Skip to main content
Log in

The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China

  • S.I.: RealCaseOR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, the impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain are studied with the real case study method. A port service supply chain consists of Tianjin Port, a shipping company, and a customer is investigated. A dual overconfidence behavior-based decision model under a demand updating background is built. Then the effects of Tianjin Port’s overconfidence (TPO) behavior and the shipping company’s overconfidence (SCO) behavior on the port service level (PSL), carrying volume and utilities are analyzed. Numerical analysis with real case data is conducted. Several important conclusions are obtained in this paper. Firstly, it is identified that the SCO leads to a decrease in the shipping company’s utilities, while dual overconfidence behavior causes the increase of Tianjin Port’s utilities. Secondly, it is found that the effect of the SCO on the PSL and the effect of TPO on the PSL offset each other which will lead to a threshold in TPO. This threshold is affected by the SCO, and demand updating amplifies this effect. Thirdly, demand updating not only adds to the shipping company’s carrying volume and PSL, but also increases the utilities of both parties. Lastly, it is unexpectedly found that there are interactions between demand updating and dual overconfidence behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agrawal, A., Muthulingam, S., & Rajapakshe, T. (2017). How sourcing of interdependent components affects quality in automotive supply chains. Production & Operations Management, 26(8), 1512–1533.

    Google Scholar 

  • Alexandrou, G., Gounopoulos, D., & Thomas, H. M. (2014). Mergers and acquisitions in shipping. Transportation Research Part E,61(1), 212–234.

    Google Scholar 

  • Asadabadi, A., & Miller-Hooks, E. (2017). Timal transportation and shoreline infrastructure investment planning under a stochastic climate future. Transportation Research Part B Methodological, 100, 156–174.

    Google Scholar 

  • Bao, X. Y., Hu, B. Y., & Tang, X. W. (2011). Incentive contract design of reverse supply chain on basis of overconfidence. Application Research of Computers,9, 3378–3380.

    Google Scholar 

  • Berk, E., Gürler, Ü., & Levine, R. A. (2007). Bayesian demand updating in the lost sales newsvendor problem: A two-moment approximation. European Journal of Operational Research,182(1), 256–281.

    Google Scholar 

  • Bichou, K., & Gray, R. (2004). A logistics and supply chain management approach to port performance measurement. Maritime Policy & Management,31(1), 47–67.

    Google Scholar 

  • Bichou, K., & Gray, R. (2005). A critical review of conventional terminology for classifying seaports. Transportation Research A,39(1), 75–92.

    Google Scholar 

  • Bolton, G. E., & Katok, E. (2008). Learning by doing in the newsvendor problem: A laboratory investigation of the role of experience and feedback. Manufacturing & Service Operations Management,10(3), 519–538.

    Google Scholar 

  • Bostian, A. A., Holt, C. A., & Smith, A. M. (2008). Newsvendor pull-to-center effect: Adaptive learning in a laboratory experiment. Manufacturing & Service Operations Management,10(4), 590–608.

    Google Scholar 

  • Bradford, J. W., & Sugrue, P. K. (1990). A Bayesian approach to the two-period style-goods inventory problem with single replenishment and heterogeneous Poisson demands. Journal of Operations Research Society, 41(3), 211–218.

    Google Scholar 

  • Carbone, V., & De Martino, M. (2003). The changing role of ports in supply-chain management: An empirical analysis. Maritime Policy and Management,30(4), 305–320.

    Google Scholar 

  • Carlo, H. J., Vis, I. F. A., & Roodbergen, K. J. (2014). Transport operations in container terminals: Literature overview, trends, research directions and classification scheme. European Journal of Operational Research,236(1), 1–13.

    Google Scholar 

  • Caschili, S., Medda, F., Parola, F., & Ferrari, C. (2014). An analysis of shipping agreements: The cooperative container network. Networks & Spatial Economics,14(3–4), 357–377.

    Google Scholar 

  • CCTV. 2012. huge loss of China cosco shipping group is otherwise hidden: Blind long-term high-rent charter. http://finance.sina.com.cn/chanjing/sdbd/20120516/101812076251.shtml. Accessed on May 16th, 2012.

  • Chen, H., Chen, J., & Chen, Y. F. (2006). A coordination mechanism for a supply chain with demand information updating. International Journal of Production Economics,103(1), 347–361.

    Google Scholar 

  • Chen, H., Chen, Y. F., Chiu, C. H., et al. (2010). Coordination mechanism for the supply chain with leadtime consideration and price-dependent demand. European Journal of Operational Research,203(1), 70–80.

    Google Scholar 

  • Chen, K., Wang, X., & Huang, M. (2017). Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent. Journal of Industrial & Management Optimization,13(2), 51–51.

    Google Scholar 

  • Choi, T. M. (2016). Impacts of retailer’s risk averse behaviors on quick response fashion supply chain systems. Annals of Operations Research,9, 1–19.

    Google Scholar 

  • Choi, T. M., & Cai, Y. J. (2018). Impacts of lead time reduction on fabric sourcing in apparel production with yield and environmental considerations. Annals of Operations Research,1, 1–22.

    Google Scholar 

  • Croson, D., Croson, R., & Ren, Y. (2011). The overconfident newsvendor. Working paper, University of Texas at Arlington, Arlington.

  • De, G. A., Beresford, A. K. C., & Pettit, S. J. (2003). Liner shipping companies and terminal operators: Internationalization or globalization? Maritime Economics and Logistics,5(4), 393–412.

    Google Scholar 

  • Eppen, G. D., & Iyer, A. V. (1997a). Backup agreements in fashion buying the value of upstream flexibility. Management Science,43(11), 1469–1484.

    Google Scholar 

  • Eppen, G. D., & Iyer, A. V. (1997b). Improved fashion buying with Bayesian updates. Operation Research,45(6), 805–819.

    Google Scholar 

  • Gervais, S., Odean, T. & Heaton, J. B. (2002). Overconfidence, investment policy and executive stock options. Rodney L. White Center for Financial Research Working Paper.

  • Grubb, M. D. (2009). Selling to overconfident consumers. Social Science Electronic Publishing,99(5), 1770–1807.

    Google Scholar 

  • Gurnani, H., & Tang, C. S. (1999). Note: Optimal ordering decisions with uncertain cost and demand forecast updating. Management Science, 45(10), 1456–1462.

    Google Scholar 

  • Ho, T. H., Lim, N., & Cui, T. H. (2010). Reference dependence in multilocation newsvendor models: A structural analysis. Management Science,56(11), 1891–1910.

    Google Scholar 

  • Johnson, D. D., & Tierney, D. (2011). The Rubicon theory of war: how the path to conflict reaches the point of no return. International Security,36, 7–40.

    Google Scholar 

  • Katok, E., & Wu, D. Y. (2009). Contracting in supply chains: A laboratory investigation. Management Science,55(12), 1953–1968.

    Google Scholar 

  • Lee, J. S., Lee, C. Y., & Lee, K. S. (2012). Forecasting demand for a newly introduced product using reservation price data and Bayesian updating. Technological Forecasting and Social Change, 79, 1280–1291.

    Google Scholar 

  • Li, M., Petruzzi, N., & Zhang, J. (2015). Overconfident competing newsvendors. Rochester: Social Science Electronic Publishing.

    Google Scholar 

  • Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1982). Calibration of probabilities: The state of the art to 1980 (pp. 275–324). Dordrecht: Springer.

    Google Scholar 

  • Liu, W. H., Liu, X. Y., & Li, X. (2015a). The two-stage batch ordering strategy of logistics service capacity with demand updating. Transportation Research Part E,83, 65–89.

    Google Scholar 

  • Liu, W., Wang, D., Tang, O., et al. (2018). The impacts of logistics service integrator’s overconfidence behaviour on supply chain decision under demand surge. European Journal of Industrial Engineering,12(4), 558.

    Google Scholar 

  • Liu, J. J., Wang, Z., Yao, D. Q., & Yue, X. (2016). Transaction cost analysis of supply chain logistics services: Firm-based versus port-focal. Journal of the Operational Research Society,67(2), 176–186.

    Google Scholar 

  • Liu, W., Wang, S., Zhu, D. L., et al. (2017). Order allocation of logistics service supply chain with fairness concern and demand updating: Model analysis and empirical examination. Annals of Operations Research,2, 1–37.

    Google Scholar 

  • Liu, W., Xie, D., Liu, Y., & Liu, X. Y. (2015b). Service capability procurement decision in logistics service supply chain: a research under demand updating and quality guarantee. International Journal of Production Research,53(2), 488–510.

    Google Scholar 

  • Lu, X., Shang, J., Wu, S. Y., Hegde, G. G., Vargas, L., & Zhao, D. Z. (2015). Impacts of supplier hubris on inventory decisions and green manufacturing endeavors. European Journal of Operational Research,245, 121–132.

    Google Scholar 

  • Ma, L. J., Zhao, Y. X., Xue, W. L., Cheng, T. C. E., & Yan, H. M. (2012). Loss-averse newsvendor model with two ordering opportunities and market information updating. International Journal of Production Economics, 140(2), 912–921.

    Google Scholar 

  • Mafakheri, F., Breton, M., & Ghoniem, A. (2011). Supplier selection-order allocation: A two-stage multiple criteria dynamic programming approach. International Journal of Production Economics, 132(1), 52–57.

    Google Scholar 

  • Malmendier, U., & Tate, G. (2005). CEO overconfidence and corporate investment. Journal of Finance,60, 2661–2700.

    Google Scholar 

  • Martin, J., & Thomas, B. (2001). The container terminal community. Maritime Policy and Management,28(3), 279–292.

    Google Scholar 

  • Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review,115, 502–517.

    Google Scholar 

  • Nie, K., & Yu, M. (2013). Research on fresh agricultural product based on the retailer’s overconfidence under options and spot markets. International Journal of Managing Information Technology,5(4), 33–41.

    Google Scholar 

  • Özen, U., Sošić, G., & Slikker, M. (2012). A collaborative decentralized distribution system with demand forecast updates. European Journal of Operational Research,216(3), 573–583.

    Google Scholar 

  • Pu, X., & Zhuge, R. (2014). Bilateral efforts of supply chains considering supplier’s overconfidence and fairness. Computer Integrated Manufacturing Systems, Beijing,20(6), 1462–1470.

    Google Scholar 

  • Qin, J. J. (2011). Contracts analysis based on information updating and loss aversion. International Conference on Intelligent Computation Technology & Automation,1, 1034–1037.

    Google Scholar 

  • Ren, Y., & Croson, R. (2013). Overconfidence in newsvendor orders: An experimental study. Management Science,59(11), 2502–2517.

    Google Scholar 

  • Robinson, R. (2006). Port-oriented landside logistics in Australian ports: A strategic framework. Maritime Economics and Logistics,8(1), 40–59.

    Google Scholar 

  • Rodrigue, J. P., & Notteboom, T. (2009). The terminalization of supply chains: Reassessing the role of terminals in port/hinterland logistical relationships. Maritime Policy & Management,36(2), 165–183.

    Google Scholar 

  • Sarvary, M., & Padmanabhan, V. (2001). The informational role of manufacturer returns policies: How they can help in learning the demand. Marketing letters, 12(4), 341–350.

    Google Scholar 

  • Schweitzer, M. E., & Cachon, G. P. (2000). Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence. Management Science,46(3), 404–420.

    Google Scholar 

  • Sethi, S. P., Yan, H., Zhang, H., & Zhou, J. (2007). A supply chain with a service requirement for each market signal. Production & Operations Management,16(3), 322–342.

    Google Scholar 

  • Shi, K. R., Zhou, Y., & Jiang, F. (2014). Supply chain decisions and coordination considering overconfident behavior of the retailer. Industrial Engineering Journal,3, 009.

    Google Scholar 

  • Slack, B., & Frémont, A. (2005). Transformation of port terminal operations: From the local to the global. Transport Reviews,25(1), 117–130.

    Google Scholar 

  • So, K. C., & Zheng, X. (2003). Impact of supplier’s lead time and forecast demand updating on retailer’s order quantity variability in a two-level supply chain. International Journal of Production Economics,86(2), 169–179.

    Google Scholar 

  • Song, H., Yang, H., Bensoussan, A., & Zhang, D. (2014). Optimal decision making in multi-product dual sourcing procurement with demand forecast updating. Computers & Operations Research,41, 299–308.

    Google Scholar 

  • Tsay, A. A. (1999). The quantity flexibility contract and supplier–customer incentives. Management Science, 45(10), 1339–1358.

    Google Scholar 

  • Wang, X. W. (2014). The effects of overconfidence in supply chain systems. Applied Mechanics and Materials,543(547), 4218–4222.

    Google Scholar 

  • Wang, Z., Yao, D., & Yue, X., et al. (2016). Impact of IT Capability on the Performance of Port Operation. Production & Operations Management, 1–14.

  • Wang, Z. G., Zhang, Z. C., Li, C. F., Xu, L., & Chang, Y. (2015). Optimal ordering and disposing policies in the presence of an overconfident retailer: A Stackelberg game. Mathematical Problems in Engineering,2015(2), 1–12.

    Google Scholar 

  • Wang, F., Zhuo, X., Niu, B., et al. (2017). Who canvasses for cargos? Incentive analysis and channel structure in a shipping supply chain. Transportation Research Part B Methodological, 97, 78–101.

    Google Scholar 

  • Wu, Y., Yu, F. & Tu, B. (2013). Decision of the supply chain with bidirectional option based on demand information update and funding constraints. In International conference on service systems & service management, IEEE, 562–567.

  • Zha, Y., Zhang, J., Yue, X., et al. (2015). Service supply chain coordination with platform effort-induced demand. Annals of Operations Research,235(1), 785–806.

    Google Scholar 

  • Zhang, Z., Li, C., Chun, F., Du, P. & Xu, L. (2015). Does overconfident effect affect the performance of a duopoly market? A theoretical analysis. In 12th international conference on service systems and service management (ICSSSM).

  • Zhang, J., Shou, B., & Chen, J. (2013). Postponed product differentiation with demand information update. International Journal of Production Economics,141(2), 529–540.

    Google Scholar 

  • Zhu, X. (2017). Outsourcing management under various demand Information Sharing scenarios. Annals of Operations Research,257(1–2), 449–467.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 71672121; 71372156), sponsored by Independent Innovation Foundation of Tianjin University. The suggestions of the reviewers are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Appendices

Appendix A : Proof of Lemma 1

$$ \frac{{\partial Q_{k1}^{*} }}{\partial k} = \left( {b - a} \right)\frac{\gamma w + g}{{f\left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)k^{2} (p + h + g)}} > 0 $$
$$ \frac{{\partial \beta_{l1}^{*} }}{\partial k} = \frac{{\left( {w - v - c} \right)\left( {h\left( {\bar{\beta }} \right) - h\left( {\underline{\beta } } \right)} \right)}}{{le \cdot f\left( {\frac{{k\left( {p + h + g} \right) - \gamma w - g}}{{k\left( {p + h + g} \right)}}} \right)}} \cdot \frac{\gamma w + g}{{k^{2} \left( {p + h + g} \right)}} > 0 $$
$$ \frac{{\partial \beta_{l1}^{*} }}{\partial l} = - \frac{{\left( {w - v - c} \right)\left( {h\left( {\bar{\beta }} \right) - h\left( {\underline{\beta } } \right)} \right)F^{ - 1} \left( {\frac{{k\left( {p + h + g} \right) - \gamma w - g}}{{k\left( {p + h + g} \right)}}} \right)}}{{l^{2} e}} < 0 $$

Similarly, \( \frac{{\partial Q_{k2}^{*} }}{\partial k} > 0 \), \( \frac{{\partial \beta_{l2}^{*} }}{\partial k} > 0 \), and \( \frac{{\partial \beta_{l2}^{*} }}{\partial l} < 0 \) can be proved

Appendix B: Proof of proposition 1

$$ Q_{k1}^{*} - Q_{1}^{*} = \left( {b - a} \right)\left\{ {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right\} $$
(1)
$$ \begin{aligned} \because \frac{(p + h + g)k - \gamma w - g}{k(p + h + g)} - \frac{p + h - \gamma w}{p + h + g} \hfill \\ \;\;\; = \frac{{\left( {k - 1} \right)(g + \gamma w)}}{k(p + h + g)} \hfill \\ \end{aligned} $$

As \( F^{ - } \left( x \right) \) is a monotonically increasing function, therefore: when \( k > 1 \), \( F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) > F^{ - 1} (\frac{p + h - \gamma w}{p + h + g}) \), and \( Q_{k1}^{*} - Q_{1}^{*} > 0 \) when \( \frac{\gamma w + g}{p + h + g} < k < 1 \), \( F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) < F^{ - 1} (\frac{p + h - \gamma w}{p + h + g}) \), and \( Q_{k1}^{*} - Q_{1}^{*} > 0 \)

$$ Q_{k2}^{*} - Q_{2}^{ *} = \left( {b - a} \right)\left( F^{ - 1} \left( {\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)}} \right) - F^{ - 1} \left( {\frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}}} \right) \right) $$
(2)

,We must compare the value of \( \frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)} \) and

$$ \frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}} $$

Further, we have:

$$ \begin{aligned} &\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)} - \frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} - I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}} \hfill \\ &\quad= \frac{\gamma w + g}{k(p + h + g)}\left( {k\left( {1 - I} \right) + \left( {I_{k} - 1} \right)} \right) \hfill \\&\quad \because k\left( {1 - I} \right) > \frac{{k\left( {\gamma w + g} \right)}}{p + h + g},I_{k} - 1 < - \frac{\gamma w + g}{{k\left( {p + h + g} \right)}} \\&\quad \therefore \frac{\gamma w + g}{p + h + g} < k < 1,Q_{k2}^{*} < Q_{2}^{*} ;k > 1,Q_{k2}^{*} > Q_{2}^{*}\end{aligned} $$

Appendix C: Proof of proposition 2

$$ \beta_{l1}^{*} - \beta_{1}^{*} = \frac{{(w - v - c)\left( {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - lF^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right)}}{le} \cdot \left( {h(\bar{\beta }) - h(\underline{\beta } )} \right) $$

We must compare the value of \( F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) \) and \( lF^{ - 1} (\frac{p + h - \gamma w}{p + h + g}) \)

As \( F^{ - 1} \left( x \right) \) is a monotonically increasing function, therefore:

We only must compare the value of \( \frac{(p + h + g)k - \gamma w - g}{k(p + h + g)} \) and \( \frac{p + h - \gamma w}{p + h + g} \)

  1. (1)

    When \( k > 1 \) and \( l_{\hbox{min} } < l < 1 \)

    We have \( F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) > lF^{ - 1} (\frac{p + h - \gamma w}{p + h + g}) \), so \( \beta_{l1}^{*} > \beta_{1}^{*} \)

  2. (2)

    When \( \frac{\gamma w + g}{p + h + g} < k < 1 \) and \( 1 < l < l_{\hbox{max} } \)

    We have \( F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) < lF^{ - 1} (\frac{p + h - \gamma w}{p + h + g}) \), so \( \beta_{l1}^{*} < \beta_{1}^{*} \)

  3. (3)

    When \( \frac{\gamma w + g}{p + h + g} < k < 1 \) and \( l_{\hbox{min} } < l < 1 \), we have:

$$ \begin{aligned}& F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - lF^{ - 1} (\frac{p + h - \gamma w}{p + h + g})\\ & \quad > l\left\{ {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right\} \hfill \\ &\therefore \beta_{l1}^{*} - \beta_{1}^{*} > \frac{{(w - v - c)\left\{ {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right\}}}{e} \cdot \left( {h(\beta_{0} + \tilde{\beta }) - h(\beta_{0} - \tilde{\beta })} \right) \hfill \\ & \because \frac{\gamma w + g}{p + h + g} < k < 1 \hfill \\ & \therefore \left\{ {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right\} < 0 \hfill \\ \end{aligned} $$

and we cannot confirm the positive and negative of \( \beta_{l1}^{*} - \beta_{1}^{*} \)

Let \( \beta_{l1}^{*} - \beta_{1}^{*} = 0 \), we have

$$ l = \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} $$
$$ \begin{aligned} \because \frac{\gamma w + g}{p + g + h} < k < 1 \hfill \\ \therefore 0 < l = \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} < 1 \hfill \\ \end{aligned} $$

In the case of \( \frac{\gamma w + g}{p + h + g} < k < 1 \)

we have \( 0 < l < \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} < 1 \), and \( \beta_{l1}^{*} > \beta_{1}^{*} \)

In the case of \( \frac{\gamma w + g}{p + h + g} < k < 1 \)

we have \( \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} < l < 1 \), and \( \beta_{l1}^{*} < \beta_{1}^{*} \)

(4) When \( k > 1 \) and \( 1 < l < l_{\hbox{max} } \)

$$ \begin{aligned}& F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - lF^{ - 1} (\frac{p + h - \gamma w}{p + h + g})\\ & \quad < l\left\{ {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right\} \hfill \\ & \therefore \beta_{l1}^{*} - \beta_{1}^{*} < \frac{{(w - v - c)\tau \left\{ {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right\}}}{e} \hfill \\ & \because k > 1 \hfill \\ & \therefore \frac{{(w - v - c)\tau \left\{ {F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right\}}}{e} > 0 \hfill \\ \end{aligned} $$

Further, we cannot confirm the positive and negative of \( \beta_{l1}^{*} - \beta_{1}^{*} \)

Let \( \beta_{l1}^{*} - \beta_{1}^{*} = 0 \); we have \( l = \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} \)

$$ \begin{aligned}& \because k > 1 \hfill \\ & \therefore l = \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} > 1 \hfill \\ \end{aligned} $$

In the case of \( k > 1 \)

We have \( 1 < l < \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} \), and \( \beta_{l1}^{*} > \beta_{1}^{*} \)

In the case of \( k > 1 \)

We have \( 1 < \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} < l \), and \( \beta_{l1}^{*} < \beta_{1}^{*} \)

In summary

When \( l < \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}},\beta_{l1}^{*} > \beta_{1}^{*} \);

While \( l > \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}},\beta_{l1}^{*} < \beta_{1}^{*} \)

Since \( \frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}{ = 1} - \frac{{\left( {\gamma w + g} \right)}}{k(p + h + g)} \) increases monotonically with \( k \), \( F^{ - 1} \left( x \right) \) is an increase function as well.

We can prove that \( F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) \) increases monotonically with \( k \).

Therefore \( A_{1} = \frac{{F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}}{{F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})}} \) increases monotonically with \( k \).

Similarly, we can prove the relationship between \( \beta_{l2}^{*} \) and \( \beta_{2}^{*} \), and \( A_{2} \) increases monotonically with \( k \), as described in Proposition 2.

Appendix D: Proof of Lemma 2

We need to compare \( A_{1} \) and 1; \( A_{1} = \frac{{F^{ - 1} \left( {\frac{{k\left( {p + h + g} \right) - \left( {g + \gamma w} \right)}}{{k\left( {p + h + g} \right)}}} \right)}}{{F^{ - 1} \left( {\frac{p + h - \gamma w}{{\left( {p + h + g} \right)}}} \right)}} \)

We first compare the value of \( \frac{{k\left( {p + h + g} \right) - \left( {g + \gamma w} \right)}}{{k\left( {p + h + g} \right)}} \) and \( \frac{p + h - \gamma w}{{\left( {p + h + g} \right)}} \).

We have:

$$ \begin{aligned} \frac{{k\left( {p + h + g} \right) - \left( {g + \gamma w} \right)}}{{k\left( {p + h + g} \right)}} - \frac{p + h - \gamma w}{{\left( {p + h + g} \right)}} \hfill \\ = \frac{{\left( {k - 1} \right)\left( {g + \gamma w} \right)}}{{k\left( {p + h + g} \right)}} \hfill \\ \end{aligned} $$

Therefore, when \( \frac{g + \gamma w}{p + h + g} < k < 1 \), \( A < 1 \); and when \( \frac{g + \gamma w}{p + h + g} \ge 1 \), \( A \ge 1 \).

$$ \frac{\partial A}{\partial k} = \frac{g + \gamma w}{{F^{ - 1} \left( {\frac{p + h - \gamma w}{{\left( {p + h + g} \right)}}} \right) \cdot f\left( {\frac{{k\left( {p + h + g} \right) - \left( {g + \gamma w} \right)}}{{k\left( {p + h + g} \right)}}} \right) \cdot k^{2} \left( {p + h + g} \right)}} > 0 $$

Appendix E: Proof of proposition 3

In the context of no demand updating, compared with the rational situation, in the case of dual overconfidence conditions, the utility change of the shipping company is as follows:

$$ \Delta \varPi_{S1} = \varPi_{S1}^{k} - \varPi_{S1} = \left( {p + h - \gamma w} \right)\left( {Q_{k1}^{*} - Q_{1}^{*} } \right) - \left( {p + h + g} \right)\left( {\hat{\beta }_{1} \int_{0}^{{\frac{{Q_{k1}^{*} }}{{\hat{\beta }_{1} }}}} {F\left( x \right)dx - \hat{\beta }_{1} \int_{0}^{{\frac{{Q_{1}^{*} }}{{\hat{\beta }_{1} }}}} {F\left( x \right)dx} } } \right) $$

After updating the demand, compared with the rational situation, in the case of dual overconfidence conditions, the utility change of the shipping company is as follows:

$$ \Delta \varPi_{S2} = \varPi_{S2}^{k} - \varPi_{S2} = \left( {p + h - \gamma w} \right)\left( {Q_{k2}^{*} - Q_{2}^{*} } \right) - \left( {p + h + g} \right)\left( {\hat{\beta }_{2} \int_{0}^{{\frac{{Q_{k2}^{*} }}{{\hat{\beta }_{2} }}}} {G\left( x \right)dx - \hat{\beta }_{2} \int_{0}^{{\frac{{Q_{2}^{*} }}{{\hat{\beta }_{2} }}}} {G\left( x \right)dx} } } \right) $$

Take the first derivative of \( \Delta \varPi_{\text{S1}} \) with respect to \( k \), and we have:

$$ \begin{aligned} \frac{{\partial \Delta \varPi_{S1} }}{\partial k} = \left( {p + h - \gamma w} \right)\frac{{\partial Q_{k1}^{*} }}{\partial k} - \left( {p + h + g} \right)F\left( {\frac{{Q_{k1}^{*} }}{{\hat{\beta }_{1} }}} \right)\frac{{\partial Q_{k1}^{*} }}{\partial k} \hfill \\ \;\;\;\;\;\;\;\;\;\;\; = \left( {\gamma w + g} \right)\left( {\frac{ 1}{k} - 1} \right)\frac{{\partial Q_{k1}^{*} }}{\partial k} \hfill \\ \;\;\;\;\;\;\;\;\;\;\; = \left( {\gamma w + g} \right)\left( {\frac{ 1}{k} - 1} \right)\left( {b - a} \right)\frac{{\left( {\frac{\gamma w + g}{{k^{2} (p + h + g)}}} \right)}}{{F\left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)}} \hfill \\ \end{aligned} $$

When \( k = 1 \), \( \frac{{\partial \Delta \varPi_{S1} }}{\partial k} = 0 \); when \( \frac{g + \gamma w}{p + g + h} < k < 1 \), \( \frac{{\partial \Delta \varPi_{S1} }}{\partial k} > 0 \); when \( k > 1 \), \( \frac{{\partial \Delta \varPi_{S1} }}{\partial k} < 0 \).

In addition, since \( k = 1 \), we obtain \( \Delta \varPi_{S1} = 0 \), that is, \( \varPi_{S1}^{k} = \varPi_{S1} \).

Therefore \( \Delta \varPi_{S1} \le 0 \).

The proof of \( \Delta \varPi_{S2} \) is similar to \( \Delta \varPi_{S1}. \)

Appendix F: A Proof of proposition 4

$$ \begin{aligned}& Q_{2}^{*} - Q_{1}^{*} = \left( {b - a} \right)\left( {F^{ - 1} \left( {\frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right) \hfill \\ &\quad\because \frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}} - \frac{p + h - \gamma w}{p + h + g} = I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}} > 0 \hfill \\ &\quad\therefore F^{ - 1} \left( {\frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}}} \right) > F^{ - 1} \left(\frac{p + h - \gamma w}{p + h + g}\right) \hfill \\ &\therefore Q_{2}^{*} > Q_{1}^{*} \hfill \\ \end{aligned} $$
$$\begin{aligned} &\beta_{2}^{*} - \beta_{1}^{*} = \frac{{(w - v - c)\left( {h(\bar{\beta }) - h(\underline{\beta } )} \right)}}{e}\nonumber\\ &\quad \left[ {F^{ - 1} \left( {\frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}}} \right) - F^{ - 1} (\frac{p + h - \gamma w}{p + h + g})} \right] \end{aligned}$$
$$ \begin{aligned} & \because \frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}} - \frac{p + h - \gamma w}{p + h + g} = I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}} > 0 \hfill \\ & \therefore F^{ - 1} \left( {\frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}}} \right) > F^{ - 1} \left(\frac{p + h - \gamma w}{p + h + g}\right) \hfill \\ &\therefore \beta_{2}^{*} > \beta_{1}^{*} \hfill \\ \end{aligned} $$
$$ \begin{aligned} & \beta_{l2}^{*} - \beta_{l1}^{*}= \frac{{(w - v - c)\left( {h(\bar{\beta }) - h(\underline{\beta } )} \right)}}{le}\nonumber\\ &\quad \left[ {F^{ - 1} \left( {\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)}} \right) - F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)} \right]\; \end{aligned}$$
$$ \begin{aligned} &\because \frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)} - \frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} = \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)} > 0 \hfill \\ &\therefore F^{ - 1} \left( {\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)}} \right) > F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) \hfill \\ &\therefore \beta_{l2}^{*} > \beta_{l1}^{*} \hfill \\ \end{aligned} $$
$$ \begin{aligned}& Q_{k2}^{*} - Q_{k1}^{*} = \left( {b - a} \right)\nonumber\\ &\quad \left[ {F^{ - 1} \left( {\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)}} \right) - F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right)} \right] \end{aligned}$$
$$ \begin{aligned} &\because \frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)} - \frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} = \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)} > 0 \hfill \\ &\therefore F^{ - 1} \left( {\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)}} \right) > F^{ - 1} \left( {\frac{(p + h + g)k - \gamma w - g}{k(p + h + g)}} \right) \hfill \\ &\therefore Q_{k2}^{*} > Q_{k1}^{*} \hfill \\ \end{aligned} $$

Appendix G: Proof the proposition 5

$$ \begin{aligned} A_{2} - A_{1} = \frac{{F^{ - 1} \left( {\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)}} \right)}}{{F^{ - 1} \left( {\frac{{k\left( {p + h + g} \right) - \left( {g + \gamma w} \right)}}{{k\left( {p + h + g} \right)}}} \right)}} - \frac{{F^{ - 1} \left( {\frac{{\left( {p + h - \gamma w} \right)}}{{\left( {p + h + g} \right)}} + I \cdot \frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}}} \right)}}{{F^{ - 1} \left( {\frac{p + h - \gamma w}{{\left( {p + h + g} \right)}}} \right)}} \hfill \\ \frac{{\partial \left( {A_{2} - A_{1} } \right)}}{\partial k} = \frac{{f\left( {\frac{{k\left( {p + h + g} \right) - \left( {g + \gamma w} \right)}}{{k\left( {p + h + g} \right)}}} \right)}}{{f\left( {\frac{{k(p + h + g) - \left( {\gamma w + g} \right)}}{k(p + h + g)} + \frac{{I_{k} \left( {\gamma w + g} \right)}}{k(p + h + g)}} \right)}} \cdot \frac{{2\left( {\frac{{\left( {g + \gamma w} \right)}}{{\left( {p + h + g} \right)}}} \right)}}{k} > 0 \hfill \\ \end{aligned} $$

Therefore, \( A_{2} - A_{1} \) increases with k.

Further, when \( k = 1 \), \( A_{2} - A_{1} = 0 \), \( A_{2} = A_{1} \).

Hence, when \( k < 1 \), \( A_{2} - A_{1} < 0 \), \( A_{2} < A_{1} \).

Otherwise, when \( k > 1 \), \( A_{2} - A_{1} > 0 \), \( A_{2} > A_{1} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Shen, X. & Wang, D. The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China. Ann Oper Res 291, 565–604 (2020). https://doi.org/10.1007/s10479-018-3095-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3095-5

Keywords

Navigation