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Abstract: In humanitarian aid, emergency relief routing optimization needs to 
consider equity and priority issues. Different from the general path selection 
optimization, this paper builds two models differentiated by considerations on the 
identical and diverse injured degrees, where the relative deprivation cost is proposed 
as one of the decision-making objectives to emphasize equity, and the in-transit 
tolerable suffering duration is employed as a type of time window constraint to 
highlight rescue priority. By proving the NP-hardness of our models, we design a 
meta-heuristic algorithm based on the ant colony optimization to 
accelerate the convergence speed, which is more efficient than the commonly-used 
genetic algorithm. Taking 2017 Houston Flood as a case, we find some results 
by performing the experimental comparison and sensitivity analysis: First, our 
models have evident advantages in the fairness of human sufferings mitigation. 
Second, the role of the in-transit tolerable suffering time window cannot be 
ignored in humanitarian relief solutions. Various measures are encouraged to extend 
this type of time window for achieving better emergency relief. Finally, our 
proposed hybrid transportation strategy aiming at diverse injured degrees 
stably outperforms the separated strategy, both in operational cost control and 
psychological sufferings alleviation, especially when relief supplies are limited. 

Keywords: humanitarian logistics; equity; priority; path selection; meta-heuristic 
algorithm 

1 Introduction 
Our research is partially motivated by the injured victims relief problem arising from 
Houston’s devastating flooding in Hurricane Harvey of 2017 summer. This 
fourth largest city in the United States, Houston, was struck by a heavy rain over a 
4-day period, with an average rainfall of 33 inches and a maximum of 49.6 inches. 
More than 136,000 structures suffered from flooding in the entire Harris County, at 
least nine people were dead reported by Texas officials, and dozens of communities 
asked for relief help over 2,000 times each day, causing over 30,000 people 
forced from their homes in Houston (HCFCD, 2017). In such a major flood 
disaster, there is an urgent need for a quick and effective humanitarian relief 
logistics. Post-disaster humanitarian logistics relates to various activities, 
approximately accounting for 80% of disaster relief efforts (Van Wassenhove, 
2006; Chiappetta Jabbour et al., 2017), such as locating shelters to provide 
temporary safe spaces for evacuees, distributing 
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survival resources from supply origins to disaster areas, and transporting injured 
victims to emergency medical centers (Sheu 2014). Since closely related with human 
sufferings and survival probabilities, it is crucial to study the emergency relief routing 
optimization for injured victims in the destructive disaster.  
 
Different from the commercial path optimization aiming at the shortest distance or the 
minimal operational cost as decision-making goals, the existing literature of 
emergency path selection is primarily to minimize relief duration, maximize the 
number of people whose survival probability exceeds the marginal level, or minimize 
life losses and human sufferings (Balcik and Beamon, 2008a; Holguín-Veras et al., 
2012; Sabouhi et al., 2018). As one of major concerns and vital principles in 
humanitarian operations, the equity or fairness issues especially from the perspective 
of human sufferings need to be paid more attention in disaster relief routing planning 
(Van Wassenhove, 2006; Chiappetta Jabbour et al., 2017). Moreover, in the 
emergency routing optimization for transporting affected victims, various injury 
degrees and different survival probabilities are rarely considered and incorporated into 
path selection decisions. But since most disasters such as this Houston flood 
catastrophe actually have differentiated impacts on various areas, the priority issue 
cannot be ignored in emergency relief. Particularly when there are not enough relief 
resources to satisfy all victims, persons with serious sufferings need to be given a 
higher priority than slightly injured ones (Özdamar and Ertem, 2015; Tofighi, Torabi, 
and Mansouri, 2016), which is called as Triage in the field of healthcare management 
(Saghafian et al., 2014). 
 
To the best of our knowledge, few studies on victims’ relief path selection deal with 
the trade-off among physical or economic indicators like distance/cost, and 
humanitarian considerations such as equity and priority. Thereby, we study the 
following research question: How to make an efficient decision on emergency relief 
routing for those injured victims, with a balance between operational cost 
minimization and humanitarian considerations on equity and priority simultaneously? 
Our research objective is to propose and implement an innovative path selection 
methodology and a novel transportation strategy, in order to achieve a more efficient 
and more equitable emergency relief operation when facing with victims in diverse 
injury degrees. 
 
To answer this question and reach this objective, we first formulate a multi-objective 
path selection model, reflected as minimization of the transportation cost, and the 
absolute and relative deprivation cost. The absolute deprivation cost is an economic 
valuation of human sufferings associated with a lack of access to the emergency relief 
service (Holguín-Veras et al. 2013). The relative deprivation cost expressed by the 
absolute value of deviations between any two absolute deprivation costs (Gutjahr and 
Nolz, 2016), is used to characterize the fairness in victims relief operations, which is 
similar to the Gini coefficient index (Matl, Hartl and Vidal, 2018) that most widely 
used for measuring the inequity. Then, for highlighting the priority requirement in 
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emergency relief, we use heterogeneous upper bounds of the in-transit tolerable 
suffering duration as constraints to represent diverse injury degrees of victims. 
Furthermore, we discuss the impacts of equity and priority on optimal relief routing 
decisions, by comparing the two models that consider or do not consider the absolute 
and relative deprivation cost as objectives, as well as by comparing the two models 
that consider or do not consider diverse in-transit tolerable suffering time windows as 
constraints. Eventually, we provide a hybrid transportation strategy and verify its 
better relief effect through comparing it with the traditional separated strategy. 
 
The contributions of this paper are as follows. First, we construct a new objective, 
named the relative deprivation cost, and incorporate it into emergency path selection 
decisions. Using this relative deprivation cost, we put more emphasis on the relief 
fairness for injured victims, rather than only seek to minimize human sufferings in all 
disaster sites. Second, we propose heterogeneous in-transit tolerable suffering time 
windows to reflect differentiated durations that injured victims can persist until 
arriving at the medical center, except traditional time window constraints on rescue 
vehicles’ arrival. This new time restriction helps to more effectively distinguish the 
relief priorities for victims with different injured degrees. Third, we develop a novel 
hybrid transportation strategy for victims in different injury degrees, and demonstrate 
its superiority on both operational cost control and human sufferings mitigation.  
 
Several important insights can be given to governments, NGOs and interest groups 
like enterprises. Whenever it comes to the emergency routing optimization, including 
the distribution of relief materials, the evacuation of affected victims, and the rescue 
of injured people, the following managerial suggestions are suited to various 
stakeholders in the disaster management domain: First, by adopting our proposed 
relative deprivation cost as one of the objectives, we show that our models are more 
effective and fairer in mitigating human sufferings. This point is exactly constructive 
and attractive for governmental agencies that emphasize equity. Further, other than 
the usual concern on the waiting time window for relief vehicles’ arrival, stakeholders 
are advised to keep an eye on another type of time window within which victims can 
persist until arriving at the medical center. Otherwise, it may appear invalid rescue 
solutions. In addition, decision-makers are encouraged to take all possible measures to 
extend the in-transit tolerable suffering duration of victims, for achieving a better 
emergency rescue. Last, facing with victims in different injured degrees, various 
stakeholders are recommended to use our hybrid transportation strategy for improving 
the operational and humanitarian performance, especially with limited relief resources 
under serious disasters. 
 
The rest of the paper is organized as follows. Related work is reviewed in Section 2. 
In Section 3, we describe the relief routing problem for injured victims and formulate 
two emergency path selection models considering equity and priority. In Section 4, 
we show that the proposed models are NP-hard and design an ant colony algorithm 
for the approximate solution. The validation of the ant colony algorithm is also 
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presented. Section 5 applies our models and solution methods to the case of 2017 
Houston Flood. The comparison study and sensitivity analysis are also conducted, 
followed by presenting how our research results can be used for policy makers. 
Finally, we conclude this paper along with future work in Section 6. 

2 Literature Review 
Our study mainly relates to three different streams in the literature, including multiple 
objectives in emergency relief routing optimization, rescue priorities for victims with 
different injury degrees, as well as various transportation optimization strategies 
under differentiated demand.  
2.1 Multiple Objectives in Emergency Relief Routing Optimization 
Like general humanitarian operations, multi-objective decision-making is a 
distinguishing feature in emergency relief routing problems, compared with path 
selection in the commercial context where minimization of cost or distance may be 
the primary concern. Various optimization goals have been well-recognized in the 
literature of disaster relief routing, such as efficiency, effectiveness, and equity 
(Gralla, Goentzel, and Fine, 2014; Huang et al., 2015; Gutjahr and Nolz, 2016; 
Rezaei-Malek et al., 2016). Efficiency, the traditional performance indicator, mainly 
refers to the economy measurement shown in cost-based objectives, e.g., distribution 
or transportation cost in disaster relief (Balcik, Beamon, and Smilowitz, 2008).  
 
Effectiveness is a measure of service quality, which can be reflected in several aspects, 
including response time, reliability, and mitigation of life loss and sufferings. For 
example, Campbell et al. (2008) proposed the latest and average arrival time as 
response indicators to characterize the effectiveness in vehicles routing decisions for 
delivering critical supplies. Vitoriano et al. (2011) formulated a reliability objective 
function to capture the probability that none of relief routes fails. Hu and Sheu (2013), 
Sheu and Pan (2014) addressed the minimization of the psychological cost as the 
objective function, where psychological feelings refer to some stress, anxiety, grief 
and depression. Holguín-Veras et al. (2013), Pérez and Holguín-Veras (2015) 
introduced the deprivation cost concept to capture human sufferings when lacking of 
relief services, and argued that the minimization of the social cost (additively 
composed of logistics cost and deprivation cost) may be a more effective strategic 
goal in emergency scenarios. Wang et al. (2017) proposed a new method to estimate 
human sufferings for which the deprivation cost is replaced with a deprivation level. 
 
Equity relates to balancing the allocation or utilization of resources, so that victims 
have the same opportunity to survive in humanitarian aid (Gutjahr and Nolz, 2016). 
Researchers in the humanitarian field are increasingly aware of the importance of 
equity or fairness. Different methods are employed to express equity (Karsu and 
Morton, 2015; Matl et al., 2018), such as the measures of min-max, the range, the 
mean absolute deviation, the standard deviation and the Gini coefficient. Özdamar et 
al. (2004) considered the minimization of unmet demand as the equity objective in the 
dispatching routing decision for relief commodities. Coverage has also been chosen to 
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model equity, which can be quantified as the percentage of the supplied volume to the 
overall available amount (Balcik and Beamon, 2008a). Huang et al. (2012) 
characterized equity in terms of the disparity between service levels among aid 
recipients in relief routing decisions. Ransikarbum and Mason (2016) addressed 
equity by a max-min approach, which is maximizing the minimum percentage of 
satisfied demand in relief distribution.  
 
In general, in these literature of emergency relief routing optimization, the equity 
considerations are usually evaluated from some quantitative, economic or monetary 
perspectives, rarely judged by the suffering extent reflected as deprivation, pain and 
negative emotions of affected persons. But actually negative sufferings are regarded 
as a type of more appropriate and critical performance measurement, especially in 
relief operations related to human beings like the rescue of injured people and the 
evacuation of affected persons. On the other hand, Gutjahr and Fischer (2018) 
recently demonstrated that relief solutions simply minimizing deprivation costs would 
entail an arbitrarily high degree of inequity. All these related work gives us a 
motivation to discuss the equity issues from the perspective of relative sufferings 
among affected persons, and further explore the trade-off among efficiency, 
effectiveness and equity in relief path selection decisions. 
 
2.2 Priorities for Victims with Different Injury Degrees 
In the literature of healthcare management, according to the severity of different 
patients, the practical process of rationing medical resources is called Triage 
(Saghafian et al., 2014; Wex et al., 2014). Similar to Triage, emergency relief 
priorities have also drawn widespread attention, especially when facing with victims 
in different injury degrees under limited resources. Three main methods and 
techniques are proposed in the field of humanitarian operations, which are priority 
assignment, incorporating survival probabilities into objective functions, and diverse 
rescue duration constraints. 
 
Priority assignment traditionally starts from the most urgent victims to those who are 
less urgent (Jacobson et al., 2012). Most of studies differentiate the priorities by 
assigning different urgency levels or using different serving weights (Yi and Özdamar, 
2007), while Sung and Lee (2016) declared that priority assignment policies should 
have trade-offs among payoff, service time and urgency. Another method depicting 
priority is to apply diverse survival probabilities to reveal different injury severities.  
These studies like Jin et al. (2015) usually formulate an objective function to 
maximize the number of affected people whose survival probability exceeds the 
marginal level. Specifically, they divided all affected people into several particular 
types that have differentiated survival probabilities, which depends on each victim’s 
injury level. 
 
Our research follows the papers using different relief duration constraints to express 
rescue priorities. For characterizing diverse injury degrees, this stream of work 
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emphasizes that the duration of time waiting for rescue cannot exceed some special 
hard limits, otherwise relief disutility would occur (Erera et al. 2010; Talarico et al. 
2015; Miranda and Conceição, 2016). Apart from the time for waiting and receiving 
the first-aid treatment on site, the whole emergency response duration also covers the 
period of transporting victims from the original disaster site to the terminal medical 
center, and the period of waiting and undergoing treatment at medical centers 
(Boonmee, Arimura, and Asada, 2017). In particular, it is necessary to pay attention to 
the in-transit time window within that injured people can tolerable, similar to 
requirements in the distribution of fresh or perishable products (Hsu, Hung, and Li, 
2007; Chen, Hsueh, and Chang, 2009; Govindan et al, 2014). To our best knowledge, 
most emergency path selection studies that use time constraints to express rescue 
priorities only focus on diverse arrival time windows, and ignore differentiated 
in-transit tolerable suffering time windows, which greatly hampers the feasibility and 
effectiveness of relief solutions. 
 
2.3 Transportation optimization strategies under differentiated demand 
Another closely related stream to our paper is about transportation optimization 
strategies under differentiated demand. Usually in post-disaster environments, the 
available relief supplies are not sufficient to meet the needs of all those affected areas 
and all victims. Aid agencies have to decide on how best to allocate the available 
scarce resources considering differentiated demand characterized by diverse urgency 
of disaster areas and victims. Through appropriate classification of affected areas and 
victims, grouped demand is often served separately by the corresponding group-based 
allocation strategy. For instance, Sheu (2007; 2010) sorted disaster affected areas into 
several groups, and bounded the sites with similar urgency attributes together, so as to 
respond efficiently to their rescue needs based on different priorities. Sheu (2014) 
classified survivors into three groups that are normal people, the elderly, and women 
with young children, in order to facilitate differentiating the urgency levels of relief 
services needed by different groups of survivors. Zheng et al. (2014) proposed a 
method for classifying evacuee population in fire evacuation operations. Most of these 
papers in humanitarian operations divide the relief demand into different types like 
urgent and non-urgent one, and then correspondingly implement different kinds of 
strategies for achieving the respective relief objectives. 
 
Other than separately dealing with differentiated demand, there are actually various 
transportation optimization strategies in the commercial context, which are proved to 
improve the service level and operational efficiency. For example, Üster and 
Kewcharoenwong (2011) provided a strategic design and analysis of the relay 
truckload transportation network to improve truck utilization, and consequently lead 
to a higher driver utilization. A consolidation-based transportation strategy was 
proposed by Zhu, Crainic, and Gendreau (2014), where grouping loads from different 
shippers, with possibly different origins and destinations, and loading them into the 
same vehicles for an efficient long-haul transportation. Harks et al. (2016) formulated 
a comprehensive transportation model by incorporating the possibility for flexible and 
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cyclic delivery patterns, to improve the transportation efficiency. These implemented 
optimization strategies aiming at differentiated demand, although did well in 
improving the transportation performance, are rarely applied into the humanitarian 
relief context. It gives us a great deal of inspiration and motivation. 
 

3 Problem Description and Model Formulation  
Taking 2017 Houston Flood disaster as our background, we consider the following 
emergency relief process: rescue vehicles (e.g., ambulances, lifeboats or some 
emergency trucks for evacuation) are dispatched from a safe place (e.g., emergency 
medical centers) to different disaster areas, then pick up some injured persons from 
these affected sites and finally return to the medical center. Injured persons here do 
not only refer to those people are really hurt, but also may mean those people that 
need some simply physical examination after experiencing disasters. To find out the 
optimal transportation path for victims when considering equity and priority 
simultaneously, it is required to dispatch each vehicle to certain disaster areas and to 
sequence the set of areas assigned to each vehicle, to minimize the transportation cost 
and psychological sufferings, under some specific time window constraints and 
vehicle capacity constraints. Here, we only consider one medical center for the sake 
of modeling, a more realistic scenario with several medical centers can be discussed 
in further study.  
 
3.1 Notations and Settings 
We consider such a relief setting that all tours start from the same designated medical 
center depot. We use both index 1 and 𝑛𝑛 + 1 to express the medical center, but the 
difference is that all routes start from the beginning point 1 and end at the terminated 
point 𝑛𝑛 + 1. We denote the set of disaster areas by 𝒩𝒩 = {2, … , 𝑛𝑛}, 𝑛𝑛 = 2, … ,𝑁𝑁. 
There is a network connecting all disaster areas and the medical center, with the arcs 
of the network corresponding to connections between the nodes. Let 𝒦𝒦 be the set of 
potential rescue vehicles, 𝒦𝒦 = {1,2, … , 𝑘𝑘}, 𝑘𝑘 = 1,2, … ,𝐾𝐾.  
 
A transportation cost 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  occurs from node 𝑖𝑖 to 𝑗𝑗, 𝑗𝑗 ≠ 𝑖𝑖, with vehicle 𝑘𝑘, which is 
proportional to the distance 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖  of the arc (𝑖𝑖, 𝑗𝑗) by 𝑘𝑘. It means that 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶 ⋅
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐷𝐷, where 𝐶𝐶 and 𝐷𝐷 are constant cost coefficients. Note that 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖  is a kind of 
virtual distance in disaster scenarios, related with the post-disaster dynamic travelling 

velocity. We define 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖0  as the pre-disaster or normal travelling velocity from 𝑖𝑖 to 𝑗𝑗, 

𝑗𝑗 ≠ 𝑖𝑖 with vehicle 𝑘𝑘. 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) is the post-disaster travelling velocity from 𝑖𝑖 to 𝑗𝑗, 
𝑗𝑗 ≠ 𝑖𝑖 with vehicle 𝑘𝑘 at time 𝑡𝑡. As a reflection of disaster impacts, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) is the 
attenuation coefficient of the travelling velocity between 𝑖𝑖 and 𝑗𝑗 with 𝑘𝑘, where 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖0 ⋅ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡). 
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All relief vehicles are assumed to be identical, with a fixed capacity 𝑊𝑊𝑘𝑘  for each 
vehicle 𝑘𝑘. And 𝑞𝑞𝑖𝑖𝑖𝑖  is the number of injured persons to be rescued by vehicle 𝑘𝑘 at 
each disaster area 𝑖𝑖 (𝑖𝑖 ∈ 𝒩𝒩). The number of trapped victims in any one disaster area 
is assumed not to exceed the capacity of one vehicle, which guarantees the relief 
routes do not need to repeat. Surely, this assumption can be easily relaxed to a split 
delivery scenario in the future research. 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖  is the transportation time associated 
with each arc (𝑖𝑖, 𝑗𝑗), 𝑗𝑗 ≠ 𝑖𝑖 with vehicle 𝑘𝑘. The transportation time is nonnegative and 
satisfies the triangle inequality. In disaster area 𝑖𝑖 (𝑖𝑖 ∈ 𝒩𝒩), the start of the vehicle 
rescue activities is supposed to be within a given time interval, called as the time 
window [0,𝑢𝑢𝑖𝑖]. Rescue vehicles leave the medical center within the time window 
[0,𝑢𝑢1] and return within the time window [0,𝑢𝑢𝑛𝑛+1]. Without loss of generality, we 
suppose that 𝑢𝑢1 = 0 . In addition to the rescue waiting time windows, other 
time-related parameters are as follows: 𝑡𝑡𝑖𝑖𝑖𝑖  represents the time spent on picking up 
each injured person at disaster area 𝑖𝑖 (𝑖𝑖 ∈ 𝒩𝒩) by 𝑘𝑘 , and 𝑏𝑏𝑖𝑖  means the longest 
tolerable suffering time of injured persons at disaster area 𝑖𝑖 (𝑖𝑖 ∈ 𝒩𝒩) when they are 
sent to the medical center. 
 
This relief transportation process for victims can be formulated as a vehicle routing 
problem with several time window constraints, which contains two following types of 
decision variables. The decision variable 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖(∀𝑖𝑖 ≠ 𝑗𝑗,∀𝑘𝑘 ∈ 𝒦𝒦, 𝑖𝑖 ≠ 𝑛𝑛 + 1, 𝑗𝑗 ≠ 1) 
equals 1 if vehicle 𝑘𝑘 travels directly from 𝑖𝑖 to 𝑗𝑗, and 0 otherwise. The decision 
variable 𝜃𝜃𝑖𝑖𝑖𝑖  denotes when vehicle 𝑘𝑘 arrives and starts to provide the relief service 
at disaster area 𝑖𝑖 (𝑖𝑖 ∈ 𝒩𝒩), where 𝜃𝜃1𝑘𝑘 = 0(∀𝑘𝑘), and 𝜃𝜃𝑛𝑛+1,𝑘𝑘 denotes the arrival time 
of vehicle 𝑘𝑘  returning to the medical center. The decision-making goal of our 
emergency relief problem is to design a set of routes with minimizing the 
transportation cost and human sufferings, one for each vehicle, so that all injured 
victims in disaster areas can be rescued in an equitable and efficient manner.  
 
3.2 Absolute and Relative Deprivation Costs 
The human sufferings in our decision-making objectives are measured by the absolute 
deprivation cost and the relative deprivation cost. The absolute deprivation cost is 
depicted as the economic valuation of injured persons’ sufferings when lacking of 
emergency relief services. Incorporating the subjective feelings’ changes of victims 
and some socio-economic characteristics into humanitarian relief operations, our 
paper proposes an innovative three-stage absolute deprivation cost function. First, 
when the disaster occurs, injured persons in various affected areas have to wait for 
vehicles’ relief services. During this waiting period, the absolute deprivation cost 
increases exponentially with the length of waiting time (Holguin-Veras et al., 2013). 
Then, when a relief vehicle arrives at the disaster area and begins to pick up the 
injured persons for the medical treatment, the absolute deprivation cost shows a linear 
reduction (Cantillo et al., 2017). This means that human sufferings can be mitigated 
linearly once victims receive relief services. Finally, different from Holguin-Veras et 
al. (2013), after picking up all injured persons in the disaster area, we consider that a 
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new exponential increase on the absolute deprivation cost appears when victims are 
transported to the medical center. 
 
Fig. 1 illustrates the three-stage absolute deprivation cost, where the exponential 
increasing function is based on the function expression experimentally obtained by 
Holguin-Veras et al. (2013). The growth of the absolute deprivation cost is in a 
slightly slower increase, after victims receive vehicles’ rescue service. We define 

𝑓𝑓(𝑡𝑡) = �
𝑒𝑒𝑔𝑔1𝑡𝑡 + 𝑒𝑒ℎ1 0 < 𝑡𝑡 ≤ 𝜃𝜃𝑖𝑖𝑖𝑖
−𝑔𝑔2𝑡𝑡 + ℎ2 𝜃𝜃𝑖𝑖𝑖𝑖 < 𝑡𝑡 ≤ 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 ⋅ 𝑞𝑞𝑖𝑖𝑖𝑖
𝑒𝑒𝑔𝑔3𝑡𝑡 + 𝑒𝑒ℎ3 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 ⋅ 𝑞𝑞𝑖𝑖𝑖𝑖 < 𝑡𝑡 ≤ 𝜃𝜃𝑛𝑛+1,𝑘𝑘

(𝑖𝑖 ∈ 𝒩𝒩,∀𝑘𝑘 ∈ 𝒦𝒦)as the probability 

density function of the absolute deprivation cost. The absolute deprivation cost Γ𝑖𝑖𝑖𝑖𝑎𝑎  is: 

Γ𝑖𝑖𝑖𝑖𝑎𝑎 = ∫ (𝑒𝑒𝑔𝑔1𝑡𝑡 + 𝑒𝑒ℎ1)𝜃𝜃𝑖𝑖𝑖𝑖
0 𝑑𝑑𝑑𝑑 + ∫ (−𝑔𝑔2𝑡𝑡 + ℎ2)𝜃𝜃𝑖𝑖𝑖𝑖+𝑡𝑡𝑖𝑖𝑖𝑖⋅𝑞𝑞𝑖𝑖𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 + ∫ (𝑒𝑒𝑔𝑔3𝑡𝑡 + 𝑒𝑒ℎ3)𝜃𝜃𝑛𝑛+1,𝑘𝑘

𝜃𝜃𝑖𝑖𝑖𝑖+𝑡𝑡𝑖𝑖𝑖𝑖⋅𝑞𝑞𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑. 

 
Fig. 1. The three-stage absolute deprivation cost 

 
In addition to minimize the absolute deprivation cost of victims at each disaster site 
(Holguin-Veras et al. 2013), we also pay attention to the equity or fairness issues 
among victims in different affected areas in terms of human sufferings mitigation. 

Based on Γ𝑖𝑖𝑖𝑖𝑎𝑎 , we propose Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟  which is the relative deprivation cost of injured 

persons in area 𝑖𝑖 and 𝑗𝑗 visited by vehicle 𝑘𝑘, for highlighting the equity concerns in 
humanitarian operations. Various techniques can be used to formulate a relative 
deprivation cost function, such as minimizing the maximal absolute deprivation cost, 
or minimizing the absolute value of deviations between the absolute deprivation costs 
in any two disaster regions (Itani, 2014). Our paper adopts the latter method, with a 

relative deprivation cost as follows: Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 = �Γ𝑖𝑖𝑖𝑖𝑎𝑎 − Γ𝑗𝑗𝑗𝑗𝑎𝑎 �.  

 
3.3 Emergency Relief Routing Models 
First, we formulate a basic emergency relief model, named Model I, assuming that 
only one type of injury degree in each disaster area. That means the two time 
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windows factors 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 in Model I can reflect the impacts of the disaster on 
different areas to a certain extent. Next, by relaxing the assumption on the identical 
injury degree, we build an extended model, called Model II, to address different injury 
levels suffered by victims at each disaster site. Aiming to victims with diverse injury 
degrees, we also propose in Model II a hybrid transportation strategy to improve the 
effectiveness of emergency relief.   
3.3.1 Basic Model I 
The optimal path selection must be feasible in accordance with vehicles’ capacities 
and victims’ tolerable time windows. The mathematical formulation of the basic 
Model I is given as follows. 

min ∑ ∑ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖{1}∪𝒩𝒩𝑗𝑗𝑗𝑗{𝑛𝑛+1}∪𝒩𝒩𝑘𝑘𝑘𝑘𝒦𝒦                     (1) 

   min ∑ ∑ Γ𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝒦𝒦                         (2) 

min ∑ ∑ ∑ Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ⋅ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘𝑘𝑘𝒦𝒦                   (3) 

𝑠𝑠. 𝑡𝑡.  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶 ⋅ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐷𝐷,   ∀𝑖𝑖𝑖𝑖{1} ∪𝒩𝒩, 𝑗𝑗𝑗𝑗{𝑛𝑛 + 1} ∪𝒩𝒩, 𝑘𝑘𝑘𝑘𝒦𝒦     (4)                 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)𝜃𝜃𝑗𝑗𝑗𝑗
𝜃𝜃𝑖𝑖𝑖𝑖+𝑡𝑡𝑖𝑖𝑖𝑖∙𝑞𝑞𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑,   ∀𝑖𝑖𝑖𝑖{1} ∪𝒩𝒩, 𝑗𝑗𝑗𝑗{𝑛𝑛 + 1} ∪𝒩𝒩, 𝑘𝑘𝑘𝑘𝒦𝒦     (5) 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖0 ⋅ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡),   ∀𝑖𝑖𝑖𝑖{1} ∪𝒩𝒩, 𝑗𝑗𝑗𝑗{𝑛𝑛 + 1} ∪𝒩𝒩, 𝑘𝑘𝑘𝑘𝒦𝒦     (6) 

Γ𝑖𝑖𝑖𝑖𝑎𝑎 = ∫ (𝑒𝑒𝑔𝑔1𝑡𝑡 + 𝑒𝑒ℎ1)𝜃𝜃𝑖𝑖𝑖𝑖
0 𝑑𝑑𝑑𝑑 + ∫ (−𝑔𝑔2𝑡𝑡 + ℎ2)𝜃𝜃𝑖𝑖𝑖𝑖+𝑡𝑡𝑖𝑖𝑖𝑖⋅𝑞𝑞𝑖𝑖𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 + ∫ (𝑒𝑒𝑔𝑔3𝑡𝑡 + 𝑒𝑒ℎ3)𝜃𝜃𝑛𝑛+1,𝑘𝑘

𝜃𝜃𝑖𝑖𝑖𝑖+𝑡𝑡𝑖𝑖𝑖𝑖⋅𝑞𝑞𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

                                                      ∀𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘𝒦𝒦   (7) 

Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 = �Γ𝑖𝑖𝑖𝑖𝑎𝑎 − Γ𝑗𝑗𝑗𝑗𝑎𝑎 �,   ∀𝑖𝑖𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑗𝑗, 𝑘𝑘𝑘𝑘𝒦𝒦               (8) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗(𝑛𝑛+1)∪𝒩𝒩𝑘𝑘𝑘𝑘𝒦𝒦 = 1,   ∀𝑖𝑖𝑖𝑖{1} ∪𝒩𝒩               (9) 
∑ 𝑞𝑞𝑖𝑖𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗(𝑛𝑛+1)∪𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑘𝑘 ,   ∀𝑘𝑘𝑘𝑘𝒦𝒦              (10) 

∑ 𝑥𝑥1𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 1,   ∀𝑘𝑘𝑘𝑘𝒦𝒦                   (11) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − ∑ 𝑥𝑥𝜍𝜍𝜍𝜍𝜍𝜍𝑗𝑗𝑗𝑗𝑗𝑗 = 0,   ∀𝜍𝜍𝜍𝜍𝜍𝜍,𝑘𝑘𝑘𝑘𝒦𝒦             (12) 

∑ 𝑥𝑥𝑖𝑖,𝑛𝑛+1,𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 = 1,   ∀𝑘𝑘𝑘𝑘𝒦𝒦                  (13) 

𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 ⋅ 𝑞𝑞𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜃𝜃𝑗𝑗𝑗𝑗 + 𝑀𝑀 ⋅ �1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖�,   ∀𝑖𝑖𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝒩𝒩,𝑘𝑘𝑘𝑘𝒦𝒦        (14) 

𝜃𝜃𝑖𝑖𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖,   ∀𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘𝒦𝒦                      (15) 
𝜃𝜃𝑛𝑛+1,𝑘𝑘 − 𝜃𝜃𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖    ∀𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘𝒦𝒦                      (16) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖{0,1}   ∀𝑖𝑖𝑖𝑖{1} ∪𝒩𝒩, 𝑗𝑗𝑗𝑗{𝑛𝑛 + 1} ∪𝒩𝒩,𝑘𝑘𝑘𝑘𝒦𝒦            (17) 
The multiple objectives consist of the transportation cost objective (1), the absolute 
deprivation cost objective (2), and the relative deprivation cost objective (3). 
Constraint (4) is the relationship between the transportation cost and the virtual 
travelling distance. The relationship between the virtual distance and the post-disaster 
travelling velocity is shown in Equation (5). The impacts of the disaster on the 
travelling velocity are presented in the Constraint (6). Constraints (7) and (8) are 
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respectively used to define the absolute and relative deprivation cost. Constraint (9) 
states that each disaster area must be provided the rescue service by exactly one 
vehicle. We call it as the assignment constraint. Inequality (10) ensures that no relief 
vehicle can transport more victims than its capacity. Constraint sets (11), (12), and (13) 
are the standard flow constraints and ensure that all transportation routes leave from 
and return to the medical center. Constraint (14) states that vehicle 𝑘𝑘 cannot arrive at 
disaster site 𝑗𝑗 before a certain time (i.e., 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 ⋅ 𝑞𝑞𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖), if it travels from 𝑖𝑖 to 
𝑗𝑗. The scalar 𝑀𝑀 can be an arbitrarily large number. Constraint (15) presents that all 
the arrival time windows for rescue vehicles should be obeyed. Inequality (16) 
requires the difference between the feasible arrival time and the final return time not 
to exceed the maximum tolerable suffering duration of injured persons in disaster area 
𝑖𝑖. Constraint (17) is the integrality constraint.  
  
3.3.2 Model II Considering Diverse Injury Degrees 
In Model II, we discuss a more complex emergency relief situation, in which victims 
are of different injury degrees. Specifically, we consider two types of victims 
(Talarico, Meisel, and Sörensen, 2015): Seriously injured persons who need the 
immediate medical treatment and should be given priority to be picked up, as well as 
slightly injured persons who can wait for a while to receive the medical treatment and 
be picked up later. Normally, in terms of different rescue priorities, the emergency 
relief problem for victims with two types of injury degrees is considered to be a 
two-stage separated transportation process shown as Fig. 2(a), just like Triage: Only 
seriously injured persons are provided the relief services at the first stage, and the 
slightly injured persons are rescued at the second stage.  

 
(a) Serious and slight victims under separated strategy  (b) Slight victims under hybrid strategy 

Fig. 2. Absolute deprivation cost under different transportation strategies 

 
Fig. 2(a) illustrates respectively the absolute deprivation cost of the serious and slight 
victims, under the two-stage separated transportation strategy. It shows diverse 
growth rates of the absolute deprivation cost for different injured persons in the entire 
relief period. From Fig. 2(a), we can see that the absolute deprivation cost of seriously 
injured persons is growing faster than that of slightly injured ones, whether before or 
after vehicles’ relief services. During the period of picking up victims from disaster 
sites, the absolute deprivation costs for both types decrease at the same speed. 



12 
 

 
Different from the traditional separated rescue process in Fig. 2(a), our Model II 
attempts to explore another type of emergency relief process called hybrid 
transportation strategy. The hybrid strategy allows some of slightly injured persons in 
the last accessed areas on some relief paths to be picked up at the first stage, after all 
seriously injured persons have been rescued. In other words, some slight victims can 
be rescued from the last visiting areas on some vehicles’ paths at the first stage, if 
there is still room in these vehicles after providing relief services for serious victims. 
Fig. 2(b) demonstrates the comparative changes with and without adopting the new 
hybrid strategy, in terms of the absolute deprivation cost of slightly injured persons. 
 
Considering different waiting and in-transit tolerable suffering time windows for 
diverse victims, differentiated notations 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  and 𝑞𝑞𝑖𝑖𝑖𝑖𝑙𝑙  are used to distinguish the 
pickup number of seriously and slightly injured persons by vehicle 𝑘𝑘 at disaster 
area 𝑖𝑖. 𝑢𝑢𝑖𝑖𝑠𝑠 and 𝑢𝑢𝑖𝑖𝑙𝑙 respectively denote the waiting time windows of relief services for 
serious and slight victims at disaster area 𝑖𝑖. Correspondingly, 𝑏𝑏𝑖𝑖𝑠𝑠  and 𝑏𝑏𝑖𝑖𝑙𝑙  are the 
maximum in-transit tolerable suffering time windows for seriously and slightly 
injured persons in disaster site 𝑖𝑖. In addition, differentiated expressions are also 

analogously applied into some notations in Model II, such as decision variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠  

and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 , 𝜃𝜃𝑖𝑖𝑖𝑖𝑠𝑠  and 𝜃𝜃𝑖𝑖𝑖𝑖𝑙𝑙 . After substituting these new differentiated notations into all 

the same objectives and constraints (1)-(17) in Model I, we still need to supplement 
two following additional constraints for Model II, for capturing the impacts of 
different injury degrees and the hybrid transportation strategy.  

ξ𝑖𝑖𝑖𝑖1𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑊𝑊𝑘𝑘 − ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠𝑛𝑛
𝑖𝑖=2 ,𝑞𝑞𝑖𝑖𝑙𝑙�    ∀𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝒦𝒦             (18) 

𝜃𝜃𝑛𝑛+1,𝑘𝑘
𝑠𝑠 − 𝜃𝜃𝑖𝑖,𝑘𝑘𝑠𝑠 + 𝑡𝑡𝑛𝑛𝑛𝑛 ⋅ ξ𝑛𝑛𝑛𝑛1𝑙𝑙 ≤ 𝑏𝑏𝑖𝑖𝑠𝑠    ∀𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘𝒦𝒦             (19) 

E.q. (18) shows the pickup number of slightly injured victims with vehicle 𝑘𝑘 in 
disaster area 𝑖𝑖 at the first rescue stage, denoted by ξ𝑖𝑖𝑖𝑖1𝑙𝑙 , where 𝑞𝑞𝑖𝑖𝑙𝑙 represents the total 
number of slight victims at affected site 𝑖𝑖. This constraint is exactly designed to 
characterize the hybrid transportation strategy, where the serious victims are rescued 
firstly at all disaster areas, and then a part of slight victims in the last arriving sites on 
some paths are also allowed to receive relief services at the first stage, as long as the 
vehicle’s capacity is not exceeded. Constraint (19) emphasizes that the appropriate 
decisions on the vehicle’s arrival time for seriously injured persons, not only are 
constrained by the maximum in-transit tolerable suffering time windows of serious 
victims in different areas, but also require to consider the pickup time for those 
slightly injured victims at the vehicle’s last arriving area in the first stage. 
 
3.3 Application of the Models and Strategy 
Our built emergency routing models considering equity and priority simultaneously, 
not only play an important role in the relief path planning for injured people, but also 
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can be exactly applied into other similar path selection decisions in pro-active disaster 
relief operations (Elluru et al., 2017), such as the prepositioning/distribution of relief 
materials, as well as the evacuation of victims. Apart from the humanitarian context, 
the equity objective expressed as the relative deprivation cost is also suitable to deal 
with the fairness considerations in general supply chain allocation scenarios, by 
presenting the economic valuation of psychological sufferings resulted from the lack 
of supply services. And the priority constraint represented by different in-transit 
tolerable suffering time windows, can also be well used to characterize the 
differentiated distribution requirements in commercial logistics and supply chain 
environment. In addition to the models, our hybrid strategy succeeded in the 
commercial context, can be more widely implemented into many humanitarian 
operations for improving the relief performance, such as the allocation-routing 
problem for diversified relief materials or the evacuation routing optimization for 
differentiated victims. 
 

4 An Ant Colony Optimization Algorithm to Solve Models 
Model I and Model II presented above are multi-objective optimization problems, for 
seeking optimal relief paths to minimize the total transportation cost, as well as the 
absolute and relative deprivation cost of all victims. Although the Pareto Front 
solutions for multi-objective problems can be obtained by many approaches (Deb, 
2001), this is not the important point of our paper. We adopt one of the simplest 
methods, called scalarization, to normalize these objectives into a uniform and 
dimensionless scale, for further comparison analysis. In detail, we normalize each 
objective function and convert them into the range [0,1]  through 
(𝑓𝑓 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚)⁄ . After summing up all normalized terms as one 
dimensionless objective, our models are actually transformed to the time-varied 
vehicle routing problems with some time window constraints (VRPTW), where the 
travelling velocity on each arc is a time-dependent continuous change function. Since 
even the simplest form of the travelling salesman problem (TSP) is known to be 
NP-hard (Parker and Rardin, 1983), our extended VRPTW models can also be proved 
to be NP-hard (see Appendix A). A variety of exact and approximate algorithms have 
been proposed to solve this problem class. The approximate algorithms are usually 
based on heuristics, which can be further classified as the classical heuristics and 
meta-heuristics. Due to the inefficiency of general exact methods and their inability to 
solve optimally within a reasonable time, heuristics, especially the meta-heuristics, 
has received a lot of attention in solutions (Bräysy and Gendreau, 2005b). 
 
The ant colony optimization (ACO) algorithm is a kind of meta-heuristic optimization 
technique and has been proven to be an effective approach in solving routing 
problems (Bell and McMullen 2004). The essence of ACO is the pheromone trail 
laying and following behavior of real ants which use pheromones as a communication 
medium (Dorigo and Gambardella, 1997). The ACO was first used in TSP problems, 
later was also successfully applied to the general vehicle routing problems 
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(Bullnheimer, Hartl, and Strauss, 1999; Bell and McMullen, 2004; Yuan and Wang, 
2009; Ariyasingha and Fernando, 2015; Schyns, 2015), quadratic assignment 
problems (Maniezzo, 1999), as well as scheduling problems (Merkle, Middendorf, 
and Schmeck, 2002). We attempt to design an ACO algorithm for solving our models 
with the following main reasons: The characteristics of the autocatalytic positive 
feedback and the inherent parallelism in ACO algorithm can accelerate the discovery 
of global optimal solutions, which is vital in emergency scenarios. The ACO 
algorithm to solve Models I and II is presented below, and its convergence related 
proofs are given later.  
 
4.1 The ACO Algorithm 
Step 1: Initialization.  
We set the values of parameters, including the number of ants 𝑚𝑚, the pheromone 
factor 𝛼𝛼, the heuristic factor 𝛽𝛽, the pheromone evaporation rate 𝜌𝜌, the pheromone 
strength 𝑄𝑄, and the maximum iteration 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚. For every edge, we also set an initial 

pheromone concentration 𝜏𝜏𝑖𝑖𝑖𝑖(0) and an initial pheromone updating value Δ𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 (0). 

Step 2: Construction of Ant Solutions.  
We randomly place all the 𝑚𝑚 ants on the 𝑁𝑁 nodes. At node 𝑖𝑖, the 𝑘𝑘th ant chooses 
the next node 𝑗𝑗 to move to with the probability below: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 = �
�𝜏𝜏𝑖𝑖𝑖𝑖�

𝛼𝛼⋅�𝜂𝜂𝑖𝑖𝑖𝑖�
𝛽𝛽

∑ �𝜏𝜏𝑖𝑖𝑖𝑖�
𝛼𝛼⋅�𝜂𝜂𝑖𝑖𝑖𝑖�

𝛽𝛽
𝜚𝜚∈𝑁𝑁𝑖𝑖

𝑘𝑘
, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖𝑘𝑘

0,        𝑗𝑗 ∉ 𝑁𝑁𝑖𝑖𝑘𝑘
                       (20) 

where 𝑁𝑁𝑖𝑖𝑘𝑘 is the neighborhood of ant 𝑘𝑘 when at node 𝑖𝑖. 𝛼𝛼,𝛽𝛽 are parameters to 
weight respectively the relative importance of the pheromone trail and heuristic 
information. 𝜏𝜏𝑖𝑖𝑖𝑖, called the pheromone concentration, is a pheromone trail value 
associated with each arc (𝑖𝑖, 𝑗𝑗). 𝜂𝜂𝑖𝑖𝑖𝑖  is a heuristic value that measures the desirability 
of the 𝑘𝑘th ant from node 𝑖𝑖 to 𝑗𝑗. We propose the heuristic function (21) to describe the 
impacts of various road situations, which is reflected in parameter δ: a larger value of 
δ means a more serious road condition, leading to a smaller heuristic value for path 
seeking.  

𝜂𝜂𝑖𝑖𝑖𝑖 = �
𝑣𝑣𝑖𝑖𝑖𝑖0 ⋅ 𝜀𝜀𝑖𝑖𝑖𝑖 ⋅ 𝑒𝑒−δ, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖𝑘𝑘

0,        𝑗𝑗 ∉ 𝑁𝑁𝑖𝑖𝑘𝑘
                        (21) 

After the ants’ arrival to the next node, they have to make a judgement whether both 
the capacity constraint (10) and the waiting time window restriction (15) in Models I 
and II are satisfied. If so, go to Step 3 after all ants finishing visiting all nodes; 
otherwise, repeat Step 2. 
Step 3: Validation of Feasible Solutions. 
In Model I, if any route does not meet the Constraint (16), we set its length to a very 
large positive value 𝑀𝑀. Analogously, if any route in Model II does not meet the 
Inequality (16) and the additional Constraints (18) (19), a very large positive value 𝑀𝑀 
is also given as its length. 
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Step 4: Updating Feasible Solutions.  
The feasible solutions are updated by means of the 2-opt local search method (Croes 
1958), which is used to improve the quality of solutions and select the current optimal 
path for globally updating the pheromone. Specifically, a part of arcs on the path are 
reversely exchanged. If the length of the route after reversely exchanging is shortened, 
then the feasible solution is updated. 
Step 5: Updating Pheromone.  
We make a record of the optimal solution in the present cycle. The value of the 
pheromone trail on each arc is updated with Equations (22) and (23): 

𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) + ∑ Δ𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 (𝑡𝑡)𝑚𝑚
𝑘𝑘=1                    (22) 

Δ𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 (𝑡𝑡) = �
𝑄𝑄
𝐿𝐿𝑘𝑘

, if the 𝑘𝑘th ant passed arc (𝑖𝑖, 𝑗𝑗) in 𝑡𝑡th cycle
0, otherwise

      (23) 

where 𝜌𝜌 (0 < 𝜌𝜌 ≤ 1)  is the pheromone evaporation rate. Δ𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 (𝑡𝑡) , named the 

pheromone updating value, is the amount of pheromone that the 𝑘𝑘th ant deposits on 
the arc (𝑖𝑖, 𝑗𝑗) at time 𝑡𝑡. 𝑄𝑄 is the pheromone strength, which means the increased 
amount of pheromone when one ant finishes one cycle. 𝐿𝐿𝑘𝑘 is the total tour length of 
the 𝑘𝑘th ant. 
Step 6: Termination. 
If 𝑁𝑁𝑁𝑁 < 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, 𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁 + 1, go to Step 2; Otherwise, the algorithm is terminated. 
 
4.2 Validation of ACO Algorithm  
We now validate ACO algorithm by proving the basic type of convergence, 
convergence in value, which is guaranteeing to find an optimal solution with a 
probability that can be made arbitrarily close to 1 given enough time. Note that, 
although convergence in solution is generally a stronger and more desirable result 
than convergence in value, we are still interested in finding an optimal value. Because 
once the optimal value has been found, the problem is solved and the algorithm stops. 
The convergence in value is all that our models need. Before presenting the theorem 
of convergence in value for AGO algorithm, we have two following propositions.  
 
Proposition 1: For any 𝜏𝜏𝑖𝑖𝑖𝑖, it holds: 

lim
𝑡𝑡→∞

𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) ≤ 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑦𝑦(𝛾𝛾∗)
𝜌𝜌

. 

Proof: The quality function 𝑞𝑞𝑦𝑦(𝛾𝛾) is non-increasing with respect to 𝑦𝑦, that is, if 
𝑦𝑦(𝛾𝛾1) > 𝑦𝑦(𝛾𝛾2), then 𝑞𝑞𝑦𝑦(𝛾𝛾1) ≤ 𝑞𝑞𝑦𝑦(𝛾𝛾2). 𝑞𝑞𝑦𝑦(𝛾𝛾∗) is the best quality function, which 
means the maximum possible amount of pheromone added to any arc (𝑖𝑖, 𝑗𝑗) after any 
iteration. Due to the pheromone evaporation, the maximum possible pheromone trail 
at iteration 1 is (1− 𝜌𝜌)𝜏𝜏0 + 𝑞𝑞𝑦𝑦(𝛾𝛾∗). And the maximum possible pheromone trail at 

iteration 2 is (1 − 𝜌𝜌)2𝜏𝜏0 + (1 − 𝜌𝜌)𝑞𝑞𝑦𝑦(𝛾𝛾∗) + 𝑞𝑞𝑦𝑦(𝛾𝛾∗) . 𝜏𝜏𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)  can be used to 

express the maximum possible pheromone trail at iteration 𝑡𝑡, that is as follows: 
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𝜏𝜏𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = (1 − 𝜌𝜌)𝑡𝑡𝜏𝜏0 + ∑ (1 − 𝜌𝜌)𝑡𝑡−𝑖𝑖𝑞𝑞𝑦𝑦(𝛾𝛾∗)𝑡𝑡
𝑖𝑖=1 . 

As 0 < 𝜌𝜌 ≤ 1, this maximum possible pheromone trail at iteration 𝑡𝑡  converges 

asymptotically to 𝑞𝑞𝑦𝑦(𝛾𝛾∗)
𝜌𝜌

. Therefore, lim
𝑡𝑡→∞

𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) ≤ lim
𝑡𝑡→∞

𝜏𝜏𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑦𝑦(𝛾𝛾∗)
𝜌𝜌

. ∎ 

 
Proposition 1 shows that the maximum possible pheromone level 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  is 
asymptotically bounded by the pheromone evaporation. 
 
Proposition 2: Once an optimal solution 𝛾𝛾∗ is found, it holds that ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝛾𝛾∗,

lim
𝑡𝑡→∞

𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡) = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑦𝑦(𝛾𝛾∗)
𝜌𝜌

, where 𝜏𝜏𝑖𝑖𝑖𝑖∗  is the pheromone trail value on connections 

(𝑖𝑖, 𝑗𝑗) ∈ 𝛾𝛾∗. 

Proof: Once an optimal solution has been found, then ∀𝑡𝑡 ≥ 1, 𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡) ≥ 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 . 

Combining with the iteration-best update rule, we find that 𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡) monotonically 

increases.  
After the iteration 𝑡𝑡∗  in which the first optimal solution 𝛾𝛾∗  has been found, 
analogous to Proposition 1, the maximum possible pheromone trail at iteration 1 is 

(1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡∗) + 𝑞𝑞𝑦𝑦(𝛾𝛾∗). The maximum possible pheromone trail at iteration 2 is 

(1 − 𝜌𝜌)2𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡∗) + (1 − 𝜌𝜌)𝑞𝑞𝑦𝑦(𝛾𝛾∗) + 𝑞𝑞𝑦𝑦(𝛾𝛾∗). And 𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡) is the pheromone trail value 

on connections (𝑖𝑖, 𝑗𝑗) ∈ 𝛾𝛾∗ , which is used to express the maximum possible 

pheromone trail at iteration 𝑡𝑡. The formulation of 𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡) is as follows: 

𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡) = (1− 𝜌𝜌)𝑡𝑡𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡∗) + ∑ (1 − 𝜌𝜌)𝑡𝑡−𝑖𝑖𝑞𝑞𝑦𝑦(𝛾𝛾∗)𝑡𝑡
𝑖𝑖=1 . 

As 0 < 𝜌𝜌 ≤ 1, this maximum possible pheromone trail at iteration 𝑡𝑡  converges 

asymptotically to 𝑞𝑞𝑦𝑦(𝛾𝛾∗)
𝜌𝜌

. Therefore, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝛾𝛾∗ ,  lim
𝑡𝑡→∞

𝜏𝜏𝑖𝑖𝑖𝑖∗ (𝑡𝑡) = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑦𝑦(𝛾𝛾∗)
𝜌𝜌

. ∎ 

 
Proposition 2 states that, once an optimal solution has been found, the values of the 

pheromone trails on all connections in the optimal solution set 𝛾𝛾∗ converge to 𝑞𝑞𝑦𝑦(𝛾𝛾∗)
𝜌𝜌

. 

 
Theorem 1: Let 𝑃𝑃∗(𝑡𝑡) be the probability that the algorithm finds an optimal solution 
at least once within the first 𝑡𝑡 iterations. Then, for an arbitrarily small 𝜀𝜀 > 0 and for 

a sufficiently large 𝑡𝑡, it holds that 𝑃𝑃∗(𝑡𝑡) ≥ 1 − 𝜀𝜀, and lim
𝑡𝑡→∞

𝑃𝑃∗(𝑡𝑡) = 1. 

Proof: From Equation (20), we can denote the minimum probability of the 𝑘𝑘th ant 
from node 𝑖𝑖 to 𝑗𝑗 as 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 > 0. It holds that, ∀(𝑖𝑖, 𝑗𝑗), 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖 ≤ 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ,   
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𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 ≥ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 =
(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)𝛼𝛼⋅�𝜂𝜂𝑖𝑖𝑖𝑖�

𝛽𝛽

(𝑁𝑁𝑐𝑐−1)⋅(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)𝛼𝛼⋅�𝜂𝜂𝑖𝑖𝑖𝑖�
𝛽𝛽+(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)𝛼𝛼⋅�𝜂𝜂𝑖𝑖𝑖𝑖�

𝛽𝛽. 

where 𝑁𝑁𝑐𝑐 is the cardinality of the solution set. 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  is the worst-case situation: the 
pheromone trail associated with the desired decision is 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚, while all the other 
feasible choices (at most 𝑁𝑁𝑐𝑐 − 1) have an associated pheromone trail 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 
A lower bound for 𝑃𝑃∗(𝑡𝑡) can be given by 𝑃𝑃�∗(𝑡𝑡) = 1 − (1 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)𝑡𝑡, which is a 
sufficient condition for one ant to find an optimal solution. By choosing a sufficiently 

large 𝑡𝑡, this probability can be greater than any value of 1 − 𝜀𝜀, and lim
𝑡𝑡→∞

𝑃𝑃�∗(𝑡𝑡) = 1. 

Since the probability 𝑃𝑃∗(𝑡𝑡) ≥ 𝑃𝑃�∗(𝑡𝑡), we can derive that lim
𝑡𝑡→∞

𝑃𝑃∗(𝑡𝑡) = 1. ∎ 

In this way, the convergence of our designed ACO algorithm is validated. 
 

5 Computational Experiments 
In the following computational experiments and case study, we try to: (i) evaluate the 
effectiveness of our emergency relief routing models and solution procedure; (ii) 
compare our basic Model I with the path selection model that does not consider 
equity/fairness in humanitarian relief operations, and compare Model I with the 
routing model that does not consider priorities reflected in heterogeneous in-transit 
tolerable suffering time windows; (iii) facing with diverse injury degrees in Model II, 
verify the superiority of our hybrid transportation strategy over the traditional 
separated one; and (iv) by sensitivity analysis, study impacts of key parameters (e.g., 
the waiting and in-transit tolerable suffering time windows) on the optimal path 
selection. 
 
5.1 Case Description and Parameter Estimation 
Based on the data from Federal Emergency Management Agency’s (FEMA) effective 
Flood Insurance Rate Map (FIRM) in USA (FEMA, 2017), we conduct computational 
experiments by taking Houston Flood of Texas in 2017 as the case scenario. As 
shown in Fig. 3, there are a total of 20 reachable affected sites in the downtown area 
of Houston, where the pin-shaped icon in the center represents the emergency relief 
agency, and other stars represent the disaster areas. The Texas Medical Center, as the 
emergency relief agency, needs to dispatch rescue vehicles to visit the other 19 
disaster areas, and pick up the trapped injured persons there back to the center for the 
medical treatment. Our decision-making aims to select the optimal paths for these 
relief vehicles when considering equity and priority simultaneously. 
 
In Fig. 3 and Table 1, we mark the total 20 locations with corresponding numbers, 
including one medical center and 19 disaster sites. Assuming only one type of injury 
degree in each area under Model I scenario, the number of injured persons in various 
disaster sites is expressed as “IN” in Table 1, which is calculated from the public 
disaster data released by government. Combining the Base Flood Elevation (BFE) 
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from FEMA’s FIRM with the CNN report about Houston Flood (CNN, 2017), we 
estimate the parameter values of the waiting and in-transit tolerable suffering time 
windows, listed in Table 1. We use the large values 𝑢𝑢1 = 𝑏𝑏1 = 10,000 as the time 
windows and record victims’ number as zero, to distinguish Texas Medical Center 
with other disaster sites. Under Model II scenario, we supplement the experimental 
data related to slight victims into Table 1, considering the distinctions between the 
slight and serious injury. It needs to be mentioned that we specially use “LIN” to 
represent the number of slightly injured persons in Model II, and adopt the “IN” data 
of Model I to express the number of seriously injured victims in Model II. Apart from 
the number of injured victims, we also provide the values of the time windows 
parameters in Table 1, whose unit is “hour”. 

 
Fig. 3. The optimal relief paths of Houston flood case applying Model I 

 
The maximum capacity of all the identical rescue vehicles is 𝑊𝑊𝑘𝑘 = 13. It takes 9 
minutes to pick up one person onto the rescue vehicle at any disaster area, which 
means 𝑡𝑡𝑖𝑖𝑖𝑖 = 0.15ℎ. All the normal pre-disaster travelling velocities on each arc are 

assumed to be equal, that is 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖0 = 60𝑘𝑘𝑘𝑘/ℎ.  Considering different disaster 

situations, we technically obtain the velocity attenuation coefficient by generating 
some random matrices, and set randomly the constant coefficients 𝐶𝐶 and 𝐷𝐷 in the 
transportation cost function. Some of parameters in the absolute deprivation cost 
function in Model I are 𝑔𝑔1 = 1.2,ℎ1 = 3.5,𝑔𝑔2 = −20,𝑔𝑔3 = 0.5. To ensure that the 
three-stage absolute deprivation cost is continuous, the coefficients ℎ2 and ℎ3 are 
not pre-fixed but adjustable according to the function value at the first stage. In Model 
II, the coefficients of the absolute deprivation cost function for slightly injured 
persons are given as 𝑔𝑔1𝑙𝑙 = 0.4, ℎ1𝑙𝑙 = 3.2,𝑔𝑔2𝑙𝑙 = −20,𝑔𝑔3𝑙𝑙 = 0.1, and the parameters of 
seriously injured persons are the same as those in Model I. The weights in the 
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normalization process are assumed to be equal. In addition, according to the classical 
ACO algorithm for solving path selection problems (Dorigo and Stützle, 2004), some 
parameters in our algorithm are set as follows: the number of ants is 𝑚𝑚 = 20; the 
pheromone factor is 𝛼𝛼 = 1; the heuristic factor is 𝛽𝛽 = 1; the pheromone evaporation 
rate is 𝜌𝜌 = 0.15; the maximum iteration is 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 60; the pheromone strength is 
𝑄𝑄 = 10. 
 

Table 1 The affected areas and relevant parameters 
Area 1 2 3 4 5 6 7 8 9 10 

Place 

Name 

Texas 

Medical 

Center 

Medical 

Center 

Apt. 

Meyerland 

Plaza 

Wells  

Fargo  

Bank 

Texas 

Pipe & 

Supply 
Shoremark 

Young 

Elem. 

School 

River 

Oaks 

Paint & 

Body 

Texas 

Southern 

Univ. 

Rice 

Bellaire 

Shopping 

Center 

M
od

el
 I IN 0 3 1 3 2 2 3 4 3 3 

𝑢𝑢𝑖𝑖 10000 1.5 3 1.5 3 1.5 3 0.5 1.5 1.5 

𝑏𝑏𝑖𝑖 10000 0.5 2.5 0.5 2.5 0.5 2.5 0.3 0.5 0.5 

M
od

el
 II

 LIN 0 6 2 6 4 4 6 8 6 6 
𝑢𝑢𝑖𝑖𝑙𝑙 20 9.5 11 9.5 11 9.5 11 8.5 9.5 9.5 
𝑏𝑏𝑖𝑖𝑙𝑙 10000 2 6 2 6 2 6 1.3 2 2 

Area 11 12 13 14 15 16 17 18 19 20 

Place 

Name 

Parkside 

Point 

Apt. 

Kroger AutoZone Missionary 

Village Apt. 

Univ.  

of St. 

Thomas 

Whole 

Foods 

Market 

Lockhart 

Elem. 

School 

Evelyn’s 

Park 
Toyota 

Center Feld Park 

M
od

el
 I IN 1 2 2 3 3 1 3 2 2 4 

𝑢𝑢𝑖𝑖 6 3 3 1.5 1.5 3 1.5 1.5 1.5 0.5 

𝑏𝑏𝑖𝑖 6 2.5 2.5 0.5 0.5 2.5 0.5 0.5 0.5 0.3 

M
od

el
 II

 LIN 2 4 4 6 6 2 6 4 4 8 
𝑢𝑢𝑖𝑖𝑙𝑙 12.5 11 11 9.5 9.5 11 9.5 9.5 9.5 8.5 
𝑏𝑏𝑖𝑖𝑙𝑙 12 6 6 2 2 6 2 2 2 1.3 
 
5.2 Model Solution and Algorithm Verification   
Taking 2017 Houston Flood as the case background, we first use MATLAB R2010b 
to solve Model I by implementing the proposed ACO algorithm in Section 4.1, and 
display the optimal emergency relief paths in Fig. 3 and Table 2. To demonstrate the 
stability of the ACO algorithm, we test the convergence results under different 
scenarios with 20, 25, 30, 35, 40 disaster areas (or nodes), shown in Fig. 4. 
 
To evaluate the efficiency of the ACO algorithm, we also execute the genetic 
algorithm (GA) on MATLAB R2010b with the same computer to get the solutions of 
Model I. GA is another evolutionary meta-heuristics that has also been often used in 
solving many path selection problems (Baker and Ayechew, 2003), which serves as 
the reference algorithm in our computational experiments. The comparison results 
using ACO and GA are given in Table 2. 
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From Table 2, the convergence of ACO costs about 33 seconds, while the run time of 
GA is nearly 186s. This means that our ACO algorithm uses fewer iterations to 
converge, which is more suitable for urgent relief situations. Due to the random cost 
coefficients, we choose the shortest total travelling distance instead of the 
transportation cost as one of the performance objectives for comparison. From the 
perspective of performance objectives, although GA shows better than ACO in the 
shortest total travelling distance and the occupied number of rescue vehicles, ACO is 
evidently superior to GA in terms of sufferings mitigation and equity issues 
emphasized in humanitarian relief operations, which are reflected as a lower absolute 
deprivation cost and a lower relative deprivation cost with ACO in Table 2.  

 
Fig. 4. Convergence of the ACO algorithm 

 
Table 2 Comparison between ACO and GA 
Path No. / Performance ACO GA 

1 1→4→3→1 1→2→5→7→14→13→1 
2 1→8→1 1→8→1 
3 1→7→14→13→1 1→6→18→1 
4 1→15→19→16→1 1→16→19→15→17→1 
5 1→20→1 1→20→1 
6 1→2→5→11→1 1→10→1 
7 1→18→12→1 1→12→4→3→11→1 
8 1→17→9→1 1→9→1 
9 1→10→6→1  

The Shortest Total Travelling Distance (km) 55 48.7 
The Minimum Absolute Deprivation Cost (USD) 1525.49 2106.45 

The Minimum Relative Deprivation Cost (USD) 245.17 471.15 
Run Time (s) 33.102 186.01 

 
Furthermore, for illustrating the impacts of different disaster scenarios, we perform 
the comparison tests regarding various performance objectives, using ACO and GA 
under 20, 25, 30, 35, 40 disaster nodes respectively. As shown in Fig. 5, with the 
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increase in the scale of disasters, the advantages of GA on saving operational costs 
become less apparent. When the number of disaster areas rises up to 40, the shortest 
total travelling distance and the occupied number of rescue vehicles using GA are 
almost the same to the results with ACO. On the other hand, ACO shows its steady 
superiority on both the minimum absolute and relative deprivation cost, which 
especially demonstrates more obvious advantages in the case of more nodes. Thereby, 
it is verified that ACO can be effectively used to solve our emergency routing 
optimization models. We perform the ACO algorithm for the following comparison 
and sensitivity analysis. 

 

Fig. 5. The different performance comparisons using ACO and GA 
 
5.3 Comparison Analysis  
To discuss the necessity of equity and priority considerations in humanitarian 
operations, we make some comparisons between Model I and some traditional path 
selection models. Then, taking the equity and priority into account, we perform a 
comparison analysis on the two-stage separated and the hybrid transportation strategy 
in Model II.  
 
5.3.1 Comparison Based on Model I  
Model Ia is the path selection model that does not consider the objectives of the 
absolute and relative deprivation cost in Model I, and Model Ib is the one that does not 
consider the constraints of heterogeneous in-transit tolerable suffering time windows 
in Model I. We perform a comparison among Model I, Model Ia and Model Ib, and 



22 
 

demonstrate all the optimal paths and the corresponding objective values in Table 3. 
The optimal relief routes under Model Ia and Model Ib are also respectively shown in 
Fig. B.1(a) and (b) of Appendix B. Taking a rough look at Table 3, more rescue 
vehicles are required in our Model I. The main reason is that the equity considerations 
in human sufferings lead to a higher demand for relief supplies. 
 
1. Model I v.s. Model Ia 

We first compare the performance objectives under Model I and Model Ia. As shown 
in Table 3, the human sufferings reflected as deprivation costs are significantly 
mitigated in model I, with a relatively acceptable increase in the travelling distance 
(i.e. from 47.6km to 55km). More specifically, the minimum absolute deprivation cost 
drops from $2,077.57 to $1,525.49, and the minimum relative deprivation cost falls 
from $682.99 to $245.17 at the same time. It indicates that our Model I guarantees an 
effective alleviation on human sufferings and provides a good improvement on equity 
in humanitarian relief. 
 
Then, we observe the comparison of optimal routes under Model I and Model Ia. 
From Table 3, we find that it does not appear one path with so many visited areas 
under Model I, like 1→13→14→11→7→5→1 or 1→12→18→10→6→1 in Model Ia. 
In other words, there are more evenly dispersed disaster areas on each vehicle’s path 
under our Model I, which leads to a shorter suffering period for injured victims who 
are waiting for rescue vehicles or already in vehicles. It is verified again that Model I 
can achieve a good result in the mitigation of human sufferings, from the perspective 
of selected optimal relief paths.  
 

Table 3 Comparison among Model I, Model Ia and Model Ib  

Path No. / Performance 
Optimal Routes 

Model I Model Ia Model Ib 

1 1→4→3→1 1→13→14→11→7→5→1 1→12→4→3→11→1 

2 1→8→1 1→8→1 1→8→10→1 

3 1→7→14→13→1 1→9→17→1 1→9→17→1 

4 1→15→19→16→1 1→15→19→16→1 1→15→19→16→1 

5 1→20→1 1→20→1 1→20→18→6→1 

6 1→2→5→11→1 1→2→3→1 1→2→5→7→14→13→1 

7 1→18→12→1 1→12→18→10→6→1  

8 1→17→9→1   

9 1→10→6→1   

The Shortest Total Travelling Distance (km) 55 47.6 43.5 

The Minimum Absolute Deprivation Cost (USD) 1,525.49 2,077.57 2,337.46 

The Minimum Relative Deprivation Cost (USD) 245.17 682.99 454.83 

 
2. Model I v.s. Model Ib 

Similarly, we firstly compare the three performance objectives under Model I and 
Model Ib. It is shown in Table 3 that although both of the minimum absolute and 
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relative deprivation cost under Model I are lower, the travelling distance under Model 
Ib is shorter. One of possible reasons is that the in-transit tolerable suffering time 
constraints in Model I trigger an increased demand for rescue vehicles. The more 
occupied vehicles subsequently lead to a longer total travelling distance and a higher 
transportation cost. Thereby, at the expense of increased transportation costs, Model I 
can exactly better mitigate human sufferings and improve the equity issues in disaster 
relief. 
 
Next, we pay attention to the different optimal relief routes under Model I and Model 
Ib in Table 3. Taking the second route for instance, the optimal path is 1→8→1 under 
Model I, while it becomes 1→8→10→1 under Model Ib. According to Table 1, the 
acceptable waiting and in-transit tolerable suffering time windows of victims in area 8 
are very small, that means River Oaks Paint & Body is a severe flood impacted zone 
where the injured persons need to be promptly transported to the medical center for 
treatment. So it is not feasible in real situations that one rescue vehicle departs from 
the Texas Medical Center, subsequently visits the disaster area 8, then goes through 
area10, and finally returns to the center. Another similar example is the fifth route 
under Model I and Model Ib. It is also because of the narrow in-transit tolerable 
suffering time windows for injured persons in area 20, one rescue vehicle is specially 
arranged to Feld Park in our Model I. Therefore, those path selection models that do 
not consider the constraints of the in-transit tolerable suffering time windows for 
victims may lead to invalid decisions in humanitarian relief operations. 
 
Through comparison analysis based on Model I, we present the first managerial 
insight here: emergency decision-makers are suggested to simultaneously incorporate 
the equity and priority considerations into humanitarian relief decisions, in order to 
better alleviate human sufferings in a fairer manner. Furthermore, policy makers need 
to pay attention to various in-transit tolerable suffering time windows for achieving 
feasible and effective path selection decisions. This result is also consistent with Chen, 
Hsueh, and Chang (2009) and Govindan et al (2014), in which they emphasized that 
the time-sensitive products like perishable foods must be delivered within allowable 
time windows.    
 
5.3.2 Comparison Based on Model II  
In this subsection, considering victims with different injury degrees, we compare the 
two-stage separated and the hybrid transportation strategy based on Model II. We still 
implement the case scenario in Table 1 by applying the ACO algorithm, and show the 
comparison results in Table 4, where STD, ADC and RDC represent respectively the 
shortest total travelling distance, the minimum absolute deprivation cost and the 
minimum relative deprivation cost. The optimal relief routes under the separated and 
hybrid strategy are also respectively shown in Fig. B.2(a1),(a2) and (b1),(b2) of 
Appendix B. 
 



24 
 

First, we observe the comparison on the number of vehicles under the two strategies. 
From Table 4, fewer rescue vehicles are required in our hybrid transportation strategy, 
with the total number of vehicles being reduced from 18 to 15. This result illustrates 
that the hybrid transportation strategy, which has been often used to improve the 
vehicle loading efficiency in commercial environments, can also play an important 
role in the humanitarian relief context. In particular, since our models considering 
equity and priority require more rescue vehicles as shown in Table 3, the proposed 
hybrid transportation strategy is more beneficial to humanitarian operations when 
supplies are limited. 
 

Table 4 Comparison between the separated and the hybrid transportation strategy 

Se
pa

ra
te

d 
Tr

an
sp

or
ta

tio
n 

St
ra

te
gy

 

Path 1 2 3 4 5 6 7 8 9 - 
STD 

(km) 

ADC 

(USD) 

RDC 

(USD) 

1st 

Stage 

1→4→3

→1 

1→20→

1 

1→7→14

→13→1 

1→10→

6→1 
1→8→1 

1→2→5→

11→1 

1→18→

12→1 

1→17→

9→1 

1→15→19

→16→1 
- 55 1525.49 245.17 

Path 10 11 12 13 14 15 16 17 18 - - - - 

2nd 

Stage  

1→20→

6→1 

1→2→ 

14→1 

1→4→12

→1 
1→8→1 

1→10→

18→1 

1→15→19

→16→1 

1→7→5

→1 

1→9→ 

17→1 

1→13→11

→3→1 
- 57.1 6649.20 836.46 
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 Path 1 2 3 4 5 6 7 8 9 10 
STD 

(km) 

ADC 

(USD) 

RDC 

(USD) 

1st 

Stage 

1→12→

4→3→1 

1→17→

1 

1→15→19

→16→1 

1→10→

18→1 

1→9→ 

13→1 

1→2→5→

11→1 
1→6→1 1→8→1 

1→7→14

→1 

1→20

→1 
58.7 2159.08 245.08 

Path 11 12 13 14 15 - - - - - - - - 

2nd 

Stage 

1→10→

12→1 

1→4→2

→1 

1→5→7 

→1 

1→9→ 

15→1 

1→19 

→1 
- - - - - 34.4 3707.74 416.41 

 
Second, we compare the performance objectives under the two different strategies. 
From Table 4, when applying the hybrid strategy, the shortest total travelling distance 
at the first stage is slightly longer (i.e. 58.7km v.s. 55km), and the minimum absolute 
deprivation cost at the first stage is much higher (i.e. $2,159.08 v.s. $1,525.49). The 
longer distance is due to one more vehicle occupied in the first phase under the hybrid 
strategy. And two main reasons can be used to explain the higher minimum absolute 
deprivation cost at the first stage under the hybrid strategy: (1) By our hybrid strategy, 
some slightly injured persons are probably to be picked up in the last accessed areas 
of vehicles at the first stage, which makes those serious victims already in vehicles 
have to suffer a longer deprivation time and a higher absolute deprivation cost. (2) 
Also because some slight victims may be rescued at the first stage under the hybrid 
strategy, the absolute deprivation cost in the first phase naturally includes the cost for 
these minor injured persons. But it is worth noting that all the performance objectives 
at the second stage under the hybrid strategy are improved greatly. Specifically, the 
shortest total travelling distance is reduced from 57.1km to 34.4km, and the minimum 
absolute deprivation cost decreases from $6,649.2 to $3,707.74 as well as the 
minimum relative deprivation cost drops from $836.46 to $416.41. Moreover, from 
the overall perspective of two stages, there are a shorter traveling distance and a lower 
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absolute/relative deprivation cost under the hybrid strategy. It demonstrates that our 
proposed hybrid transportation strategy can not only better alleviate the psychological 
sufferings of differentiated injured victims and better achieve relief fairness in 
humanitarian operations, but also better control the operational costs. 
 
Last, we focus on the optimal relief routes under the two different strategies. 
Obviously, under the separated strategy, all the disaster areas are revisited at the 
second stage. This is because a strict rule exists in the separated strategy, which is 
only seriously injured persons can be rescued at the first stage while all the slightly 
injured ones have to wait to be provided with relief service later. According to Table 1, 
since there are slight victims in each disaster area, all the disaster sites need to be 
visited again at the second stage when applying the separated strategy. Comparatively, 
when the hybrid transportation strategy works, disaster areas 3, 6, 8, 11, 13, 14, 16, 17, 
18 and 20 do not appear on the relief routes of the second stage. This means that all 
slightly injured persons in the ten areas have already been taken away at the first stage 
under the hybrid strategy, and the rescue vehicles only need to visit the remaining 
nine disaster areas at the second stage. It can also serve as a reasonable explanation 
about why the reduction in the shortest total travelling distance and the decrease in the 
number of occupied rescue vehicles appear under the hybrid transportation strategy. 
 
According to these comparison results based on Model II, we demonstrate the second 
managerial insight: When facing with differentiated demand, such as victims with 
different injury degrees, evacuees with different priorities, and relief materials with 
different urgency levels, emergency decision-makers are recommended to apply our 
proposed hybrid transportation strategy into the optimal path selection. The hybrid 
transportation strategy originating from commercial environments, can well improve 
the sufferings mitigation and the operational performance in humanitarian relief, 
especially when emergency supplies are limited.  
 
5.4 Sensitivity Analysis  
After verifying the effectiveness of our models and the hybrid strategy, we conduct a 
sensitivity analysis on some key time window parameters, including the waiting time 
windows and the victims’ in-transit tolerable suffering time windows. These 
parameters are influenced by many complex realistic factors, such as severities of 
disasters, locations of disaster areas, and decision-makers’ risk attitudes. We first 
observe the impacts of changing time windows on the optimal relief routing in Model 
I, and then discuss the choice of different transportation strategies under diverse time 
window parameters in Model II. 
 
5.4.1 Impacts of Changing Time Windows in Model I 
We implement an increase or a decrease on the waiting time windows 𝑢𝑢𝑖𝑖 and the 
in-transit tolerable suffering time windows 𝑏𝑏𝑖𝑖, and show their influences on different 
performance objectives of Model I in Table 5. LTD in Table 5 represents the longest 
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travelling distance among all vehicles’ routes. Fig. C.1 in Appendix C illustrates the 
optimal relief paths under various time windows scenarios.  
 
First, we focus on the impacts of changes in both 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 on the operational 
performance, mainly reflected in the number of vehicles and the travelling distance. 
From Table 5, when 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 are decreased by 20%, both the number of occupied 
vehicles and the shortest total travelling distance show an increase trend. The main 
reason is that the smaller waiting and in-transit time windows for victims result in 
there are fewer disaster sites on each rescue vehicle’s path, which can also be used to 
explain why the longest travelling distance is reduced from 10.1km to 9.5km. 
Furthermore, from comparison between Fig. 3 and Fig. C.1(a1) in Appendix C, under 
a narrower time window scenario, more rescue vehicles specially provide relief 
service only to one disaster site, just like areas 2, 8, 9, 10, 17 and 20 in Fig. C.1(a1). 
On the contrary, when a 20% increase in both 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖, the longest travelling 
distance rises up from 10.1km to 11.2km, while the shortest total travelling distance 
declines due to fewer occupied rescue vehicles. 
 

Table 5 The impacts of changing 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 in Model I 

Influence on Different 

Performance Objectives 

Houston 

Flood 

Both Changes of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 Only Change of 𝑢𝑢𝑖𝑖 Only Change of 𝑏𝑏𝑖𝑖 

Decreased 

by 20% 

Increased  

by 20% 

Decreased 

by 20% 

Increased 

by 30% 

Decreased 

by 20% 

Increased 

by 30% 

Number of Vehicles 9 12 8 10 9 11 8 

LTD/STD (km) 10.1/55 9.5/65.5 11.2/49 9.5/56.9 11.6/53 9.5/61 11.6/50.8 

ADC (USD) 1525.49 1193.37 1772.78 1351.39 1574.98 1272.39 1688.97 

RDC (USD) 245.49 114.54 374.85 241.02 277.18 195.99 315.2656 

 
Second, we observe the impacts of changes in both 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 on the humanitarian 
performance, involving the minimum absolute and relative deprivation cost. 
Surprisingly, with the stricter time windows, the sufferings of victims are better 
mitigated in a fairer way, which reflected as the decrease of ADC and RDC in Table 5. 
Correspondingly, Table 5 also demonstrates that the more relaxed time windows even 
cause the increase of minimum absolute and relative deprivation cost. This result 
seems a paradox at a rough glance, but really does not mean that a shorter time 
window in emergency relief is more favor. From another perspective, even in very 
urgent situations, our Model I simultaneously considering equity and priority would 
not be too bad in terms of humanitarian performance. Besides, from the last four 
columns of Table 5, we find that changing either 𝑢𝑢𝑖𝑖 or 𝑏𝑏𝑖𝑖 alone shows the same 
influences as above on the operational and humanitarian performance.  
 
Finally, we discuss the respective effects of changing 𝑢𝑢𝑖𝑖  and 𝑏𝑏𝑖𝑖  alone, by 
comparing the corresponding change rates in those operational and humanitarian 
performance. An interesting result from Table 5 is that an adjustment in 𝑏𝑏𝑖𝑖 brings 
about a greater change to the performance objectives, compared with the impacts of 
changing 𝑢𝑢𝑖𝑖. This finding confirms again that the in-transit tolerable suffering time 
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window for victims cannot be ignored in emergency path selection decisions, apart 
from the traditionally emphasized vehicles’ arrival efficiency. Given the important 
role of the in-transit tolerable suffering time window, the third managerial insight that 
we are aiming to suggest is that emergency decision-makers should make efforts to 
improve the medical treatment levels in rescue vehicles. Exemplified by strengthening 
the configuration of medical instruments and emergency medicine in vehicles, we can 
slow down the growth rate of victims’ in-transit sufferings, and realize a more 
effective emergency relief operation. 
 
5.4.2 Impacts on Changing Time Windows in Model II 
Now we compare different transportation strategies under diverse time window 
parameters based on Model II. Table 6 presents the operational and humanitarian 
performance at two stages under the separated and hybrid transportation strategy, 
when facing with changes in the waiting time windows 𝑢𝑢𝑖𝑖 and the in-transit tolerable 
suffering time windows 𝑏𝑏𝑖𝑖. The corresponding optimal relief paths are displayed in 
Fig. C.2 of Appendix C.  
 

Table 6  The impacts of changing 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 in Model II 

Influence on Different  

Performance Objectives 

STD (km) ADC (USD) RDC (USD) 
Number of 

Vehicles 
 First Stage Second Stage First Stage Second Stage First Stage Second Stage 

Total Total Total 

Separated 

Transportation 

Strategy 

Houston 

Flood 
55 57.1 1525.49 6649.20 245.17 836.46 

18 
112.1 8174.69 1081.63 

Decreased 

by 20% 

65.5 58.6 1193.37 5486.14 114.54 597.72 
22 

124.1 6679.51 712.26 

Increased  

by 20% 

49 56.9 1772.78 6690.90 374.85 890.51 
17 

105.9 8463.68 1265.36 

Hybrid 

Transportation 

Strategy 

Houston 

Flood 

58.7 34.4 2159.08 3707.74 245.08 416.41 
15 

93.1 5866.82 661.49 

Decreased 

by 20% 

61.7 28.6 2024.67 3285.21 184.61 323.61 
15 

90.3 5309.88 508.22 

Increased  

by 20% 

52.4 38.8 2219.33 4249.20 335.17 429.54 
14 

91.2 6468.53 764.71 

 
First, we observe the impacts of changes in 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 on the performance objectives 
from two separate stages. Shown in Table 6, although their impacts at the first stage 
display the same trend as the above analysis in Model I, one special change needs to 
be noted at the second stage. Under the hybrid transportation strategy, we find that the 
impacts of adjusting 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 on the shortest total travelling distance at the second 
stage are opposite to those influences in Model I. Taking the 20% decrease of 𝑢𝑢𝑖𝑖 and 
𝑏𝑏𝑖𝑖 in Table 6 as an example, the shortest total traveling distance at the second stage 
under the hybrid strategy becomes shorter with the tighter time windows. As for this 
abnormal situation, we may give the following interpretation: Due to the shorter time 
windows, under the hybrid strategy, each rescue vehicle can only pick up fewer 
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seriously injured persons, leaving more space for the slightly injured victims in the 
last visiting area on each vehicle’s path at the first stage. This inference can be exactly 
confirmed from data in Table 1 and Table 4, where it shows that the total number of 
rescued slightly injured persons increase from 46 to 50 at the first stage under the 
hybrid strategy. So the emergency relief pressure at the second stage is alleviated 
greatly when the time windows become shorter, leading to a shorter travelling 
distance at the second stage. Thereby, even in the emergency relief scenarios with 
strict time windows, our hybrid strategy can also perform well both in operational and 
humanitarian aspects, mainly thanks to its reasonable equity and priority 
considerations together with the commercial optimization technology. 
 
Then, from the overall rescue effect of two stages in Table 6, regardless of the 
increase or decrease in the time windows, our hybrid strategy is evidently superior to 
the separated one, by demonstrating a more effective emergency relief with less 
operational consumption. Therefore, we provide the last managerial insight of our 
paper: since the proposed hybrid transportation strategy has a stable advantage over 
the separated one, we suggest once again that emergency decision-makers should 
adopt appropriately the hybrid strategy when facing with victims with different 
injured degrees, for a better humanitarian relief operation. The similar idea has been 
proven by many commercial logistics papers, such as Zhu, Crainic, and Gendreau 
(2014), where they verified that a consolidation-based transportation strategy can 
improve vehicles utilization and ultimately achieve better efficiency. Our results 
indicate that this similar technology also holds for the humanitarian context. 
 

6 Concluding Remarks  
In this paper, we proposed an approach to study the emergency relief routing 
optimization for injured victims with considerations of equity and priority. For 
highlighting the equity or fairness requirements, we introduced a relative deprivation 
cost as one of decision-making objectives, based on the concept of the absolute 
deprivation cost. In order to more accurately characterize rescue priority, we used 
heterogeneous upper bounds of in-transit tolerable suffering duration as one of the 
time windows constraints. Then, in terms of the identical and different injury degrees 
for victims, we constructed Model I and Model II respectively, and proposed a hybrid 
transportation strategy to improve the humanitarian aid efficiency. Taking Houston 
Flood as a case, an ant colony meta-heuristic algorithm was developed for models 
solution. The validation and verification demonstrated the effectiveness of our 
designed algorithm. By comparison analysis, our models dealing with equity and 
priority can help better alleviate human sufferings in emergency scenarios, and our 
hybrid strategy can simultaneously improve the operational and humanitarian 
performance. We also conducted a sensitivity analysis to observe the influence of 
diverse time windows on the optimal relief paths and different performance 
objectives. 
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In future work, it is interesting to study other absolute and relative deprivation cost 
functions to test the robustness of our results. Or some assumptions in our models can 
be relaxed. For instance, the number of victims in each disaster area may exceed the 
capacity of each rescue vehicle, or there are several medical centers in the relief 
network. Uncertain scenarios in the humanitarian context are also one of further 
directions, such as unknown locations of disaster areas and unknown number of 
victims. Another important idea is that we can explore the application of our reactive 
models and strategies in pro-active disaster relief operations. In detail, we can attempt 
to incorporate the equity objectives and the in-transit tolerable time constraints into 
optimal decisions on the pre-disaster relief supplies prepositioning and distribution, 
the pre-disaster victims’ evacuation, or the emergency facilities location, to achieve 
more effective disaster mitigation and preparation.  
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Appendix A  
NP-hardness Proof of Models I and II 
 
By the following proposition, we prove the relationship between our Models 
(VRPTW) and the travelling salesman problem (TSP).  
 
Proposition A.1: The VRPTW is at least as hard as TSP.  
Proof: VRPTW is considered as a problem with additional time window constraints 
based on the general vehicle routing problem (VRP). VRPTW is equivalent to VRP in 
the case of unlimited time windows. In this sense, VRP is a special case of VRPTW.  
 
Then, we review the definitions of VRP and TSP. VRP tries to answer “what are the 
optimal routes for a group of vehicles when serving a given set of customers, where 
vehicles initially-located at a depot are dispatched to customers and return to the 
origin depot?”, while TSP refers to “given a list of customers and a starting depot, 
what is the optimal route for one vehicle when services each customer exactly once 
and returns to the origin depot?”. So, VRP can be treated as a generalization of TSP. 
When the number of vehicles is 1, VRP becomes TSP. In other words, TSP is a 
special case of VRP.  
 
Therefore, if TSP is NP-hard, both VRPTW and VRP are naturally NP-hard. That is 
to say, VRPTW and VRP are at least as hard as TSP. ∎ 
 
It is well-known that TSP is NP-hard, since the Hamiltonian Cycle (HC) that is 
NP-complete can be reducible to TSP in polynomial time (Rahman and Kaykobad, 
2005). Thereby, we prove that Models I and II are NP-hard according to Proposition 
A.1. 
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Appendix B  
Comparison Analysis Based on Model I and Model II 

     
 (a) No deprivation cost objective         (b) No tolerable suffering time constraint 

Fig. B.1. The optimal paths of traditional path selection models 
 

      
(a1) The 1st stage paths in separated strategy      (a2) The 2nd stage paths in separated strategy 

      

(b1) The 1st stage paths in hybrid strategy        (b2) The 2nd stage paths in hybrid strategy 
Fig. B.2. The optimal paths under different transportation strategies 
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Appendix C  
Sensitivity Analysis Based on Model I and Model II 

    
(a1) Both 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 decreased by 20%     (a2) Both 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 increased by 20%  

      
(b1) Only 𝑢𝑢𝑖𝑖 decreased by 20%             (b2) Only 𝑢𝑢𝑖𝑖 increased by 30%  

      
(c1) Only 𝑏𝑏𝑖𝑖 decreased by 20%              (c2) Only 𝑏𝑏𝑖𝑖 increased by 30%  

Fig. C.1. The optimal paths under different changes of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 in Model I 
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(a1) The 1st stage paths in separated strategy       (a2) The 2nd stage paths in separated strategy 

with 20% decrease of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖                with 20% decrease of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 

      
(b1) The 1st stage paths in separated strategy       (b2) The 2nd stage paths in separated strategy 

with 20% increase of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖                 with 20% increase of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 

      
(c1) The 1st stage paths in hybrid strategy         (c2) The 2nd stage paths in hybrid strategy 

with 20% decrease of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖               with 20% decrease of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 
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(d1) The 1st stage paths in hybrid strategy         (d2) The 2nd stage paths in hybrid strategy 

with 20% increase of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖                with 20% increase of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 
Fig. C.2. The optimal paths under different changes of 𝑢𝑢𝑖𝑖 and 𝑏𝑏𝑖𝑖 using two 

transportation strategies in Model II 
 
 


