in its values).

The sinusoidal function, which is discussed in this section has all such good numerical
properties: it is smooth and differentiable in the domain of real numbers; it may be adjusted
to match its minima with equally-spaced discrete values; it’s values are no bigger than one,
and it does not present the Runge’s phenomenon. Therefore, this function may be used as
the required penalty function.

To better understand how the sinusoidal penalty function is used in the method, consider
the D-ORPF problem in (1). With the purpose of handling the discrete values for transformer
tap ratios in (1f), we adopt the sinusoidal penalty function (11), such as described in Soler
et al. (2013):

Φ (γ, tkm) = γ

[
sin

(
tkm

t supkm − t infkm

π + α

)]2

, (11)

where γ is the penalty factor that determines the magnitude of function Φ; t supkm and t infkm are
the upper and lower nearest discrete values of tkm , respectively; α is a constant defined such
that 0 ≤ α ≤ π , function Φ (tkm) which is null only for values of tkm such that tkm ∈ Γkm

(discrete set), and the mathematical constant π = 3.1416. From its definition, we verify that
Φ (γ, tkm) assumes positive values only when tkm assumes non-discrete values. Therefore,
the function Φ (γ, tkm) is of the form (12):

Φ (γ, tkm) =
{
0, if tkm ∈ Γkm

δ > 0, otherwise.
(12)

We define the Relaxed Optimal Reactive Power Flow (R-ORPF) problem as in (13) by
adopting the procedure: (i) add the penalty function (12) to the objective function of the
original D-ORPF problem (1); (ii) perform a relaxation on the constraints (1f), enabling the
discrete variables to assume continuous values within a specified range (13f):
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Min P(V , t, θ) + Φ (γ, tkm) (13a)

s.a: ΔPk(V , t, θ) = 0,∀k ∈ G′ ∪ C (13b)

ΔQk(V , t, θ) = 0,∀k ∈ C (13c)

Qmin
Gk

≤ QGk (V , t, θ) ≤ Qmax
Gk

,∀k ∈ G (13d)

Vmin
k ≤ Vk ≤ Vmax

k ,∀k ∈ B (13e)

tmin
km ≤ tkm ≤ tmax

km ,∀ (k,m) ∈ T , (13f)

where tmin
km and tmax

km are the lowest and the highest values for tkm , respectively, in the discrete
set.

The procedure for solving the problem (1) by the penalty method is as described in
Luenberger and Ye (2008): Let {γm},m = 1, 2... be a sequence such that for each m, we
have γm+1 ≥ γm . Then, for each m solve iteratively the penalized problem (13), obtaining a
solution (V , t, θ)m . By using the convergence properties of the penalty methods described in
Luenberger and Ye (2008), we conclude that the sequence of points {(V , t, θ)m} generated
by the penalty method when γ → ∞ is a solution to the original problem (assuming that
each iterative problem has a solution).

The introduction of function Φ (γ, tkm) in (13a) penalizes infeasible (non-discrete)
transformer tap ratios, so that the optimal solution must have only feasible discrete val-
ues. To better understand the effects of the penalty function in the objective function,
consider a simple objective function f (x) = x2 and its sum with the penalty function
Φ (x) = 0.01

(
sin

( x
0.2π

))2, where the discrete values are equally spaced by 0.2. Note that
the penalty function introduces various local minima and maxima, to the problem, making
its solution process more complicated (Fig. 1). For coping with such problem, this paper
proposes an inertia correction strategy which assures the calculation of local minima only,
which is further described in Sect. 3.2.

Another important numerical issue is the iterative values of γm,m = 1, 2.... If we adopt
large values for γ0, the penalty termsmay become higher than the original objective function.
In this case, the problem does not minimize the original objective function, but the penalty
terms only. On the other hand, if a small value is adopted for γ0, the penalty terms may not
be effective in enforcing discrete values to transformer tap ratios.

Fig. 1 Effect of the penalty function Φ (x) = 0.01
(
sin

( x
0.2π

))2 in the objective function f (x) = x2
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The set of relaxed problems (13) correspond to difficult nonlinear problems to solve, due
to inherent nonlinear formulation and also due to the nonlinearities introduced by the penalty
function. The solution approach proposed for solving these problems is discussed in Sect. 3.2.

3.2 Exterior point method

In Soler et al. (2013) the set of Relaxed Optimal Reactive Power Flow (R-ORPF) problems
(13) are solved by means of interior-point methods by using the computational package
IPOPT (Wächter and Biegler 2005). In this work, we compare the computation performance
of interior and exterior point methods for solving the R-ORPF problems.

In this section, the exterior pointmethod is describedwith emphasis in the inertia correction
strategy. For such a purpose, we put the problem (13) in the general form, as shown in (14):

Min f (x)
s.a

g (x) = 0
h (x) ≤ 0,

(14)

where x ∈ Rn and f : Rn → R, g : Rn → Rm and h : Rn → Rp are of class C2, with
n = 2 ∗ |B| + |T |, m = |B| − 1+ |C | and p = 2 ∗ |G’| for problem (13), where |X | denotes
the number of elements of set X .

With the purpose of applying the exterior-point method, inequality constraints are trans-
formed into equivalent equalities by using slack variables s ∈ Rp

+ resulting in (15):

Min f (x)
s.a

g (x) = 0
h (x) + s = 0
s ≥ 0.

(15)

Non-negativity constraints are included in the modified problem (16) by means of a
nonlinear rescaling function. Although in (16) the modified logarithmic barrier function is
used, other rescaling functions could also be used:

Min f (x) − μ
p∑

i=1
δi ln

(
μ−1si + 1

)

s.a
g (x) = 0
h (x) + s = 0,

(16)

where μ > 0 is the nonlinear rescaling parameter and δ ∈ Rp
+ is the vector of Lagrange

multiplier estimates associated with inequality constraints in (14). The classical Lagrangian
function associated with the modified problem (16) is given in (17):

Lμ (x, s, λ, υ) = f (x) − μ

p∑

i=1

δi ln
(
μ−1si + 1

)

+
m∑

j=1

λ j g j (x) +
p∑

i=1

υi [hi (x) + si ], (17)
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where λ ∈ Rm and υ ∈ Rp
+ are the Lagrange multipliers associated with equality and

inequality constraints in (14), respectively. One of the advantages of themodified logarithmic
barrier function over the traditional logarithmic barrier function is that it is well defined in the
boundary of the feasible set (Polyak 2014). This feature generally provides better computation
times for this method over the traditional interior-point approach; It also provides the method
with the ability to operate with points in the exterior of the feasible region.

3.2.1 System of directions

The exterior-point method consists in calculating a sequence of stationarity points for the
Lagrangian function (17), which are obtained by solving the system of nonlinear equations
given by ∇Lμ (x, s, λ, υ) = 0. This system of equation is linearized in the neighborhood of(
xk, sk, λk, υk

)
(associated with iteration k), resulting in the linear system show in (18):

⎡

⎢⎢⎣

K 0 Jg
(
xk

)t
J h

(
xk

)t

0 S̄−1
k Nk 0 Ip

Jg
(
xk

)
0 0 0

Jh
(
xk

)
Ip 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

dxk

dsk

dλk

dυk

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

mk

S̄−1
k rk

tk

uk

⎤

⎥⎥⎦ , (18)

where K = ∇2
xx L

(
xk, sk, λk, υk

)
, Ip is the identity matrix of order p, Nk = diag

(
υk

)
,

Jg
(
xk

)
, Jh

(
xk

)
are the Jacobianmatrices associatedwith equality and inequality constraints,

respectively, S̄−1
k = diag

(
1

s1+μ
, ..., 1

sp+μ

)
, and the residuals are calculated as in (19):

mk = −∇ f
(
xk

)
− Jg

(
xk

)t
λk − Jh

(
xk

)t
υk

rk = −S̄kυ
k + μδk − dsk ◦ dυk

tk = −g
(
xk

)

uk = −h
(
xk

)
− sk,

(19)

where the nonlinear term dsk ◦dυk denotes the Hadamard product (Horn and Johnson 1990).
The coefficient matrix in the left side of the system (18) is known as the Hessian of the

Lagrangian function, which is rewritten in (20). This matrix plays a fundamental role in the
solution of the linear system (18):

Hk =

⎡

⎢⎢⎣

K 0 Jg
(
xk

)t
J h

(
xk

)t

0 S̄−1
k Nk 0 Ip

Jg
(
xk

)
0 0 0

Jh
(
xk

)
Ip 0 0

⎤

⎥⎥⎦ . (20)

As previously observed, the R-ORPF problem has multiple local minima and maxima,
due to the sinusoidal penalty function used. Since the system of directions (18) is calculated
using first order KKT conditions, which are valid for both maxima and minima, we may not
assure that the solution of such direction system will lead to a desired local minima. In the
next section, an inertia correction strategy is proposed so as to assure that only the desired
minima are obtained.
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3.2.2 Inertia correction strategy

As described in Silva (2014), the inertia of a matrix A is given by an ordered triplet I (A) =
(i+, i−, i0), where i+, i−, i0 are the numbers of positive, negative and null eigenvalues of
matrix A, respectively (DApuzzo et al. 2010). According to Nocedal and Wright (2006), a
descent direction is generated for the primal-dual system (18) if the sub-matrix Ak (upper
diagonal of Hk) is positive-definite in the kernel of sub-matrix Bk associated with equality
constraints, where

Ak =
[
K 0
0 S̄−1

k Nk

]
; Bk =

[
Jg

(
xk

)
0

Jh
(
xk

)
Ip

]
. (21)

This condition occurswhen the inertia ofmatrix Hk is given by I (Hk) = (n+p,m+p, 0),
where n = 2 ∗ |B| + |T |, m = |X | − 1 + |C | and p = 2 ∗ ∣∣G ′∣∣.

In the predictor-corrector system of directions adopted in this paper, we work with a
reduced version of system (18), by eliminating the directions dsk and dvk , to obtain an
equivalent system of equations in terms of primal-dual directions dxk and dλk , as given in
(22): [

θk Jg
(
xk

)t

Jg
(
xk

)
0

] [
dxk

dλk

]
=

[
mk − pk

tk

]
, (22)

where

θk = K + Jh
(
xk

)t
S̄−1
k Nk Jh

(
xk

)
(23)

pk = Jh
(
xk

)t
S̄−1
k

(
rk − Nkuk

)
, (24)

and the eliminated directions dsk and dvk are calculated using the values of direction dxk

and dλk obtained from (22), according to (25) and (26), respectively:

dsk = uk − Jh
(
xk

)
dxk (25)

dvk = S̄−1
k

(
nk − Nkdsk

)
. (26)

In the reduced primal-dual system (22), a descent direction is generated if matrix Âk in
the left side of (22) has an inertia I ( Âk) = (n,m, 0), where

Âk =
[

θk Jg
(
xk

)t

Jg
(
xk

)
0

]
(27)

Computation of the inertia I ( Âk) is performed in this paper by using LDL decomposition,
where L is a lower triangular matrix and D is a diagonal matrix. Numerical issues and
references regarding the calculation of matrix inertia are provided in DApuzzo et al. (2010).
If matrix Âk does not have the appropriate inertia, alterations are necessary to correct it. The
strategy adopted for correcting I ( Âk) consists in adding terms to the diagonal of θk , which
results in matrix Ãk , as shown in (28):

Ãk =
[
θk + β In Jg

(
xk

)t

Jg
(
xk

)
0

]
(28)

Therefore, matrix Ãk replaces Âk in the left side of (22). The value of β that corrects
I ( Ãk) to the desired value is not known a priori. Therefore, successive higher values for β
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are calculated using (29) until the matrix inertia reaches the appropriate value:

βk+1 = κ1βk, (29)

where κ1 > 1 is a previously established parameter.
The importance of this inertia correction strategy in the solution of the R-ORPF problems

is highlighted by means of simulation examples in the Results Section. In the following
section, predictor and corrector steps are detailed.

3.2.3 Predictor and corrector steps

In the predictor step the nonlinear Hadamard product terms dsk ◦ dυk are neglected in the
calculation of the residual expression rk , as suggested in Mehrotra (1992). Therefore, the
approximate value of rk , given by r̃ k , is rewritten as r̃ k = −S̄kυk + μδk . Thereafter, the
directions of the predictor step are calculated by using system (18), and exploiting sparsity
of matrix H to isolate the direction terms, which are shown in (30):

d̃λk = Θ−1
k

[
Jg

(
xk

)
θ−1
k

(
mk − p̃k

)
− tk

]

d̃xk = θ−1
k

[
mk − p̃k − Jg

(
xk

)t
d̃λk

]

d̃sk = uk − Jh
(
xk

)
d̃xk

d̃υk = S̄−1
k

(
r̃ k − Nkd̃sk

)
,

(30)

where
θk = K + β In + Jh

(
xk

)t
S̄−1
k Nk Jh

(
xk

)

Θk = Jg
(
xk

)
θ−1
k Jg

(
xk

)t

p̃k = Jh
(
xk

)t
S̄−1
k

(
r̃ k − Nkuk

)
.

(31)

In the corrector step, the Hadamard terms are now calculated using the values obtained in
the predictor step for d̃sk and d̃υk . With an analogous procedure, we calculate the directions
for the corrector step, which are shown in (32):

dλ = Θ−1
k

[
Jg

(
xk

)
θ−1
k

(
mk − pk

)
− tk

]

dxk = θ−1
k

[
mk − pk − Jg

(
xk

)t
dλk

]

dsk = uk − Jh
(
xk

)
dxk

dυk = S̄−1
k

(
rk − Nkdsk

)
,

(32)

where
pk = Jh

(
xk

)t
S̄−1
k

(
rk − Nkuk

)
. (33)

In this paper, we investigate other possible search directions other than the predictor
and corrector directions already defined. For such a purpose, we define the primal-dual
point ωk = [

xk, sk, λk, υk
]t

as well as predictor and corrector directions, given by
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dω̃k =
[
α̃P
k d̃x, α̃

P
k d̃s, α̃

D
k d̃λ, α̃D

k d̃υ
]t

and dωk = [
αP
k dx, α

P
k ds, α

D
k dλ, αD

k dυ
]t
, respec-

tively. Based on these definitions we also define two auxiliary primal-dual points ω̃I
k and ωI

k ,
calculated as (34) and (35), respectively:

ω̃I
k = ωk + dω̃k (34)

ωI
k = ωk + dωk (35)

where α̃P
k and α̃D

k are primal and dual step lengths for the predictor step, respectively, while
αP
k and αD

k are primal and dual step lengths for corrector step, respectively. The calculation
of such steps is performed so as to assure that ω̃I

k and ωI
k are interior-points of the extended

feasible region. In the exterior-point method the interior region is extended by the barrier
parameter μ. Using the auxiliary points (34) and (35), we define new direction strategies in
the next section.

3.2.4 Direction strategies, rescaling parameter update and stopping criteria

Inmost predictor-corrector approaches a search direction is calculated bymeans of a predictor
step and then updated in the corrector step. However, we have experimentally verified that
other search direction may even produce better numerical results (in some cases), such as,
for instance, making a single predictor step (disregarding the corrector step), or even creating
a direction that is a composition of the directions calculated in predictor and corrector steps.

The new strategies for calculating the directions in the method proposed are itemized
below:

S1 The corrector directions dωk are used and the new solution point ωk+1 is given by ωI
k in

(35);
S2 We choose the most promising direction, by calculating the complementarity values

ξ̃ = (
s̃k

)t
λ̃k and ξ = (

sk
)t

λk for predictor and corrector steps, respectively. The new
solution point ωk+1 is given by ω̃I

k in (34) if ξ̃ < ξ , or by ωI
k in (35), otherwise;

S3 We choose the direction proposed in Colombo and Gondzio (2007), which is a composi-
tion of predictor and corrector directions, where a new direction dS3 is chosen such that
dS3 = dω̃k +σdωk , with σ > 0. Next, primal and dual step lengths for the corrector step
(αP

k and αD
k ) are recalculated to assure that the new point will remain in the interior of the

extended feasible region. Finally the new point ωk+1 is calculated as: ωk+1 = ωk + dS3;
S4 We choose a new direction dS4 which is a convex combination of predictor and corrector

directions, such that dS4 = σ1dω̃k + σ2dωk . Next, primal and dual step lengths for the
corrector step (αP

k and αD
k ) are recalculated to assure that the new point will remain in

the interior of the extended feasible region. Finally the new point ωk+1 is calculated as:
ωk+1 = ωk + dS4.

The heuristic for updating the rescaling parameterμ, is based on a simple linear updating,
using a fixed parameter. The Lagrange multipliers estimates are updated using the procedure
described in Pinheiro et al. (2015), where the authors update the vector of Lagrangemultiplier
estimates δk in each iteration k by using the vector of dual variables υk associated with the
inequality constraint of problem (14) at iteration k, as shown in (36):

δki = υk
i , i = 1, ..., p. (36)

Stopping criterion involves a precision ε1 over the infinity norm of the residuals given in
(19).
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4 Numerical results

In this section, the D-ORPF problem described in (1) is solved using the the proposed exterior
point method described in Sect. 3.2 for the IEEE 14, 30 and 57 bus systems. Complete data
for these systems are found in Chistie (2017). Results presented have three basic objectives:
(i) evaluate the importance of the inertia correction strategy for obtaining feasible discrete
solutions; (ii) compare the solutions obtained by the exterior point method proposed in this
paper with those obtained by the traditional interior-point method, when the transformer tap
ratios are represented as discrete variables bymeans of sinusoidal penalty functions described
in Sect. 3.1 and (iii) evaluate the impact of the new direction strategies described in Sect. 3.2.4
for solving the D-ORPF problem in the exterior point method proposed.

In Sect. 4.1, the R-ORPF problem is solved considering transformer tap ratios as continu-
ous variables, as described in (13). This solution is used as a reference to compare the results
calculated for the cases where the D-ORPF problem (where discrete variables are represented
in detail) is solved. Section 4.2 presents results that verifies the importance of the inertia cor-
rection strategy for obtaining feasible discrete solutions. In Sect. 4.3, the performance of
interior and exterior point methods are compared for solving D-ORPF problems. The impact
of the new search strategies for solving D-ORPF problems are evaluated in Sect. 4.4.

4.1 Solution of the relaxed ORPF

In this section, the R-ORPF problem is solved for all systems tested using the proposed
exterior-point method. The main parameters used in the method are described in Table 1.

Tables 2, 3 and 4 show a synthesis of the solution obtained by interior (IPM) and exterior-
point methods (EPM) for the R-ORPF problem. Values for the objective function, Lagrangian
function, iteration number and the values calculated for transformer tap ratios for all systems
are shown. The solutions obtained by both methods are identical for all systems. The calcu-
lated values for the Lagrangian and objective functions are also identical, a result that gives
support to the good precision of the methods.

Table 1 List of parameter values used in the solution of the R-ORPF problem

Parameter Description Value

ε1 Method precision 10−3

ε2 Precision for the discrete values 10−4

μ Initial value of the rescaling parameter 0.005

τ Updating rate for μ 0.25

γ Initial penalty value 10−5

κ Updating rate for γ 1.3

α Phase value in the penalty function 0.0

β Initial value for the inertia correction parameter 0.01

κ1 Updating rate for β 1.5

Vmin Minimum value for voltage magnitudes 0.95

Vmax Maximum value for voltage magnitude 1.05

Γkm Set of discrete values for taps {0.94, 0.96 0.98, 1.00, 1.02, 1.04}
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Table 2 Solution of the R-ORPF problem for IEEE 14 bus system

IPM EPM

Obj. F. Time # it. Tap Obj. F. Time # it. Tap

13.6415 0.28 5 t5−6 = 1.0149 13.6415 0.28 5 t5−6 = 1.0149

t4−7 = 0.9600 t4−7 = 0.9600

t4−9 = 0.9916 t4−9 = 0.9916

Table 3 Solution of the R-ORPF problem for IEEE 30 bus system

IPM EPM

Obj. F. Time # it. Tap Obj. F. Time # it. Tap

17.8382 0.33 5 t6−9 = 1.0344 17.8382 0.31 5 t6−9 = 1.0344

t6−10 = 0.9600 t6−10 = 0.9600

t4−12 = 1.0038 t4−12 = 1.0037

t28−27 = 0.9600 t28−27 = 0.9605

Table 4 Solution of the R-ORPF problem for IEEE 57 bus system

IPM EPM

Obj. F. Time # it. Tap Obj. F. # it. Tap

25.1867 0.41 6 t4−18 = 0.9795 25.1868 0.53 8 t4−18 = 0.9793

t4−18 = 0.9781 t4−18 = 0.9782

t21−20 = 1.0027 t21−20 = 1.0027

t24−25 = 0.9601 t24−25 = 0.9600

t24−25 = 0.9601 t24−25 = 0.9600

t24−26 = 0.9991 t24−26 = 0.9991

t7−29 = 0.9731 t7−29 = 0.9731

t34−32 = 0.9600 t34−32 = 0.9600

t11−41 = 0.9600 t11−41 = 0.9600

t15−45 = 0.9633 t15−45 = 0.9633

t14−46 = 0.9601 t14−46 = 0.9600

t10−51 = 0.9735 t10−51 = 0.9734

t13−49 = 0.9599 t13−49 = 0.9599

t11−43 = 0.9600 t11−43 = 0.9600

t40−56 = 1.0142 t40−56 = 1.0142

t39−57 = 0.9810 t39−57 = 0.9810

t9−55 = 0.9668 t9−55 = 0.9667

It is important to verify that some transformer tap ratios calculated do not belong to their
respective discrete sets. Therefore a strategy for handling discrete variables is necessary to
better represent such variables.
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4.2 Proposed inertia correction strategy

In this section, we evaluate the proposed inertia correction strategy when penalty function
methods are used to handle the discrete variables. For such a purpose, we compare the solu-
tions obtained for the D-ORPF problems involving cases with and without the introduction
of the proposed inertia strategy. The results are shown in Tables 5, 6 and 7 for the IEEE 14, 30
and 57 bus systems. These tables show the value of the objective function, the average num-
ber of iterations for performing the inertia correction (inner loop), the number of iterations,
the value of transformer tap ratios, and the computation time for solving the systems.

Analyzing Table 5, we observe that the case where inertia correction is not taken into
account presents infeasible discrete solutions for one transformer tap ratios. We observe that
the lack of inertia correction strategy has a great impact on the methods trajectory, leading
the method to points of maximum, instead of minima (associated with the penalty function).
Note that the solution point t4−7 = 0.9699, for instance, is located in the intermediate point
of the next lower and upper integer values (0.96 and 0.98), i.e. it is a point of maximum for
the sinusoidal function. Although undesirable, this is an expected result, since both minima
and maxima satisfies KKT optimality conditions. We observe that the solutions provided
for the case with inertia correction strategy given in Table 5 are strictly feasible within the
established precision for discrete variables. Observing the number of iteration in both cases
we also verify the impact over the computation times regarding the penalty function method
proposed to handle the discrete nature of the transformer tap ratios. Although the number of
iterations for the case with inertia correction is substantially higher, the method proposed for
handling the discrete variables does not have to solve a large number of cases, such as in the
implicit enumerative methods, nor relies on heuristic procedures which do not assure local
minima (KKT optimality conditions).

Table 5 Solution of the D-ORPF
by the EPM method with and
without inertia correction - IEEE
14 bus system

Case Obj. F. Inertia it. #it. Taps Time

with 13,6685 4.33 9 t5−6 = 0, 9800 0.26

t4−7 = 0.9600

t4−9 = 0.9600

without 13.7301 – 24 t5−6 = 0, 9800 0.29

t4−7 = 0.9699

t4−9 = 0.9900

Table 6 Solution of the D-ORPF
by the EPM method with and
without inertia correction - IEEE
30 bus system

Case Obj. F. Iner. it. #it. Taps Time

with 17.8933 26.76 18 t6−9 = 1, 0000 1.19

t6−10 = 0.9800

t4−12 = 0.9800

t28−27 = 0.9799

without 18.0004 – 9 t6−9 = 0, 9800 0.31

t6−10 = 0.9699

t4−12 = 1.0100

t28−27 = 0.9700
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Table 7 Solution of the D-ORPF
by the EPM method with and
without inertia correction - IEEE
57 bus system

Case Obj. F. Iner. it. #it. Taps Time

With 25.9188 19.46 40 t4−18 = 1, 0399 12.98

t4−18 = 0.9999

t21−20 = 1.0399

t24−25 = 0.9600

t24−25 = 0.9600

t24−26 = 0.9999

t7−29 = 0.9799

t34−32 = 0.9599

t11−41 = 0.9599

t15−45 = 0.9600

t14−46 = 0.9600

t10−51 = 0.9600

t13−49 = 0.9600

t11−43 = 0.9600

t40−56 = 1.0000

t39−57 = 0.9799

t9−55 = 0.9600

Without 28.2518 – 75 t4−18 = 0, 9699 2.01

t4−18 = 0.9800

t21−20 = 1.0399

t24−25 = 0.9799

t24−25 = 0.9999

t24−26 = 1.0500

t7−29 = 0.9699

t34−32 = 0.9599

t11−41 = 0.9599

t15−45 = 0.9600

t14−46 = 0.9700

t10−51 = 0.9599

t13−49 = 0.9500

t11−43 = 0.9700

t40−56 = 0.9600

t39−57 = 0.9800

t9−55 = 0.9600

Tables 6 and 7 show that similar conclusions can be obtained for systems with 30 and
57 buses. Note that for IEEE 30-bus system 3 taps are unfeasible in the solution for the
case without the inertia correction strategy, while for IEEE 57-bus system, we identify 6
unfeasible taps.
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From the results presented in this section, we conclude that the inertia correction strategy
is necessary to assure local optimal solution of the D-ORPF problems.

4.3 Comparing exterior and interior-point methods

In this section the comparison between EPM and IPM for solving the D-ORPF problem is
performed. The inertia correction strategy is adopted in all cases tested, since the results
obtained in the last section pointed-out the need for such procedure both in IPM and EPM.

The computational implementation of the IPM used in this section has a structure that
is similar to that of the EPM, where a primal-dual approach and a similar inertia correction
are also used. The key difference between IPM and EPM lies in the way the sequence of
points generated by the methods tends towards the boundary of the feasible region in the
optimal solution. In the IPM method the sequence of points is within the interior of the
feasible region, while in the EPM the sequence may generate points that come from external
portions of the feasible region to its boundary. Generating an internal sequence of points is
accomplished in the IPM by using the logarithmic barrier function ln (si ) in (16) instead of
the the modified logarithmic barrier function. Those functions are respectively used by the
methods for handling inequality constraints in the slack variables of the problem (14). For
such a purpose, some changes regarding the search directions provided in the EPM described
in Sect. 3.2 are necessary to adapt it to run as an IPM method.

We have observed in the simulation results that the solutions of both methods depend on
the initial value for the parameter κ1 that updates the parameter β, which is associated with
the inertia correction strategy. The results obtained for themethods are provided for κ1 = 1.3.
The comparison between the methods, for all systems tested, is shown in Tables 8, 9 and 10.

Analyzing Tables 8, 9 and 10, we observe that both EPM and IPM could find local optimal
solutions for all systems tested (no unfeasibilitiy on discrete variableswere found). Therefore,

Table 8 Comparison between EPM and IPM for solving the D-ORPF problem - IEEE 14 bus system

IPM EPM

Obj. F. Time # it. Tap Obj. F. Time # it. Taps

κ1 = 1.30

13.6685 0.26 10 t5−6 = 0.9800 13.6685 0.26 9 t5−6 = 0.9800

t4−7 = 0.9600 t4−7 = 0.9600

t4−9 = 0.9600 t4−9 = 0.9600

Table 9 Comparison between EPM and IPM for solving the D-ORPF problem - IEEE 30 bus system

IPM EPM

Obj. F. Time # it. Tap Obj. F. Time # it. Taps

κ1 = 1.30

17.8960 2.37 25 t6−9 = 1.0399 17.8982 1.35 18 t6−9 = 0.9800

t6−10 = 0.9600 t6−10 = 0.9600

t4−12 = 0.9600 t4−12 = 0.9600

t28−27 = 0.9600 t28−27 = 0.9600
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Table 10 Comparison between EPM and IPM for solving the D-ORPF problem - IEEE 57 bus system

IPM (β0 = 0.001) EPM (β0 = 0.01)

Obj. F. Time # it. Tap Obj. F. Time # it. Taps

κ1 = 1.30

25.4607 12.26 41 t4−18 = 0.9800 25.6480 12.90 40 t4−18 = 0.9800

t4−18 = 0.9800 t4−18 = 0.9800

t21−20 = 1.0399 t21−20 = 1.0399

t24−25 = 0.9799 t24−25 = 0.9799

t24−25 = 0.9799 t24−25 = 0.9799

t24−26 = 1.0399 t24−26 = 1.0399

t7−29 = 0.9600 t7−29 = 0.9600

t34−32 = 0.9600 t34−32 = 0.9600

t11−41 = 0.9600 t11−41 = 0.9600

t15−45 = 0.9600 t15−45 = 0.9600

t14−46 = 0.9600 t14−46 = 0.9600

t10−51 = 0.9600 t10−51 = 1.0199

t13−49 = 0.9600 t13−49 = 0.9600

t11−43 = 0.9600 t11−43 = 0.9600

t40−56 = 0.9600 t40−56 = 0.9800

t39−57 = 0.9800 t39−57 = 0.9799

t9−55 = 0.9600 t9−55 = 0.9999

they were both capable of handling the discrete variables. We observe that different local
minimamay be obtained.We also observe that the exterior-point method proposed has shown
some improvement in relation to the IPM regarding the average number of iterations. As the
theory suggests (Polyak and Griva 2004), the EPM is more stable in the boundary of the
feasible region and is able to obtaining solution points that are exactly over this boundary.
On the other hand, the IPM is well defined only in the interior of the feasible region, and is
not able to reaching the boundary exactly.

4.4 Impact of new search direction procedures

In this section, the new search directions S1–S4, described in Sect. 3.2.4 are evaluated for
solving the D-ORPF problem for the systems tested. In all experiments carried-out in this
section the inertia correction strategy is considered.

In order to set the vales for parameters σ , σ1 and σ2 in search directions S1–S4, a sensitivity
analysis has been performed. For calculating the best value for σ , we have solved theD-ORPF
problem using σ values that varies from 0.1 to 1.0 using fixed steps of 0.1. Then, we adopt
the value of σ that provides the best result, i.e. the one with lower objective function value
and the lower number of iterations. An analogous sensitivity analysis has been carried out
for parameter σ1, also adopting values from 0.1 to 1.0, and using steps of 0.1. Note that the
value of σ2 is automatically calculated when σ1 is fixed.

For the IEEE 14 bus system, we adopted σ = 0.1, for direction strategy S3 and σ1 = 0.6,
σ2 = 0.4 for search direction S4. Table 11 summarizes the performance of the search direc-
tions strategies for IEEE 14 bus system. We observe that S1 and S4 obtain the same number
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Table 11 Solution for the IEEE
14 bus system for all search
direction strategies investigated

Strategy Loss (MW) Time # it.

S1 13.6988 0.25 9

S2 13.6685 0.34 23

S3 13.6685 0.34 24

S4 13.6988 0.28 9

Table 12 Solution for the IEEE
30 bus system for all search
direction strategies investigated

Strategy Loss (MW) Time # it.

S1 17.9289 1.30 18

S2 17.9289 0.84 16

S3 17.8813 1.60 45

S4 17.9289 1.82 23

Table 13 Solution for the IEEE
57 bus system for all search
direction strategies investigated

Strategy Loss (MW) Time # it.

S1 25.648 12.64 40

S2 – – –

S3 25.7019 11.28 61

S4 25.4616 20.12 60

of iterations with identical loss values. All strategies obtained feasible discrete solutions for
the problem.

For the IEEE 30 bus system, we adopted σ = 0.1, for S3 and σ1 = 0.6, σ2 = 0.4 for
S4. Table 12 summarizes the performance of the search directions strategies for IEEE 30 bus
system. We observe that S2 presented the lowest number of iterations. However, S3 obtained
the best loss values but at a higher computational cost.

For the IEEE 57 bus system, we adopted σ = 0.3, for S3 and σ1 = 0.4, σ2 = 0.6 for
S4. Table 13 summarizes the performance of the search directions strategies for IEEE 14 bus
system. We observe that S1 presented the lowest number of iterations. However, S3 obtained
the best loss values but at a higher computational cost.

5 Conclusions

This paper investigates some solution approaches to the Discrete Optimal Reactive Power
Flow (D-ORPF) problem, which is formulated as a mixed-discrete nonlinear programming
problem. The discrete nature of the problem is handled by sinusoidal penalty functions while
the resultingnonlinear programmingproblem is solvedusing the proposedpredictor-corrector
primal-dual exterior-point method. An inertia correction strategy is also proposed, together
with the exterior-point method, in order to avoid local maxima and provide a necessary
global convergence strategy for finding only local minima. The proposed method, as well as
a traditional interior-point method, are applied for solving the D-ORPF problem regarding
the systems IEEE 14, 30 and 57 buses. The results show that the inertia correction strategy
proposed is a fundamental tool for finding feasible solutions for the discrete variables. In other
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words, the results show that if sinusoidal penalty methods are used for handling discrete
variables, an inertia correction strategy must be used. The comparison of exterior versus
interior-point methods shows advantage for the proposed exterior approach, in terms of
the number of iterations and computational effort for solving the problem. However, both
methods were able to finding optimal feasible solutions in terms of the discrete sets for
all systems tested. We also propose four new search directions in the predictor-corrector
primal-dual EPM method, which are basically a composition of the directions calculated in
the predictor and corrector steps (as described in Sect. 3.2.4). The results involving these
new search directions have been evaluated by analyzing the value of the objective function
obtained in the optimal solution, aswell as the number of iterations obtained by each direction
strategy used. The results show that the direction adopted in the traditional predictor-corrector
approach (which corresponds to S1) may not always be the best search direction to adopt;
other directionsmay also successfully be adopted that provide lower objective function values
and/or a reduced number of iterations.
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