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Abstract
Considered are perfect information games with a Borel measurable payoff function that is
parameterized by points of a Polish space. The existence domain of such a parameterized
game is the set of parameters for which the game admits a subgame perfect equilibrium. We
show that the existence domain of a parameterized stopping game is a Borel set. In general,
however, the existence domain of a parameterized game need not be Borel, or even an analytic
or co-analytic set. We show that the family of existence domains coincides with the family of
game projections of Borel sets. Consequently, we obtain an upper bound on the set-theoretic
complexity of the existence domains, and show that the bound is tight.

Keywords Perfect information games · Subgame perfect equilibrium · Parameterized
games · Game projection

1 Introduction

This paper is motivated by the expanding literature on the existence of subgame perfect
(epsilon-)equilibrium in perfect information games. Much of this literature focusses on iden-
tifying sufficient conditions for the existence of subgame perfect (epsilon-)equilibrium. In
particular, subgame perfect equilibrium is known to exist in many classes of continuous per-
fect information games [we refer to section 3 of the survey by Jaśkiewicz and Nowak (2016)
for references], and in games where each player’s payoff function is characterized by a Borel
winning set (Grädel and Ummels 2008). All zero-sum games with bounded Borel payoffs
[Mertens and Neyman, see Mertens (1987)], games with bounded lower semicontinuous
payoffs (Flesch et al. 2010), games with bounded upper semicontinuous payoffs (Purves and
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Sudderth 2011), and games with common preferences at the limit (Flesch and Predtetchinski
2017) have a subgame perfect epsilon-equilibrium for each positive epsilon. If in addition
the payoff function has a finite range, then the games of all these classes also have a subgame
perfect equilibrium. Le Roux and Pauly (2014) provide transfer results, i.e. starting with the
existence of some type of equilibria for a small class of games, they allow one to conclude
the existence of some type of equilibria for a larger class.

There exist classes of perfect information games that do not always admit a pure subgame
perfect epsilon-equilibrium, but do have a subgame perfect epsilon-equilibrium in mixed
strategies: for example stopping games (Mashiah-Yaakovi 2014) and recursive games where
each player controls only one state (Kuipers et al. 2016).

The issue of existence of subgame perfect equilibrium has been a major topic of study
in the context of discounted stochastic games with simultaneous moves, one of the most
prominent results being Mertens and Parthasarathy (2003). More references on this branch
of the literature can be found in the survey by Jaśkiewicz and Nowak (2016).

In contrast, few necessary and sufficient conditions for the existence of subgame perfect
epsilon-equilibria are known. T. Brihaye, V. Bruyère, N. Meunier, J.-F. Raskin (2016) [as
reported inMeunier (2016)] provide a characterization of games that admit a subgame-perfect
equilibrium.With each perfect information game, they associate a two-player zero-sumgame,
called the prover game. They show that the original perfect information game has a subgame-
perfect equilibrium if and only if player I has a winning strategy in the corresponding prover
game. Le Roux (2016) provides an intriguing analysis of games with �0

2-payoff functions.
Essentially, he shows that, in the two-player case, the only payoff pattern that could rule
out the existence of subgame-perfect equilibrium is that found in the example by Solan and
Vieille (2003). Alós-Ferrer and Ritzberger (2016a, b) derive a condition on the topology of
the set of plays that is both necessary and sufficient for the existence of a subgame-perfect
equilibrium.

In this paper we take a somewhat different perspective on the question of existence of
subgame perfect equilibrium: we study the set of games that admit a subgame perfect equi-
librium. In a nutshell, our approach is as follows: we consider perfect information games
where the payoff functions are parameterized by elements of a Polish space. We are inter-
ested in the set of parameters for which the game has a subgame perfect equilibrium. Our
language and methods are borrowed from descriptive set theory.

Perfect information games are specified as follows: There is a set of actions that is assumed
to be countable. Finite sequences of actions are called histories. A single active player is
assigned to each history. The game begins at the empty history. Once a given history is
reached, the corresponding active player chooses an action, leading to one of the successor
histories. This process generates an infinite sequence of actions, called a play. The play
determines the payoffs.

In a parameterized game the payoffs depend not only on the play, but also on an additional
variable, called the parameter. The set of parameters is a given Polish space, and the payoff
function of a parameterized game is assumed to be Borel measurable jointly in the plays and
the parameters. For some of our results we furthermore assume that the payoff function only
takes finitely many values.

A particularly simple example of our setup is a parameterized perfect information stopping
game. In such a game each player has two actions, stop and continue. Once a player chooses
to stop, the game effectively terminates, and the payoffs are received. Thus the game is
specified by the sequence of payoff vectors, one vector for each period of time in which the
game could be terminated. Such a sequence of payoff vectors serves as a parameter of the
stopping game.
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To each parameterized perfect information game we associate the set of parameters for
which the game has a subgame perfect equilibrium. This set is called the existence domain
of the parameterized game. The two groups of main results are as follows.

The first result relates to stopping games. We show that the existence domain of a parame-
terized stopping game is a Borel set. Put equivalently, the set of payoffs for which the stopping
game has an SPE is a Borel set. In general, however, the existence domain of a parameterized
game need not be a Borel, or even an analytic or a co-analytic set.

Our second result provides an upper bound on the set-theoretic complexity of the existence
domains, and the third result shows that the bound is tight. This is achieved by relating the
existence domains to the so-called game projection operator�. The latter has been intensively
studied by set theorists (see e.g. Moschovakis 1980; Kanovei 1988).

More precisely, we show that the family of existence domains coincides with the family
of game projections of Borel sets. This implies that the family of existence domains is much
richer than the class of Borel sets. It includes all analytic and coanalytic sets, the sigma-
algebra generated by analytic sets, C-sets, Borel programmable sets, and R-sets. In its turn,
it is contained in the class of absolutely �2

1-sets, which in turn is contained in �2
1-sets.

A closely related paper is that by Prikry and Sudderth (2016). The authors consider a
class of zero-sum simultaneous move games where the payoff function is parameterized by
points of a Polish space. The authors study measurability properties of the (upper) value,
as a function of the parameter. Levy (2013) uses parameterized games with simultaneous
moves to obtain counterexamples to the existence of equilibria in models with overlapping
generations and in games with a continuum of players.

An important branch of the literature deals with the issues of computational complexity in
infinite sequential games.Considered there is the complexity of finding thewinning strategies,
determining the winner, finding Nash and subgame perfect equilibria (see e.g. Le Roux and
Pauly 2015; Brattka et al. 2015). In particular, Le Roux and Pauly (2015)’s work, while
addressing questions similar to those in this paper, use a different formalism and different
mathematics. Their formalism is that of so-called represented games, whereby games of some
class are coded by elements of the Baire space. The natural coding is essentially derived from
Borel codes as used in effective descriptive set theory. The authors useWeihrauch reducibility
and degree, and the Hausdorff difference hierarchy. In contrast, the pointclasses considered
in this paper are more closely related to the Borel and the projective hierarchies.

The works on minimax selection theorems are somewhat related to our study in that there
one considers parameterized payoff functions in zero-sum games [see Nowak (2010) and the
references therein].

The paper is organized as follows: In Sects. 2 and 3 we detail our setup, and in Sect. 4
we state our main results. Proofs are carried out in Sects. 5, 6 and 7. Section 8 contains an
extension of the main results that deals with the concept of subgame perfect ε-equilibrium.

2 Perfect information games

Perfect information games Let N = {0, 1, 2 . . . } be the set of natural numbers. Let I
be a non-empty finite set of players, and A be a non-empty countable set of actions. Let
H = ∪t∈NAt be the set of all finite sequences of elements of A, including the empty sequence
∅. As usual we let AN denote the set of all infinite sequences of elements of A. Throughout
the paper the set AN is endowedwith the product topology. Elements of H are called histories
and elements of AN are called plays. Let ι : H → I be a function which assigns an active
player to each history. Finally, each player i ∈ I is given the payoff function ui : AN → R.
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For nowwe assume that ui takes a finite number of integer values and is Borel measurable. In
Sect. 8 of the paper we will consider more general games where the the assumption of finite
range is replaced by a weaker assumption of bounded range. We write u(p) = (ui (p))i∈I .
The sets I , A, and the functions ι and u determine the game G.

The gameG is known to the players. The game is played as follows: let h0 = ∅. Suppose a
history ht ∈ H has been determined for some t ∈ N. Player ι(ht ) then chooses an action at ∈
A, leading to the history ht+1 = (ht , at ). The players thus generate a play p = (a0, a1, . . . ),
and each player i ∈ I receives payoff ui (p).

In this paper, we only consider pure strategies. A (pure) strategy for player i is a function
σi assigning to each history h ∈ H with ι(h) = i an action σi (h) in A. A strategy profile is
a tuple σ = (σi )i∈I where σi is a strategy for every player i ∈ I . Given a strategy profile σ

and a strategy ηi for player i , we write σ/ηi to denote the strategy profile obtained from σ

by replacing σi with ηi .
At every history h ∈ H , every strategy profile σ induces a unique play πh(σ ). We write

π(σ) = π∅(σ ) to denote the play induced from the root.
A strategy profile σ is called an equilibrium of the game G if for each player i ∈ I and

for each strategy σ ′
i of player i it holds that

ui (π(σ )) ≥ ui (π(σ/σ ′
i )).

The result of Mertens and Neyman (reported in Mertens 1987) implies that G has an equi-
librium. A strategy profile σ is called a subgame-perfect equilibrium (SPE) of the game G,
if it induces an equilibrium in each subgame of G, or equivalently, if for each history h ∈ H ,
each player i ∈ I , and each strategy σ ′

i of player i it holds that

ui (πh(σ )) ≥ ui (πh(σ/σ ′
i )).

Unlike equilibrium, an SPE need not exist in a perfect information game under the main-
tained assumptions. Examples of games having no SPE have been considered in Solan and
Vieille (2003) and in Flesch et al. (2014).

We proceed to define two classes of perfect information games that play an important role
in our analysis.

Martin games A perfect information game is said to be a Martin game if the set of players
is I = {I, II}, the action set A is1 N, and there exists a Borel set W ⊆ NN such that the
payoff function uI is the indicator function ofW , and the payoff function uI I is the indicator
function of the complement of W . The set W is called the winning set of player I. With a
slight abuse of notation we also use the symbol W to denote the Martin game itself.

A strategy σI for player I is said to bewinning inW ifπ(σI , σI I ) ∈ W for every player II’s
strategy σI I . One analogously defines awinning strategy for player II. The Borel determinacy
theorem (Martin 1975) states that either player I has a winning strategy in W , or player II
has a winning strategy in W .

Stopping games Stopping games are perfect information games where the active player can
either stop the game or continue. As soon as the active player stops, the game essentially
terminates in the sense that subsequent actions do not influence the payoffs. If no player ever
stops, the payoffs are zero to every player.

Formally, a perfect information game J is called a stopping game if the action set is
A = {s, c} where s stands for stopping and c for continuing, and for each t ∈ N and each
player i ∈ I , the payoff function ui is constant, say equal to xi (t), on the set of plays

1 Clearly we could take A to be any countable set, but we choose N for the sake of concreteness.
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that extend the history (ct , s). For convenience we also assume that the payoff on the play
(c, c, c, . . . ) is zero to each player. A stopping game is completely specified by the sequence
x = (x(0), x(1), . . . ) where x(t) = (xi (t))i∈I .

3 Parameterized games

In this section we introduce families of perfect information games where the payoff functions
depend on a parameter.

Parameterized (perfect information) games A parameterized (perfect information) game
GX consists of a non-empty finite set of players I , a non-empty countable set of actions
A, the assignment ι : H → I of active players to histories, a non-empty Polish space X ,
and for each player i a payoff function ui : X × AN → R. Element of X are parameters.
We assume that ui takes a finite number of integer values and is Borel measurable. Given a
parameterized game GX and an x ∈ X , we write Gx to refer to the particular game with the
payoff functions ui (x, ·) for i ∈ I . The parameter x is known to the players.

Parameterized Martin games A parameterized perfect information game is said to be a
parameterized Martin game if the set of players is I = {I, II}, the action set A is N, and there
exists a Borel setWX ⊆ X × NN such that the payoff function uI is the indicator function of
WX , and the payoff function uI I is the indicator function of the complement of WX . We use
the symbol WX to denote the parameterized Martin game itself. For each x ∈ X we write
Wx to refer to the Martin game with the winning set {p ∈ NN : (x, p) ∈ WX }.

To a parameterized Martin game WX we associate the set

�WX = {x ∈ X : player I has a winning strategy in the Martin game Wx }.
The operator � is called the game projection.

We let WX denote the set of all Martin games with the parameter space X , that is, the
family of Borel subsets of X × NN, and we let

�WX = {�WX : WX ∈ WX }.
The family �WX and its relation to other classes of sets have been studied in descriptive
set theory. Below we mention some of the most important properties of �WX . More details
can be found in Burgess (1983a, b), Burgess and Lockhart (1983), Moschovakis (1980) and
Kanovei (1988).

The family �WX is a sigma-algebra. It is closed under the Souslin operation. The family
�WX is much richer than the Borel sigma-algebra of X . Some of the prominent classes of
sets, listed in the increasing order, are: Borel sets ⊆ analytic sets and coanalytic sets ⊆ the
sigma-algebra generated by the analytic sets ⊆ C-sets ⊆ Borel-programmable sets ⊆ R-sets
⊆ �WX ⊆ absolutely �1

2-sets ⊆ �1
2-sets. In particular, every set in �WX is a projection of

a coanalytic set.

Parameterized stopping games Recall that stopping games are specified by the sequence x
of stopping payoffs. Formally we define a parameterized perfect information game JX to be
a parameterized stoping game if

[A] The action set is A = {s, c},
[B] The space of parameters is the product space X = {−D, . . . , D}I×N, where D is a

natural number.
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A typical element of X is denoted x = (x(0), x(1), . . . ) where x(t) = (xi (t))i∈I .

[C] For each player i ∈ I the payoff function is defined as follows: ui (x, p) = xi (t) for
every play p extending the history (ct , s), and ui (x, (c, c, c, . . . )) = 0.

4 Themain results

In the previous section we have introduced perfect information games where the payoff
functions are parameterized by elements of a Polish space. In this section we summarize the
main results on such parameterized games. We are interested in the so-called SPE existence
domain of a parameterized game, that is, in the the set of parameters for which the game has
an SPE.

Our first result deals with parameterized stopping games. We show that the set of payoff
sequences for which the stopping game admits an SPE is a Borel set. As it turns out, for
more general parameterized games the SPE existence domain is not necessarily a Borel set.
However, we are able to put an upper bound on its set-theoretic complexity. This is our second
result. Our third result shows that the bound is sharp.

We now turn to a formal statement of the results. Fix a set of parameters X , a non-empty
Polish space. The main object of our study is the collection of sets defined as follows: Given
a parameterized game GX as in the Sect. 3 we define the SPE existence domain of GX as the
following set of parameters:

E(GX ) = {x ∈ X : the game Gx has an SPE}.
In the introduction, we have enlisted several known classes of perfect information parame-
terized games where E(GX ) = X . In this paper we are interested to know just how complex
the set E(GX ) generally could be.

Theorem 4.1 Let JX be a parameterized stopping game. Then the set E(JX ) is a Borel subset
of X.

As follows from the results below, in general the set E(GX ) need not be Borel. However,
we are able to place an upper bound on the set-theoretic complexity of E(GX ) by linking it
to the game projection operator. More precisely, our findings are as follows.

Theorem 4.2 Let GX be a parameterized game. Then E(GX ) belongs to the family �WX .

The next result provides the converse to the previous one.

Theorem 4.3 Consider any member of the family �WX , say �WX. There exists a parameter-
ized game GX such that E(GX ) = �WX. One can choose the game GX to have 2 players,
with a payoff function u only taking three distinct values: (1,−2), (2,−1), and (0, 0).

Theorems 4.2 and 4.3 could be stated more concisely as

{E(GX ) : GX is a parameterized game} = �WX .

To prove Theorem 4.2 we associate to the parameterized gameGX a parameterizedMartin
game WX such that player I has a winning strategy in Wx exactly when Gx has an SPE.
The intuition behind the game Wx is as follows: At each move of the game Wx player
I produces a “recommended” action as well as a payoff vector. The latter is interpreted
as the payoff vector player I promises to the players of Gx , under the condition that his
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recommendations are being followed. Player II produces the actual action, and is free to
follow the recommendations of player I or to deviate at any point. Player II’s objective is to
beat the utility payoff vector announced by player I. Similar constructions appeared in N.
Meunier’s doctoral Thesis [Chapter 9 co-authored by T. Brihaye, V. Bruyère, N. Meunier, J.-
F. Raskin (2016)]. A somewhat related game has also been used in Flesch and Predtetchinski
(2017).

To prove Theorem 4.3 we explicitly construct a parameterized game GX with the desired
property. The game involved could be seen as an extension of the example in Solan and
Vieille (2003).

Theorem 4.1 is the most challenging of the three results. We argue that the set X − E(JX )

is Borel. We first consider the subset of E ′(JX ) of E(JX ) consisting of the parameters x ∈ X
for which the game Jx admits an SPEwith the property that at most one player stops infinitely
often. It is straightforward to show that X − E ′(JX ) is Borel. The bulk of the proof is devoted
to showing that the set X − E(JX ) is Borel as a subset of X − E ′(JX ).

To do so we construct a continuous function f mapping each point x of X − E ′(JX ) to
an irreflexive and transitive binary relation f (x) on natural numbers such that

X − E(JX ) = f −1(TW(ω2)),

where TW(ω2) denotes the set of well-founded relations on natural numbers of rank smaller
than ω2. That is, the game Jx has no SPE if and only if the relation f (x) is well-founded.
And whenever f (x) is well-founded, it has a rank smaller than ω2. Since TW(ω2) is a Borel
set, the set X − E(JX ) is a Borel subset of X − E ′(JX ), as desired.

5 The proof of theorem 4.2

The informal description of the proof We associate to the parameterized game GX a
parameterizedMartin gameWX such that player I has a winning strategy inWx exactly when
Gx has an SPE, that is E(GX ) = �WX . For an x ∈ X the game Wx proceeds thus:

I r0, v0 r1, v1 · · ·
II a0 a1 · · ·

Player I’s moves are pairs (rt , vt ) where rt is an action in Gx and vt a vector of payoffs.
We think of rt as an action recommended to player II and of vt as a payoff vector promised
by player I, under the condition that his recommendations are being followed. Player II’s
moves at are actions in Gx , interpreted as the actual actions that are being carried out. If
at = rt , we say that player II agrees to player I’s recommendation. Otherwise we say that
player II deviates from the recommended action. Two consistency conditions are imposed
on player I’s choice of the vector vt of payoffs: Firstly, player I is allowed to update the
vector of payoffs only right after a deviation by player II. Secondly, if player II agrees to
the recommended action in every period starting with t , then vt is to be equal to the actual
payoffs on the play that player II has generated. Any strategy for player I in the game Wx

satisfying these consistency conditions gives rise to a strategy profile in the original game
Gx , and vice versa.

Player I wins Wx if there exists no period t and no player i of the game Gx such that,
firstly, after period t player II only deviates at histories controlled player i , and secondly, the
play player II produces is preferred by player i to the payoff vt announced by player I at
period t .
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A similar construction (called a prover game) appeared in N. Meunier’s doctoral The-
sis [Chapter 9 co-authored by T. Brihaye, V. Bruyère, N. Meunier, J.-F. Raskin 2016)]. A
somewhat related game has also been used in Flesch and Predtetchinski (2017).

The proof Formally the parameterized Martin game WX is described as follows: player I’s
action set is A × V where V is the range of the function u = (ui )i∈I , while player II’s
action set is A. To define player I’s winning set in the game WX , consider a play p∗ =
((r0, v0), a0, (r1, v1), a1, . . . ) of WX . Let p = (a0, a1, . . . ) be the sequence of moves of
player II, and let h0 = ∅ and ht = (a0, . . . , at−1) for each t ≥ 1. Let It = {ι(hk) : k ≥
t and ak 
= rk} be the set of players who deviate after period t . Player I’s winning set WX

consists of pairs (x, p∗) satisfying the following three conditions for every t ∈ N:

[1] If at = rt , then vt+1 = vt .
[2] If It = ∅, then vt = u(x, p).
[3] If It = {i} for some i ∈ I , then vit ≥ ui (x, p).

Conditions [1] and [2] could be thought of as consistency conditions on the moves of
player I, while condition [3] encapsulates the idea that player II wins in WX if player i can
deviate profitably in GX . The setWX is Borel. Indeed, for every t ∈ N each of the conditions
[1], [2], and [3] defines a Borel set of parameter-play pairs (x, p∗), andWX is the intersection
of all these sets.

We proceed to showing that player I has a winning strategy in Wx exactly when Gx has
an SPE. Let x ∈ X .

Suppose first that σ is an SPE of Gx . Define the strategy σ ∗
I for player I inWx as follows:

let h∗ be a history for player I in Wx , and let h be the corresponding sequence of moves of
player II. Define

σ ∗
I (h∗) = (σ (h), u(x, πh(σ ))).

We argue that σ ∗
I is a winning strategy for player I in Wx . Let p∗ denote any play of Wx

consistent with the strategy σ ∗
I . Then p∗ satisfies conditions [1] and [2] above. We argue that

it also satisfies condition [3]. Suppose to the contrary. Then there exist t ∈ N and i ∈ I such
that It = {i} and vit < ui (x, p). Note that vit = ui (x, πht (σ )). But then, since player i can
induce the play p in the game Gx starting with the history ht , he has a profitable deviation
from σ , leading to a contradiction.

Conversely, suppose that σ ∗
I is a winning strategy for player I in Wx . Define the

strategy profile σ for Gx as follows: Take a history h ∈ At in Gx and let h∗ be
player I’s history in Wx of length 2t where player II’s moves correspond to h and
player I’s moves are obtained using σ ∗

I . More precisely if h = ∅ let h∗ = ∅, and
if h = (a0, . . . , at−1) let h∗ = ((r0, v0), a0, · · · , (rt−1, vt−1), at−1) where (rk, vk) =
σ ∗
I ((r0, v0), a0, · · · , (rk−1, vk−1), ak−1) for k ≤ t −1. Let (rt , vt ) denote σ ∗

I (h∗). We define
σ(h) to be rt .

We first claim that vt = u(x, πh(σ )). Indeed if player I plays according to σ ∗
I and player

II agrees to player I’s recommendations as of period t , then player II produces a sequence of
moves p = πh(σ ). The claim now follows since σ ∗

I is winning and by [2].
We show that σ is an SPE ofGx . Suppose to the contrary. Then there is a history h ∈ At of

the game Gx such that player i = ι(h) has a profitable deviation from σ , say the strategy ηi .
Let p′ = πh(σ/ηi ). If player II plays according to p′ in the game Wx , then he wins against
σ ∗
I , since then condition [3] is violated. This is a contradiction to the choice of σ ∗

I , and hence
σ is an SPE as claimed.
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6 The Proof of Theorem 4.3

Let B be any member of the family �WX . Our goal is to construct a parameterized perfect
information game GX such that E(GX ) = B.

Lemma 6.1 There exists a parameterized Martin game VX such that

B = {x ∈ X : player I has a strategy that is winning in each subgame of Vx }.
Proof First we notice that, for any parameterized Martin game VX the following conditions
are equivalent for each x ∈ X : [1] player I has a strategy that is winning in each subgame of
Vx and [2] for each subgame of Vx player I has a winning strategy. Condition [1] obviously
implies condition [2]. And if [2] holds, we define a strategy for player I as follows, using
an idea of Mertens and Neyman as reported in Mertens (1987) and in Mertens et al. (2015):
player I begins following a strategy that is winning in Vx . If at any point player I makes a
mistake and takes an action that is incompatible with the chosen strategy, player I adopts a
strategy that is winning in the subgame that has thus been reached, and keeps following it.
And so on. The strategy thus constructed is winning in each subgame of Vx .

Since B ∈ �WX , we know that there exists a parameterized Martin game WX such that
B = �WX .

The idea for constructing the parameterized game VX is as follows: We augment the game
WX by allowing player I the possibility to “restart” the game after any sequence of moves,
by marking his action with a ∗. Once player I plays a marked action, we enter a part of the
game that is identical to WX . However, if I restarts the game infinitely many times, player II
wins.

Formally let the set of actions be A = N∗ ∪ N where N∗ is a copy of N. Let player I’s
winning set in VX consist of the pairs (x, p) ∈ X × AN, where p = (a0, a1, . . . ) such that
[A] a2t ∈ N∗ for at most finitely many t ∈ N, and [B] (x, a2t , a2t+1, . . . ) is in the winning
set of the game WX , where t is the largest number such that a2t ∈ N∗, or t = 0 if a2k ∈ N

for all k ∈ N.
Suppose x ∈ B. Then player I has a winning strategy in Wx , say σI . We argue player I

has a winning strategy in each subgame of Vx . It suffices to show that player I has a winning
strategy in each subgame of Vx starting with a move by player I. Thus let h be player I’s
history. A winning strategy of player I in the subgame of Vx starting at h is as follows: At
h, play the marked action σI (∅)∗ (the element of N∗ identical to σI (∅)), and subsequently
follow σI , placing the actions in N.

Conversely, suppose that x ∈ X \ B. Then player II has a winning strategy in Wx , say
σI I . Define σ ′

I I be player II’s strategy in Vx as follows: Let player II follow σI I for as long
as player I does not restart the game. As soon as player I restarts the game, let player II erase
the memory and begin playing according to σI I . And so on. Formally, σ ′

I I (a0, . . . , a2n) =
σI I (a2k, . . . , a2n) where k ≤ n is the largest number such that a2k ∈ N∗, or k = 0 if
a0, a2, . . . , a2n are all elements of N. We argue that σI I is winning strategy in Vx . Consider
any play (a0, a1, . . . ) consistent with σ ′

I I . If infinitely many of the actions a0, a2, . . . are in
N∗, player II wins the play. Otherwise, let t be the largest number such that a2t ∈ N∗, and
t = 0 if a0, a2, . . . are all elements of N. By definition of σ ′

I I the play (a2t , a2t+1, . . . ) is
not in Wx . Thus player II wins. �


Let VX be a parameterized Martin game as in the preceding lemma. As usual, player I’s
winning set is also denoted by VX ⊆ X × NN.

In the Proof of Theorem 4.3 we construct a parameterized game GX that is reminiscent
of an example in Solan and Vieille (2003). In GX there are two players, I and II, who move
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alternately, starting with player I. Intuitively, either player can stop the game using the action
s, or play a natural number. If player I stops the game, the payoffs are (1,−2), if player II
stops the game the payoffs are (2,−1). If neither player stops the game, the payoffs depend
on x as follows: if the generated play is an element of Vx , the payoffs are (2,−1). If it is not,
the payoffs are (0, 0).

Let A = {s} ∪ N and H = AN. We say that a history h ∈ H is terminal if one of
the actions in h is s. Otherwise h is said to be non-terminal. The payoff functions are as
follows: For a play p such that the action s occurs for the first time at an even period, we
have u(x, p) = (1,−2). For a play p such that the action s occurs for the first time at an odd
period, u(x, p) = (2,−1). For a play p that is an element of Vx we have u(x, p) = (2,−1).
For a play p that is an element of NN \ Vx we have u(x, p) = (0, 0).

The game GX is a parameterized game. It remains to show that E(GX ) = B.
We show that E(GX ) ⊇ B. Take an x ∈ B. By the above lemma, there is a strategy σI for

player I that is winning in each subgame of Vx . Clearly σI could be seen as player I’s strategy
in Gx that never assigns the action s. Let σI I be the strategy for player II that requires player
II to stop at each of his histories. We argue that σ = (σI , σI I ) is an SPE of Gx . Indeed,
under σ player I receives the maximal payoff of 2 at each non-terminal history h. Due to the
choice of σI , player II has no profitable deviation at any of his histories because he is unable
to induce a play in NN \ Vx .

Conversely, we show that E(GX ) ⊆ B. Take an x ∈ X \ B. We argue that the game Gx

has no SPE. Suppose on the contrary and let σ be an SPE of Gx .
We first argue that u(x, πh(σ )) = (2,−1) for every non-terminal h ∈ H where player II

is active. Since player II can secure a payoff of −1 by stopping, u(x, πh(σ )) equals either
(0, 0) or (2,−1). If u(x, πh(σ )) = (0, 0) then σ(h) 
= s. At history (h, σ (h)) player I can
secure a payoff of 1 by stopping, and hence u(x, πh(σ )) is either (1,−2) or (2,−1), leading
to a contradiction.

It follows that σ(g) 
= s for each non-terminal history g where player I is active. For in
view of the result of the previous paragraph, player I can get a payoff of 2 by playing any
natural number n. Thus σI returns a natural number after every non-terminal history in Gx ,
and can be viewed as a strategy in the game Vx .

Now recall that x is not in B, so that player I has no strategy that is winning in every
subgame of Vx . In particular, σI is not a winning strategy in some subgame of Vx . Hence, σI

is not awinning strategy in a subgameofVx that startswith player II’s history h. Consequently,
at h, player II can deviate from σ and induce a play that is an element of NN \ Vx and obtain
the payoff 0. Since u(x, πh(σ )) = (2,−1), such a deviation is profitable, contradicting that
σ is an SPE.

7 The Proof of Theorem 4.1

The Proof of Theorem 4.1 relies on a number of concepts originating in descriptive set
theory, including that of a well-founded relation and its rank. We split this section into two
subsections. In the first subsection we review the definitions related to well-founded relations
and their rank. In the second subsection we proceed to the proof of the theorem.
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7.1 Well-founded relations and ranks

In this subsection we briefly review the definitions of well-founded relations and ranks. For
more details we refer to Kechris (1995).

Let N = {0, 1, . . . } be the set of natural numbers. A binary relation � on the set of natural
numbers is a subset of N × N. For t, k ∈ N we write t � k if (t, k) ∈ �, and we say that k is
�-smaller than t . The relation � is called irreflexive if there is no n ∈ N such that n � n. It is
said to be transitive if whenever t �m and m � n for some t,m, n ∈ N, it holds that t � n. The
relation � is said to be well-founded if each non-empty set S ⊆ N has an �-minimal element,
that is, an element s ∈ S such that there is no t ∈ S with s � t . Equivalently, � is well-founded
if it has no infinite descending chain, i.e. no sequence t0, t1, . . . of natural numbers such that
tn � tn+1 for each n ∈ N. Notice that a well-founded relation is necessarily irreflexive.

Let � be a transitive well-founded relation. We define the rank function ρ� assigning to
each natural number a countable ordinal, by recursion as follows:ρ�(t) = 0 if t is a�-minimal
element of N, and otherwise

ρ�(t) = sup{ρ�(n) + 1 : n ∈ N, t � n}.
The rank of � is defined to be the ordinal number

ρ(�) = sup{ρ�(n) + 1 : n ∈ N}.
We let TI denote the set of transitive and irreflexive binary relations. We let TW denote

set of transitive well-founded relations, and, for a countable ordinal α, we define TW(α) =
{� ∈ TW : ρ(�) < α}.

We identify a binary relation � on N with the indicator function of �, an element of the
set {0, 1}N×N. Then the set TI is a closed subset of {0, 1}N×N, and hence a Polish space. For
each countable ordinal α, the set TW(α) is a Borel subset2 of TI.

7.2 The proof

Let σ be a strategy profile. With a slight abuse of notation we shall often write t to mean
the history ct . We say that player i stops infinitely (resp., finitely) often under σ if the set
{t ∈ N : ι(t) = i and σ(t) = s} is infinite (resp., finite). Let E ′(JX ) denote the set of
parameters x ∈ X such that the game Jx admits an SPE σ with the property that at most one
player stops infinitely often under σ . We first show that E ′(JX ) is Borel and then proceed to
the proof that E(JX ) − E ′(JX ) is Borel.

Lemma 7.1 The set E ′(JX ) is Borel.

Proof Without loss of generality assume that for each player i the set {t ∈ N : ι(t) = i} is
infinite. Define

αi (x) = lim sup
t→∞
ι(t)=i

xi (t).

Thus αi (x) is the highest payoff player i can get by stopping the game in very deep subgames.
It is a Borel measurable function.

2 The set TW(α) can be expressed as the intersection of TI with the set WF(α) of all well-founded relations
with the rank smaller than α. The latter set is Borel by corollary 25.11 in Jech (2002).
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Since the payoff functions have finite range, a game Jx has an SPE such that all players
stop finitely often if and only if αi (x) ≤ 0 for each i ∈ I . Clearly the set {x ∈ X : αi (x) ≤
0 for each i ∈ I } is Borel.

A game Jx has an SPE such that player i is the only player to stop infinitely often if and
only if it satisfies the following two conditions:

[1] 0 ≤ αi (x) and
[2] there exists n′ ∈ N such that for every n ∈ N with n ≥ n′ there is a t ∈ N with t > n

such that

[2a] ι(t) = i , αi (x) ≤ xi (t), and
[2b] for every k with n ≤ k < t it holds that xι(k)(k) ≤ xι(k)(t).

For suppose that σ is an SPE of Jx where player i is the only player to stop infinitely often.
Then [1] is clearly true. To see that property [2] let n′ be the period of time such that no player
other than i stops after n′. Take an n > n′ and let t > n be the earliest period of time such
that ι(t) = i and σ(t) = s. Conversely, suppose that conditions [1] and [2] hold. Choose n′
as in [2]. Let t0 be the smallest t which satisfies [2a] and [2b] for n = n′. Suppose that tm
has been defined for some m ∈ N. Let tm+1 be the smallest t which satisfies [2a] and [2b]
for n = tm . Define σ by letting σ(t) = s if and only if t = tm for some m.

The set of x ∈ X satisfying [1] and [2] is visibly Borel. �


By the above lemma the set X − E ′(JX ) is a Borel subset of X . To prove the theorem it
is thus sufficient to show that the set X − E(JX ) is Borel as a subset of X − E ′(JX ). To do
so we construct a continuous function

f : X − E ′(JX ) → TI

such that
X − E(JX ) = f −1(TW(ω2)). (7.1)

The result is then implied by the fact that TW(ω2) is a Borel set.
For x ∈ X and t ∈ N let Jx (t) be a version of the game Jx truncated at period t : the game

Jx (t) proceeds exactly like the game Jx until period t . In period t the active player has only
one action, s, resulting in the payoff vector x(t).

We presently construct a function f : X − E ′(JX ) → TI. Take an x ∈ X − E ′(JX ). Let
f (x) be the following binary relation � on the natural numbers. For t0, t1 ∈ N let t0 � t1 if
the following conditions hold:

[1] t0 < t1 and
[2] the game Jx (t1) has an SPE σ such that

[2a] σ(t0) = s and
[2b] there exists a period t such that t0 ≤ t < t1 with ι(t) 
= ι(t1) such that σ(t) = s.

Notice that if ι(t0) 
= ι(t1) then condition [2b] follows from [2a] since we can set t = t0.
Condition [2b] only has a bite if ι(t0) = ι(t1). It implies that if t0 � t1 and ι(t0) = ι(t1), then
there exists a t such that t0 � t and t � t1 and ι(t) 
= ι(t0) = ι(t1). Thus [2b] guarantees that
� has an infinite descending chain if and only if it has an infinite descending chain in which
the periods are controlled by at least two distinct players. It is this property that allows us to
connect an infinite descending chain of � to SPE of Jx .
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Lemma 7.2 The function f is continuous.

Proof It suffices to observe that, for the natural numbers t0 < t1, whether t0 f (x)t1 or not
depends only on x(0), . . . , x(t1). �

Lemma 7.3 Let x ∈ X − E ′(JX ) and � = f (x). Then [1] the relation � is an element of TI,
and [2] x ∈ X − E(JX ) if and only if � is an element of TW.

Proof [1] The fact that � is irreflexive is obvious. We prove that � is transitive.
Take t0, t1, t2 ∈ N such that t0 � t1 and t1 � t2. Then t0 < t1 < t2, and hence t0 < t2. Let

σ ′ be an SPE of Jx (t1) that witnesses the relation t0 � t1, and let σ ′′ be an SPE of Jx (t2) that
witnesses the relation t1 � t2. Notice that σ ′(t1) = σ ′′(t1) = s. Define

σ = (σ ′(0), . . . , σ ′(t1), σ ′′(t1 + 1) . . . , σ ′′(t2)).

It is easy to see thatσ is an SPEof Jx (t2).We show thatσ witnesses the relation t0�t2.We have
σ(t0) = σ ′(t0) = s, establishing [2a]. To check [2b] suppose that ι(t0) = ι(t2), for otherwise
the condition is satisfied. If ι(t1) 
= ι(t2), then we are done since σ(t1) = σ ′(t1) = s. If
ι(t1) = ι(t2), then there is a t such that t1 ≤ t < t2 with ι(t) 
= ι(t2) and σ(t) = σ ′′(t) = s.
Thus σ satisfies [2a] and [2b] for t0 and t2. This proves that t0 � t2.

[2] Suppose that x ∈ E(JX ). Then Jx has an SPE σ . Since x is not an element of E ′(JX ),
at least two distinct players stop infinitely often under σ . Consequently we can extract a
sequence t0 < t1 < . . . such that σ(tn) = s and ι(tn) 
= ι(tn+1) for each n ∈ N. For each
n ∈ N the strategy profile (σ (0), . . . , σ (tn+1)) is an SPE of the truncated game Jx (tn+1).
Thus tn � tn+1. Hence � is not well-founded, so that � is not in TW.

Conversely, suppose that � is not an element of TW. Thus � has an infinite descending
chain, say t0, t1, . . . . Let σn be an SPE of Jx (tn+1) that witnesses the relation tn � tn+1. For
each t ∈ N, define σ(t) = σn(t) for the unique n ∈ N such that tn ≤ t < tn+1. Then σ is an
SPE of Jx , because by [2b] under σ at least two distinct players stop infinitely often. Thus
x ∈ E(JX ). �


The following lemma is the key step of the proof.

Lemma 7.4 Let x ∈ X − E(JX ) and � = f (x). Then ρ(�) < ω2.

Proof Suppose that ω2 ≤ ρ(�). We work towards a contradiction. The idea of the proof is as
follows. Let N be the number of distinct payoff vectors in the game plus 1, a number which
is finite since all payoffs are integers bounded by −D and D.

Claim There exist sequences t0, . . . , tN , and m1, . . . ,mN such that

[A] t0 < · · · < tN and tN < mn for each n ∈ {1, . . . , N },
[B] ι(t0) = · · · = ι(tN ) 
= ι(m1) = · · · = ι(mN ).

For n ∈ {0, . . . , N } let Sn = {t ∈ N : tn � t} and Mn = Sn \ (S0 ∪ · · · ∪ Sn−1).

[C] For n ∈ {1, . . . , N }, we have mn ∈ Mn.

We first complete the proof of the lemma assuming the claim, and then come back to
prove the claim. For each n ∈ {1, . . . , N } let σn be an SPE of Jx (mn) that witnesses the
relation tn � mn . Let vn denote the payoff vector that σn induces at period tN + 1, i.e.
vin = ui (πtN+1(σn)). We argue that the vectors v1, . . . , vN are all distinct. Suppose to the
contrary. Let the numbers 1 ≤ k < n ≤ N be such that vk = vn . Then the strategy
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profile η = (σk(0), . . . , σk(tN ), σn(tN + 1), . . . σn(mn)) is an SPE of Jx (mn). Moreover,
η(tk) = σk(tk) = s. Since ι(tk) 
= ι(mn), we conclude that tk � mn , so that mn ∈ Sk ,
contradicting condition [C].
Proof of the claim Take a sequence t ′0, t ′1, . . . of natural numbers such that ρ�(t ′k) = ω · k.
The existence of such a sequence follows from the fact that ρ� maps N onto the ordinal ρ(�),
which is at least ω2 by our supposition. Extract an <-increasing subsequence t0, . . . , tN
of the sequence t ′0, t ′1, . . . such that ι(t0) = · · · = ι(tN ). For concreteness assume that
ι(t0) = · · · = ι(tN ) is equal to 1.

Let us say that the number t ∈ N is white if ι(t) = 1, and say that it is black otherwise.
Let M ′

n be the set of black elements of Mn .
We argue that for each t ∈ Mn − M ′

n there exists an m ∈ M ′
n such that m � t . To see this

take a t ∈ Mn − M ′
n . Then both t and tn are white, and tn � t . It follows by the definition

of � that there exists some black m such that tn � m and m � t . Thus m ∈ Sn . Moreover if
m were an element of Si for some i < n, relations ti � m and m � t would imply that ti � t ,
contradicting the choice of t in Mn . Thus m ∈ M ′

n , as desired.
We then have

ρ�(tn) = sup
t∈Sn

(ρ�(t) + 1) = sup
t∈Mn

(ρ�(t) + 1) = sup
m∈M ′

n

(ρ�(m) + 1).

Here the first equation is by the definition of the rank function. The second equation holds
because ρ�(ti ) < ρ�(tn) for each i < n. The third equation holds by the result of the previous
paragraph. It follows in particular that M ′

n is an infinite set, for otherwise ρ�(tn) would be a
successor ordinal.

Finally, choose an element mn ∈ M ′
n such that mn > tN . Such a an element exists since

M ′
n is infinite. The numbers t0, . . . , tN are chosen to be white, whilem1, . . . ,mN are chosen

to be black, so that [B] is satisfied. This completes the proof of the claim and of the lemma.
�


This establishes the Eq. (7.1) and completes the Proof of Theorem 4.1.
We conclude with the conjecture that one could give an alternative Proof of Theorem 4.1

by using the approach of Sect. 5 and the fact (see Kanovei 1988) that the game projection of
clopen sets of X × NN are exactly the Borel sets of X .

8 Parameterized games with bounded payoffs

We have assumed that in parameterized games the payoff function takes only finitely many
values. In this subsection we drop the assumption of finite range and require only that the
payoff function be Borel measurable and bounded. Since even very simple one-player games
may not have a (subgame perfect) equilibrium under these assumptions, it is more natural
to consider the question of whether a game has a subgame perfect ε-equilibrium, for each
positive ε.

Consider a perfect information game G as in Sect. 2, but now assuming only that the
payoff functions are bounded and Borel measurable. Let ε > 0 be an error term. A strategy
profile σ is a subgame-perfect ε-equilibrium (ε − SPE) of G if for each history h ∈ H , each
player i ∈ I , and each strategy σ ′

i of player i it holds that

ui (πh(σ )) ≥ ui (πh(σ/σ ′
i )) − ε. (8.1)
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Consider a parameterized gameGX as in Sect. 3, with a bounded Borel measurable payoff
function ui : X × AN → R for each player i ∈ I . Let

E∗(GX ) = {x ∈ X : the game Gx has an ε − SPE for each ε > 0}.
We obtain the following analogue of Theorem 4.2.

Theorem 8.1 Let GX be a parameterized game with a bounded Borel measurable payoff
function. Then E∗(GX ) is a member of �WX .

Proof of theorem 8.1 Let Q denote the set of rational numbers. Given ε > 0 consider the
parameterized Martin game W ε

X , where player I’s moves are pairs (rt , vt ) ∈ A × Qn and
player II’s moves are at ∈ A. Notice that the actions sets of both players are countable so
that we can identify them with N. Consider a play p∗ = ((r0, v0), a0, (r1, v1), a1, . . . ) of
the game W ε

X . With the notation as in the Proof of Theorem 4.2, we define the winning set
in W ε

X to consist of pairs (x, p∗) satisfying the following three conditions: For each t ∈ N

[1] If at = rt , then vt+1 = vt .
[2] If It = ∅, then vit ≤ ui (x, p) for each i ∈ I .
[3] If It = {i} for some i ∈ I , then vit + ε ≥ ui (x, p).

The winning set in W ε
X is Borel. Let

Eε(GX ) = {x ∈ X : the game Gx has an ε − SPE}.
We show that for each rational ε > 0 we have

Eε/2(GX ) ⊆ �W ε ⊆ Eε(GX ).

To prove the first inclusion, suppose that Gx has an ε
2 -SPE, say σ . Define player I’s

strategy σ ∗
I inW ε

x as follows. Let h∗ be player I’s history inW ε
x of length 2t , and let h be the

corresponding sequence of moves of player II of length t . Define σ ∗
I (h∗) = (rt , vt ) where

rt = σ(h) and

vit = max{ ε
2n : n ∈ Z, ε

2n ≤ ui (x, πh(σ ))}
for each i ∈ I . One then shows that σ ∗

I is player I’s winning strategy in W ε
x .

To prove the second inclusion suppose that σ ∗
I is player I’s winning strategy inW

ε
x . Define

the strategy profile σ for Gx as follows: Take a history h of length t in Gx and let h∗ be
player I’s history in W ε

x of length 2t where player II’s moves correspond to h and player I’s
moves are obtained using σ ∗

I . Now suppose that σ ∗
I (h∗) = (rt , vt ). We define σ(h) to be rt .

One then shows that σ is an ε − SPE of Gx .
We conclude that

E∗(GX ) =
⋂

n∈N
E2−n

(GX ) =
⋂

n∈N
�W 2−n

.

Since �WX is closed under countable intersections, the result follows. �

Wedo not knowwhether theorem 4.1 could be extended to stopping gameswith a bounded

payoff function. The proof of the theorem, especially that of the crucial Lemma 7.4, seem to
rely heavily on the assumption that there are only finitely many payoff vectors in the game.
However, we are able to sharpen the conclusion of 8.1 somewhat for stopping games. As we
argue below the existence domain of a parameterized stopping game with a bounded payoff
function is analytic.

Let JZ be a parameterized stopping as in Sect. 3, but with condition [B] replaced by
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[B′] The space of parameters is the product space Z = [−D, D]I×N.

Theorem 8.2 The set E∗(JZ ) is analytic.

Proof As before we write t to denote the history ct in the game JZ . We identify a strategy σ

of the game JZ with an element (σ (0), σ (1), . . . ) of AN.
Consider the set

Bε = {(z, σ ) ∈ Z × AN : σ is an ε − SPE of Jz}.
We claim that the set Bε is a Borel set. To see this, let us call player i’s strategy ηi to be a
threshold strategy if ηi recommends that player i never stops, or if there is a time t ∈ N such
that ηi recommends player i to stop at period k ∈ N with ι(k) = i , if and only if k ≥ t . Then
the set Bε consists precisely of the pairs (z, σ ) ∈ Z × AN such that

ui (z, πt (σ )) ≥ ui (z, πt (σ/σ ′
i )) − ε.

for each i ∈ I , each t ∈ N, and each threshold strategy σ ′
i of player i . The claim now follows

since the number of threshold strategies is countable.
Let Eε(JZ ) be the projection of the set Bε on the first coordinate. It is an analytic subset

of Z . It follows that E∗(JZ ) = ∩n∈NE2−n
(JZ ) is also analytic. �
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