
Annals of Operations Research (2020) 285:273–293
https://doi.org/10.1007/s10479-019-03138-w

S . I . : PROJECT MANAGEMENT AND SCHEDUL ING 2018

Aworm optimization algorithm tominimize the makespan
on unrelated parallel machines with sequence-dependent
setup times

Jean-Paul Arnaout1

Published online: 26 February 2019
© The Author(s) 2019

Abstract
This paper addresses the unrelated parallel machine scheduling problem with setup times,
with an objective of minimizing the makespan. The machines are unrelated in the sense
that the processing speed depends on the job being executed and not the machine. Each job
will have different processing times for each of the available machines, is available at the
beginning of the scheduling horizon, and can be processed on any of themachines but needs to
be processed by one machine only. Sequence-dependent and machine-dependent setup times
are also considered.AWormOptimization (WO) algorithm is introduced and is applied to this
NP-hard problem. The novelWO is based on the behaviors of the worm, which is a nematode
with only 302 neurons. Nevertheless, these neurons allow worms to achieve several intricate
behaviors including finding food, interchanging between solitary and social foraging styles,
alternating between dwelling and roaming, and entering a type of stasis/declining stage.
WO’s performance is evaluated by comparing its solutions to solutions of six other known
metaheuristics for the problem under study, and the extensive computational results indicated
that the proposed WO performs best.

Keywords Worm optimization · Unrelated parallel machines · Setup time

1 Introduction

This paper addresses the scheduling ofN available jobs onM unrelated machines (RM) using
a novel Worm Optimization algorithm (WO) that emulates the worms’ behaviors and an
objective of minimizing the makespan, Cmax , without preemption.

With its negligible neurons (only 3.02e−7% of human brain neurons), the worm remark-
ably is able to realize critical survival activities, especially in relation to switching between
social and solitary food searching, locating nutrients, evading unhealthy food, varying
between “roaming—global search” and “dwelling—local search”, and converting from a
reproductive stage to a declining one. WO was first introduced in Arnaout (2016) for the

B Jean-Paul Arnaout
arnaout.j@gust.edu.kw

1 Gulf University for Science and Technology, Mishref, Kuwait

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03138-w&domain=pdf
http://orcid.org/0000-0003-1590-4494

274 Annals of Operations Research (2020) 285:273–293

traveling salesman problem, where it was compared to ant colony system (ACS), particle
swarm optimization (PSO), and genetic algorithm (GA). The computational tests indicated
that WO outperformed the algorithms in all problems, as well as attained the optimal solu-
tion in all cases. In a later study, Arnaout (2017) developed a WO for the Multiple Level
Warehouse Layout Problem and compared it to GA and ACO. The results showed that WO
performed better than the other algorithms, especially in large problems.

In the Unrelated Parallel Machine Scheduling Problem (PMSP), the jobs’ processing
times (Pik : Processing time for job i on machine k) depend on the machine to which they
are assigned, and there is no relationship between machine speeds. We consider in this paper
sequence-dependent setup times Sijk where the time necessary to set up for two consecutive
jobs i and j on machine k may be different if i and j are reversed (i.e. Sijk ��Sjik). We
also address a more generic form of the problem by assuming that the setup times are
machine-dependent (i.e., each machine has its own matrix ofN ×N setup times). We refer to
this problem hereafter as RM|Sijk |Cmax . The identical parallel machine scheduling problem
PM‖Cmax , which is simpler special case of RM|Sijk |Cmax , is an NP-hard even when M �
2 (Karp 1972; Garey and Johnson 1979). Subsequently, the latter is also NP-hard; i.e. it is
computationally impractical to solve using exact approaches, and heuristic algorithms are
more appropriate.

The related literature describes several algorithms for the PMSP but without consider-
ing the setup time, where fewer works were conducted. For extensive literature about the
problem without setup time, the reader can refer to Arnaout et al. (2010, 2014). Having said
that, Al-Salem (2004) introduced the Partitioning Heuristic (PH) to solve large instances of
RM|Sijk |Cmax and so did Helal et al. (2006) who developed a tabu search TS for the same
problem and demonstrated that it performed better than the PH. In Rabadi et al. (2006),
the authors solved the problem using a heuristic called Meta-Heuristic for Randomized Pri-
ority Search (Meta-RaPS) and showed that their heuristic outperformed the PH. Arnaout
et al. (2010) introduced a two-stage Ant Colony Optimization (ACO) for RM|Sijk |Cmax and
showed its superiority over PH (Al-Salem 2004), TS (Helal et al. 2006) and Meta-RaPS
(Rabadi et al. 2006). Ying et al. (2012) developed for the same problem Simulated Anneal-
ing (SA) and restrictive simulated annealing (RSA) algorithms. The latter employs a restricted
search strategy to eliminate ineffective job moves for finding the best neighbourhood solu-
tion. The authors compared their algorithms to the ACO in Arnaout et al. (2010) using the
same data sets, and their results indicated the superiority of their algorithms, with RSA per-
forming significantly better than SA. Chang and Chen (2011) developed a set of dominance
properties with Genetic Algorithms, introduced a new metaheuristic and reported efficient
solutions. Eroglu et al. (2014) proposed a genetic algorithm (GA) for the same problem, and
their solutions show that it outperformed ACO (Arnaout et al. 2010) in most combinations
as well as the metaheuristic developed by Chang and Chen (2011). Finally, Lin and Ying
(2014) presented a hybrid artificial bee colony (HABC) for the problem and showed that it
outperformed the best-so-far algorithms such as ACO, TS, RSA, and Meta-RaPS.

Recent works also dealt with the same problem from an exact, heuristic and hybrid per-
spectives. Wang et al. (2016) presented a hybrid estimation of distribution algorithm (EDA)
with iterated greedy (IG) search (EDA-IG), and compared it to former GAs. The authors also
proposed a probability model that is based on the neighbor relations of the jobs, in order
to assist the proposed algorithm to generate new solutions by sampling a promising search
region. An immune-inspired algorithm was proposed by Diana et al. (2015). The authors
generated the initial population using the Greedy Randomized Adaptive Search Procedure
(GRASP), used Variable Neighborhood Descent (VND) as local search heuristic, and pro-
posed a population re-selection operator. The authors noted that their algorithm performed

123

Annals of Operations Research (2020) 285:273–293 275

better than some of the existing ones in the literature. Avalos-Rosales et al. (2015) proposed
a new makespan linearization and several mixed integer formulations for this problem, and
noted that these models are able to solve larger instances and in a faster computational time.
The authors also proposed ametaheuristic algorithmbased onmulti-start algorithmandVND.
The algorithm’s performance was improved using composite movements for the improve-
ment phase. Ezugwu et al. (2018) developed an improved symbiotic organisms search (SOS)
algorithm with a new solution representation and decoding procedure to make it suitable for
the combinatorial aspect of the problem at hand. The authors adapted the longest process-
ing time first (LPT) rule to design a machine assignment heuristic that assigns processing
machines to jobs based on the machine dynamic load-balancing mechanism. The heuristic
scheme was incorporated into SOS, which led to improved results.

Due to space and scope limitations, we will not address in this paper the large body of
knowledge related to the problem at hand with different objectives and constraints. In the
latter case, the reader can refer to Allahverdi (2015) for a detailed review.

We develop in this paper a WO algorithm to find high quality solutions for RM|Sijk |Cmax .
Its performance is evaluated by comparing its solutions to the ones generated by TS in Helal
et al. (2006), ACO in Arnaout et al. (2010), RSA in Ying et al. (2012), GA in Eroglu et al.
(2014), andABC/HABC inLin andYing (2014). All instances and solutions for the addressed
problem are available at SchedulingResearch.com.

2 Worm optimization

As introduced in Arnaout (2016), WO simulates the worm’s behaviors by mimicking its
ability to find food, avoid toxins, search in groups or independently, fluctuate between local
and global exploration, and convert from a reproductive stage to a declining one. In order to
solve an optimization problem usingWO, the problemmust be represented as a graph (nodes
and arcs), where the worm will move from one node to another in order to create a solution.

WO starts by depositing pheromone (τi j) on all the arcs in the graph. Initially, the worms
are social, where the neuronRMG responsible of the foraging behavior (Social “1” or Solitary
“0”) is initialized to 1. Under Social behavior, the worms move between nodes based on a
greedy rule and an attraction to the pheromone. This behavior is similar to the one exhibited
by ants in ant colony optimization (Dorigo and Gambardella 1997), coupled with a unique
attribute for worms, which is toxins avoidance. In particular, a social worm t will move
between nodes i and j following the probability in (1):

Pt
i j � τi jη

β
i j ADFi j

∑
h∈Ψ τihη

β
ih ADFih

, (1)

where ηi j refers to the greedy rule,ADFi j is the bad solution factor for toxins avoidance, Ψ
is the set of unvisited nodes, and β is the exponent that determines the importance of the
pheromone amount over the greedy rule.

Every iteration consists of a group of worms, Worms, completing their path through
the network, with the cost of every worm path calculated. In addition, every worm upon
completion of its path, has a probability of conducting local search (dwelling). At the end of
the iteration, the arcs belonging to the best worm are updated by increasing their pheromone
using Eq. (2), and the arcs of the worst worm are updated by decreasing their pheromone
(Eq. (3)) as well as potentially adding the worm’s path to the bad solutions’ list (ADF).

τi j ← τi j × (1 + ρ) i f arc (i, j) is used by BestWorm (2)

123

276 Annals of Operations Research (2020) 285:273–293

τi j ← τi j × (1 − ρ) i f arc (i, j) is used by WorstWorm (3)

where ρ � WorstWorm − BestWorm

BestWorm

If the solution does not improve after a predefined number of iterations (BestIter), the
worms will shift to a solitary foraging behavior by setting RMG to 0. Under solitary search,
worms behave as the opposite of a social one; i.e. they randomly move between nodes and
are repelled by pheromone.

Finally, the number of worms as well as the solution improvement are analyzed at the end
of every iteration, following which WO interchanges between a propagative phase (where
more worms are produced) and a declining phase, referred to as Dauer (where the number
of worms is decreased).

2.1 Solving the RM|Sijk|Cmax usingWO

RM|Sijk |Cmax is modeled using two stages, with a separate pheromone trail and ADF for
each. Jobs are assigned to machines in the first stage, and their sequence on each machine
is determined in the second stage. As highlighted earlier, WO starts with a social foraging
behavior (RMG � 1), and will alternate to a solitary one (RMG � 0) after BestIter iterations
without improvement. This oscillation between social and solitary is repeated until WO
terminates.

In the first stage, WO assigns job j to the kth machine, according to the pheromone trail
τ I
jk , the visibility amount ηI

jk , and the bad solution factor ADF I
jk . The visibility of this stage

is shown in Eq. (4), in which for social worms, ηI
jk favours the allocation of a machine that

takes the least processing time of job j where Pjk refers to the processing time of job j on
machine k; i.e. social worms follow a greedy rule. On the other hand, for solitary worms, an
equal amount is given to all machines, to ensure a random dispersion of worms.

ηI
jk �

⎧
⎨

⎩

1/
Pjk

, i f social worm;

1/
M, i f soli tary worm

(4)

Next, worm t assigns job j to machine k according to the probability in Eq. (5). As can be

seen, solitary worms are repelled by pheromone

(
1
/

τ I
jk

)

while social ones are lured to it.

Π
t,I
jk �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
τ I
jk

)
.
(
ηI
jk

)β
.
(
ADF I

jk

)

∑
hΨ

(
τ I
jh

)
.
(
ηI
jh

)β
.
(
ADF I

jh

) , i f social worm;

(
1/

τ I
jk

)

.
(
ηI
jk

)β
.
(
ADF I

jk

)

∑
hΨ

(
1/

τ I
jh

)

.
(
ηI
jh

)β
.
(
ADF I

jh

) , i f soli tary worm

(5)

Following the assignment of jobs to machines in Stage 1, the jobs’ sequence is determined
in Stage 2. In particular, the probability for job j to be processed after job i on machine k is
given in Eq. (6) and the greedy rule is calculated using Eq. (7), where Jk refers to the number
of jobs assigned to machine k. In the case of social worms, the greedy rule’s rationale is to

123

Annals of Operations Research (2020) 285:273–293 277

give more priority to the job that takes the least amount of setup time after processing job i
on machine k. Again, a random dispersion is given to the solitary worms.

Πkt,I I
i j �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
τ k

I I
i j

)
.
(
ηk

I I
i j

)β

.
(
ADFkI I

i j

)

∑
hΨ

(
τ I
ih

)
.
(
ηk

I I
ih

)β
.
(
ADFkI I

ih

) , i f social worm;

(
1
/

τ k
I I

i j

)

.
(
ηk

I I
i j

)β

.
(
ADFkI I

i j

)

∑
hΨ

(
1
/

τ k
I I

ih

)

.
(
ηk

I I
ih

)β
.
(
ADFkI I

ih

) , i f soli tary worm

(6)

ηk
I I

i j �
⎧
⎨

⎩

1/
si jk, i f social worm;

1/
Jk, i f soli tary worm

(7)

After each worm finishes its path, the latter cost (Cmax) is calculated. Tables 1 and 2
provide sample outputs of Stage 1 and Stage 2, respectively, for a problem with 10 jobs (N
� 10) and 4 machines (M � 4). In particular, Table 1 shows a one-dimensional array of size
N cells. Each cell is populated by the job-machine assignment where the index of the array
represents the machine number to which a job in the array cell is assigned; i.e. jobs 1, 5, and
10 are assigned tomachine 1, jobs 3 and 6 tomachine 2, etc. Table 2 shows a two-dimensional
array of size (M × N), where extending on Table 1, job 5 is sequenced first on machine 1,
followed by job 1 then job 10, job 3 is sequenced first on machine 2, followed by job 6, and
so on.

2.1.1 WO local search: dwelling

For every worm in an iteration, and once it completes its path and generates aCmax value, the
probability to conduct a local search is determined according to amphid interneuron (AIY),
which refers to the ratio of local search. In particular, a random variable is generated, and if
its value is less than or equal to AIY , the worm will conduct local search. A simple swapping
rule is used for the local search, where two jobs from the worm path are randomly chosen
and their positions are interchanged. Extending on the example in Tables 2 and 3 shows three
different solutions obtained using local search.

Table 1 Stage 1 output 1 4 2 3 1 2 4 3 3 1

Table 2 Stage 2 output 5 1 10 0 0 0 0 0 0 0

3 6 0 0 0 0 0 0 0 0

4 8 9 0 0 0 0 0 0 0

7 2 0 0 0 0 0 0 0 0

Table 3 Local search examples 5 1 3 9 1 10 5 1 10

10 6 0 3 6 0 3 7 0

4 8 9 4 8 5 4 8 9

7 2 0 7 2 0 6 2 0
Bold refers to interchanged jobs

123

278 Annals of Operations Research (2020) 285:273–293

2.1.2 WO bad solution list (ADF)

Once all Worm in a particular iteration complete their path, WO captures the solutions of
the BestWorm and WorstWorm. The latter’s solution is added to the ADF list if it meets the
criteria highlighted in this section.

The followingmust be defined for theBadSolutionList: (ADFList√Worm,M×N+1),which

stores the inferior solutions. The list is dynamic as it stores
√
Worm solutions, whereWorm

is changing from one iteration to another depending on the dauer status (reproductive versus
declining population). The reason behind

√
Worm is not to burden WO’s computational

load. (M × N) is needed to store in each row (machine) a job sequence of size N . The
last entry (M × N + 1) is needed to store the WormCost (Cmax). ADFList is also linked
to two arrays, ADF I

jk and ADFkI I
i j (one for each stage). Once a solution is added to the

list, its associated arcs are updated following ADF I
jk � ADFkI I

i j � λ, where λ is the bad
solution factor that ensures that the probability of these arcs to be reassigned is reduced. As
an example, assuming that the solution presented in Table 2 was the one forWorstWorm in an
iteration with Cmax � 8000, then it will be added as a row to ADFList as shown in Table 4.

The pseudo code for the ADF modeling is shown below:

Step 1: Sort ADFList in the descending order according to WormCost
Step 2: Assess the iteration’s WorstWorm’s solution

Step 2.1: If (WorstWorm > ADFList1,M×N+1):
– add worm’s tour to ADFList,
– update the worm’s associated arcs pheromones:

τ I
jk � τ I

jk ∗ (1 − ρ), i f arc (j, k) is used by WorstWorm

τ k
I I

i j � τ k
I I

i j ∗ (1 − ρ), i f arc (i, j) is used by WorstWorm

Step 2.2: ElseIf (WorstWorm > ADFList√Worm,M×N+1), replace row
√
Worm in the

list with the current worm’s tour, and update the pheromone as in Step 2.1.

Step 3: for (w � 1, …,
√
Worm; k � 1, …,M; j � 1, … N),

Step 3.1: If (ADFListw,[((K−1)×N)+ j] <>0), then: ADF I
lk � ADFkI I

lh � λ; where
l � ADFListw,[((K−1)×N)+ j]; h � ADFListw,[((K−1)×N)+ j−1].

Following Step 1, ADFList1,M×N+1 and ADFList√Worm,M×N+1 will store the worst solu-
tion so far and the least worst solution, respectively. In Step 2, ADFList is updated according
toWorstWorm quality. Note that in Step 2.1, if the solution generated (i.e. Cmax) was worse
than the worst solution, the pheromone of the worm’s tour is reduced. In Step 2.2, and in case
the solution generated was worse than the last tour stored in ADFList (which represents the
least inferior solution), then the latter is released from ADFList back into the search space
and replaced with this worm’s solution. In Step 3, ADF values are updated based on the
solutions that are present in ADFList.

Table 4 ADFList representation

5 1 10 0 … 0 3 6 0 … 0 4 8 9 0 … 0 7 2 0 … 0 8000
WormCostSequence of jobs on Machine 1 Sequence of jobs on Machine 2 Sequence of jobs on Machine 3 Sequence of jobs on Machine 4

123

Annals of Operations Research (2020) 285:273–293 279

2.1.3 WO dauer stage modeling

As mentioned earlier, worms transition between a reproductive and a declining/Dauer phase.
In the reproductive stage, more worms are produced in every iteration, while in the Dauer
phase, worms decline after every iteration. Eventually the algorithm terminates whenWorm
� 0.

At the beginning of every iteration, the foraging behavior of worms is determined based
on the solutions/food quality (FQ). WO starts with a social foraging style and FQ � 0 which
refers to good solution quality. After a pre-determined number of iterations (BestIter) is
exceeded without any solution improvement, the solution quality is marked as bad (FQ �
1) and foraging is switched to the alternate behavior (social or solitary). FQ is reset to zero
when a forthcoming better solution is realized.

The number of tours in the algorithm is tracked by tallying the worms in every iteration,
with a maximum level set atMaxIteration, indicating a high concentration of worms. Equa-
tion (8) is used to normalize the concentration to a (0,1) scale, whereWCt � 1 indicates that
WO reached the maximum number of iterations.

Worms Concentration(WCt) � Tours

Max I teration
(8)

Following each iteration, the Dauer status (DauerStatus) is assessed as follows:

Step 1: Compute FQ andWCt.
Step 2: Compute Dauer level: Dauer Status � FQ+WCt

2 .

Step 3: Assess if worms are in reproductive or declining stage:

Step 3.1: If (Dauer Status < 1), then Worm � min{MaxWorm,Worm ∗ (1 + φ)},
Step 3.2: If (Dauer Status �� 1), then Worm � Worm ∗ (1 − φ).

where φ is the rate of reproduction/decrease of worms.

Step 4: If (Worm �� 0), Stop WO and report BestCost.

2.1.4 WO summary

TheWO pseudo code to solve the RM|Sijk|Cmax can be summarized as follows:

Step 1: Initialize WO Parameters and populate τ I
jk , τ k

I I

i j , ADF I
jk , and ADFkI I

i j with the
specified amounts.
Step 2: While (Worm �� 0), Do:

Step 2.1: Iteration � Iteration + 1;
Step 2.1.1: Decide if worms will follow a social or solitary behavior, based on RMG
Step 2.1.2: For a total ofWorm tours, Do:

Step 2.1.2.1: Assign jobs to machines according to Sect. 2.1 (WO Stage 1)

123

280 Annals of Operations Research (2020) 285:273–293

Step 2.1.2.2: Sequence the jobs on each machine according to Sect. 2.1 (WO
Stage 2)
Step 2.1.2.3: Execute the local search approach according to Sect. 2.1.1 (via AIY)
Step 2.1.2.4: Find WormCost associated with everyWorm

Step 2.1.3: Generate from the Worm tours theWorstWorm and BestWorm
Step 2.1.4: Update the pheromone according to Eqs. (2) and (3)
Step 2.1.5: Execute the bad solutions approach described in Sect. 2.1.2 and update
the pheromone
Step 2.1.6: UpdateWorm number according to the Dauer approach in Sect. 2.1.3

Step 3: Output the best tour and its cost, Stop WO.

Figure 1 summarizes the steps of WO to solve the RM|Sijk|Cmax.

2.2 WO originality

As highlighted above, the introduced algorithm,WO, is instigated by elements of the foraging
behaviors of worms. The behaviors inspired the design of a search procedure that simulates
worms searching the feasible region of the problem at hand for the optimal solution. A
few characteristics of WO might resemble present metaheuristics in the swarm intelligence
domain, especially ACO, as ants and social worms share an analogous foraging behavior.
However, as highlighted inBrabazon andMcGarraghy (2018),WOfeatures the belowworms’
unique behaviors:

– a dual social and solitary foraging style, which ensures that more search space is visited;
– recognizing food quality with a preference to higher-quality sources;
– alternating between dwelling (local search) or roaming (global search) depending on the
quality of food;

– ability to avoid toxins (bad solutions formerly visited); and
– engaging in dormancy (Dauer) if environmental conditions are poor (i.e. low quality
solutions and high concentration of pheromone) or, alternatively, reproduce if conditions
are good.

123

Annals of Operations Research (2020) 285:273–293 281

Ini�alize WO Parameters
Populate pheromones
and bad solu�on factor ADF
Set

Worm == 0?

RMG = 1?

Start tours according to below
for WO Stage 1

Yes Social No Solitary

Generate r.v. = RAND(0,1)

r.v. AIY?

Ini�ate Local Search

Yes

Generate WormCost

BestWorm
BestCost?

Yes

BestCost = BestWorm;
FQ = 0;

WCt = Itera�on/MaxItera�on;

DauerStatus < 1?

RMG =! RMG
FQ = 1

Stop WO
Output BestCost

Yes

Itera�on =
Itera�on ++

Start tours according to below
for WO Stage 1

Con�nue tours according to
below for WO Stage 2

Con�nue tours according to
below for WO Stage 2

Generate from the tours the
WorstWorm and BestWorm

GEN
ERATE A TO

TAL O
F W

O
RM

 TO
U

RS

Update the pheromone of the
BestWorm as follows

Update the WorstWorm arcs as
follows, and update ADFList

Tours BestIter?

No

Yes
No

No

Yes

DF

Fig. 1 Flowchart the RM|Sijk|Cmax

123

282 Annals of Operations Research (2020) 285:273–293

3 Computational tests

The proposed WO was implemented in Microsoft Visual Studio 12.0, with 4 GB of memory
available for working storage on a personal computer Intel (R) Core (TM) i3-370 M CPU

Table 5 WO parameters

Parameter Range/value Description

Fixed parameters
Not included in
DoE

Worm 10 Worm number: number of worms in the
algorithm (at the initialization stage)

RMG {0, 1} Lever between social and solitary
strains: RMG � 1 indicates only
social behavior and RMG � 0 only
solitary

τi j 0.01 Pheromone: initial amount of
pheromone deposited on arc (i,j)

λ 0.01 Bad solution factor: initially, arc
attractiveness (ADF) for all arcs
equals 1; i.e. each arc has an equal
probability of being selected. In the
case of a bad solution, it’s associated
arcs will be assigned an ADF � λ to
decrease its selection probability

ρ N/A Pheromone update factor, calculated
during algorithm’s run as
ρ � WorstWorm−BestWorm

BestWorm , where
WorstWorm and BestWorm refer
to the best and worst worms (in terms
of costs) in a tour

DoE factors MaxWorm (20, 500) During the reproductive stage, the
number of worms cannot exceed
MaxWorm

Max I teration (5000, 15,000) Number of tours: referring the total
number of worms’ tours generated in
WO

AIY (0.1, 0.5) Percentage of local search: the higher
AIY, the higher the chance of
dwelling (local search)

AIY I ter (5, 60) Local search iterations: indicating the
max number of local search iterations

Best I ter (100, 1000) Number of solutions without
improvement before concluding that
food quality is bad

φ (0.01, 0.4) Production rate: rate of reproduction of
worms when they are not in Dauer
Stage

β
(
1/
3, 3

)

Exponent to determine the importance
of the greedy rule over the
pheromone: if β � 1/

3, pheromone
is three times more important; if
β � 3, greedy rule is three times
more important

123

Annals of Operations Research (2020) 285:273–293 283

Table 6 Summary of Fit of the
model

R2 0.994432

R2 adj 0.945711

Root mean square error 53.09639

Mean of response 597.6000

Observations (or sum wgts) 40

Table 7 Analysis of Variance of
the model

Source DF Sum of squares Mean square F ratio

Model 35 2,013,996.7 57,542.8 20.4108

Error 4 11,276.9 2819.2 Prob>F

C. total 39 2,025,273.6 0.0047

@ 2.4 GHz. Design of Experiments (DoE) is used to decide on the best values for the WO
parameters that will minimize the makespan Cmax. Numerous publications provide a good
review of DoE (e.g., Fisher 1960; Taguchi 1993; NIST/SEMATECH 2006).

The factors considered in this experiment along with their description and levels of low,
medium and high are shown in Table 5. In addition, WO parameters with constant values
(not included in DOE) are also highlighted in the Table. The values of the parameter levels
were selected based on many runs under different settings. Subsequently, JMP 11.0 from
SAS was used to generate a D-Optimal custom design, with 40 experiments. The factors
along with their interactions were analysed using regression, ANOVA, and factors’ effect
tests. Three-factor interactions and higher were not considered as they typically have weak
effect (Ross 1996).

The Summary of Fit of the model and the Analysis of Variance are shown in Tables 6 and
7, respectively. The results indicate a good model fit based on the high R2 and small p value
for the overall model.

Based on a 95% Confidence Interval, a relatively large t-Stat, and a small p value (less
than 0.05), a prediction expression was generated and solved for the minimum Cmax while
varying the factors’ values. As a result, the following parameter values were determined
to provide the best performance for WO: MaxWorm � 450, AIY � 0.1, AIY I ter �
60, β � 1.74, φ � 0.01, Best I ter � 432, and Max I teration � 14,000.

WO was compared to Ant Colony Optimization (ACO), Tabu Search (TS), Restrictive
Simulated Annealing (RSA), Artificial Bee Colony and its hybrid version (ABS, HABS),
and Genetic Algorithm with Local Search (GALA). The ACO results were obtained from
Arnaout et al. (2014), TS results fromHelal et al. (2006), RSA fromYing et al. (2012), GALA
from Eroglu et al. (2014), ABS and HABS from Lin and Ying (2014). All algorithms used
the same benchmarking data from Rabadi et al. (2006), where the processing and setup times
were randomly generated from two uniform distributions: U(50, 100) and U(125, 175). The
data is also available via the scheduling research website (http://schedulingresearch.com/).

123

http://schedulingresearch.com/

284 Annals of Operations Research (2020) 285:273–293

Ta
bl
e
8
A
ve
ra
ge

de
vi
at
io
ns

fr
om

L
B
fo
r
al
lt
es
ti
ns
ta
nc
es

m
n

T
S

A
C
O

R
SA

A
B
C

H
A
B
C

G
A
L
A

W
O

B
P

S
B

P
S

B
P

S
B

P
S

B
P

S
B

B
P

S

2
20

6.
66

3.
97

4.
15

4.
38

2.
59

2.
57

4.
45

2.
61

2.
51

4.
22

2.
53

2.
41

4.
14

2.
47

2.
37

4.
25

4.
14

2.
47

2.
37

40
6.
05

3.
55

3.
95

2.
27

1.
53

1.
67

2.
84

1.
68

1.
71

2.
59

1.
60

1.
70

2.
37

1.
45

1.
58

3.
46

2.
23

1.
40

1.
53

60
6.
45

3.
92

3.
77

1.
84

1.
08

1.
19

2.
53

1.
61

1.
61

2.
33

1.
44

1.
50

2.
10

1.
30

1.
33

3.
74

1.
82

1.
08

1.
18

80
5.
95

3.
72

3.
8

1.
41

0.
9

0.
87

2.
39

1.
41

1.
24

2.
13

1.
46

1.
30

1.
94

1.
20

1.
17

3.
63

1.
41

0.
90

0.
87

10
0

6.
21

4.
13

3.
76

1.
35

2.
72

1.
57

2.
03

1.
31

1.
28

2.
01

1.
32

1.
26

1.
80

1.
19

1.
09

3.
45

1.
35

1.
16

1.
07

12
0

6.
27

3.
84

3.
98

1.
06

1.
56

1.
47

1.
95

1.
24

1.
17

1.
82

1.
13

1.
16

1.
69

1.
05

1.
06

3.
21

1.
06

1.
01

1.
04

4
20

11
.1

6.
31

6.
25

10
.1

5.
89

6.
04

8.
74

5.
24

5.
15

8.
67

5.
17

5.
01

8.
48

5.
09

4.
99

8.
73

8.
47

5.
09

4.
99

40
8.
97

5.
14

5.
43

7.
08

3.
95

4.
23

5.
74

3.
35

3.
52

5.
42

3.
23

3.
35

5.
13

3.
00

3.
11

7.
34

5.
07

2.
98

3.
10

60
8.
17

5.
06

5.
34

5.
28

2.
98

3.
39

4.
75

2.
73

2.
89

4.
51

2.
70

2.
90

4.
08

2.
42

2.
60

6.
44

4.
05

2.
38

2.
58

80
7.
66

4.
73

5.
1

4.
41

2.
67

2.
7

4.
59

2.
48

2.
41

4.
22

2.
45

2.
52

3.
88

2.
30

2.
22

6.
20

3.
83

2.
25

2.
22

10
0

7.
06

4.
76

5.
37

3.
98

2.
33

2.
42

4.
08

2.
35

2.
34

4.
01

2.
30

2.
35

3.
45

2.
00

2.
05

5.
54

3.
40

1.
98

2.
04

12
0

6.
8

4.
71

4.
52

3.
46

2.
39

2
3.
62

2.
51

2.
19

3.
71

2.
20

2.
12

3.
33

2.
01

1.
90

5.
29

3.
10

1.
98

1.
82

6
20

24
22
.4

22
.5

24
.9

22
.3

22
.6

23
.1
2

21
.6
6

21
.7
0

23
.0
8

21
.6
1

21
.7
0

23
.0
5

21
.6
1

21
.7
0

23
.0
7

23
.0
5

21
.6
1

21
.7
0

40
12
.2

9.
74

9.
69

12
.4

9.
06

8.
99

9.
37

7.
35

7.
30

9.
27

7.
20

7.
31

8.
77

7.
02

7.
04

10
.3
7

8.
61

6.
79

6.
95

60
10

.1
6.
38

6
8.
59

5.
1

4.
99

6.
51

3.
74

3.
82

6.
18

3.
66

3.
68

5.
79

3.
23

3.
42

8.
49

5.
74

3.
23

3.
40

80
9.
76

7.
98

7.
54

8.
13

7.
03

6.
71

6.
91

5.
53

5.
40

6.
57

5.
47

5.
25

5.
95

5.
34

5.
12

8.
03

5.
89

5.
24

5.
01

10
0

8.
84

6.
32

6.
15

6.
42

4.
4

4.
61

5.
63

3.
78

3.
72

5.
51

3.
61

3.
65

4.
84

3.
40

3.
33

7.
13

4.
86

3.
35

3.
31

12
0

8.
21

5.
76

5.
43

5.
44

3.
3

3.
61

5.
37

3.
13

2.
90

4.
86

2.
86

2.
93

4.
57

2.
53

2.
52

6.
95

4.
52

2.
52

2.
52

8
20

28
.3

25
.4

25
.1

30
.1

25
.8

26
.2

27
.1
4

24
.3
9

24
.2
6

27
.1
9

24
.4
2

24
.1
9

27
.0
4

24
.3
9

24
.0
8

27
.2
9

27
.0
4

24
.3
9

24
.0
8

40
11
.1

6.
79

6.
92

13
.1

7.
56

7.
87

9.
03

5.
57

5.
65

9.
21

5.
36

5.
21

8.
10

4.
82

4.
90

11
.2
4

8.
07

4.
82

4.
89

60
12

.8
10

.5
10

.5
12

.9
10

.7
10

.7
10

.4
9

9.
13

8.
59

10
.3
8

8.
66

8.
56

9.
62

8.
57

8.
50

11
.4
8

9.
60

8.
49

8.
24

80
10
.6

6.
33

5.
84

8.
48

5.
71

5.
27

6.
90

4.
10

4.
00

6.
62

3.
94

3.
87

6.
00

3.
50

3.
50

9.
22

6.
00

3.
50

3.
49

123

Annals of Operations Research (2020) 285:273–293 285

Ta
bl
e
8
co
nt
in
ue
d

m
n

T
S

A
C
O

R
SA

A
B
C

H
A
B
C

G
A
L
A

W
O

B
P

S
B

P
S

B
P

S
B

P
S

B
P

S
B

B
P

S

10
0

10
.2

7.
76

7.
9

9.
4

7.
09

7.
12

7.
53

5.
84

5.
65

7.
34

5.
70

5.
73

6.
72

5.
51

5.
35

8.
78

6.
67

5.
40

5.
32

12
0

10
.1

6.
41

6.
38

6.
7

4.
01

4.
08

6.
66

3.
35

3.
35

6.
04

3.
29

3.
41

5.
33

2.
89

2.
96

8.
41

5.
24

2.
91

2.
96

10
20

23
.4

15
.4

14
.2

19
.8

12
.3

11
.9

15
.7
9

9.
59

9.
22

16
.6
4

9.
68

9.
38

15
.1
3

9.
16

8.
81

16
.5
5

15
.1
3

9.
16

8.
81

40
13

7.
58

7.
52

15
.6

8.
76

8.
9

10
.5
5

6.
34

6.
15

10
.9
7

6.
32

6.
28

9.
35

5.
53

5.
41

13
.0
2

9.
33

5.
53

5.
41

60
10

.7
6.
46

6.
03

13
.2

7.
76

7.
6

9.
07

5.
26

5.
08

9.
04

5.
06

5.
12

7.
62

4.
36

4.
48

11
.8
2

7.
59

4.
36

4.
46

80
10
.3

6.
33

6.
69

10
.9

6.
44

6.
73

7.
95

4.
54

4.
78

8.
05

4.
38

4.
50

6.
96

3.
79

4.
00

10
.9
5

6.
96

3.
79

4.
00

10
0

10
.7

6.
79

6.
4

9.
6

5.
41

5.
53

7.
07

4.
06

4.
07

7.
24

4.
19

3.
99

6.
35

3.
56

3.
43

10
.3
2

6.
35

3.
56

3.
43

12
0

10
.2

6.
22

7.
12

8.
21

5.
1

4.
86

6.
66

3.
74

3.
82

6.
83

3.
90

3.
89

6.
23

3.
47

3.
63

10
.3
7

6.
13

3.
47

3.
58

12
20

40
.3

32
.1

32
38

.5
30
.6

30
.4

32
.4
3

27
.4
2

27
.1
4

32
.8
9

27
.6
8

27
.2
9

32
.3
1

27
.2
8

27
.1
4

N
/A

32
.3
1

27
.2
8

27
.1
4

40
25
.9

23
.4

23
.4

29
.2

25
.7

25
.5

24
.9
4

22
.8
7

22
.7
9

25
.0
0

22
.6
1

22
.5
3

24
.2
7

22
.6
0

22
.3
9

24
.2
5

22
.5
2

22
.3
9

60
11

.1
7.
11

7.
08

15
.1

8.
67

8.
89

9.
85

5.
75

5.
71

10
.2
1

5.
46

5.
68

8.
22

4.
83

4.
87

8.
20

4.
83

4.
86

80
12
.7

9.
71

9.
94

14
.4

10
.7

10
.5

10
.9
8

8.
23

8.
14

11
.3
4

7.
92

8.
00

10
.4
0

8.
10

7.
96

10
.3
9

7.
92

7.
85

10
0

13
.7

11
.4

11
.2

14
.5

12
.1

11
.8

11
.6
7

9.
86

9.
84

11
.5
3

9.
89

9.
81

11
.3
3

9.
72

9.
86

11
.1
8

9.
50

9.
81

12
0

10
.8

7.
05

7.
01

10
.1

6.
14

6.
09

7.
29

4.
18

4.
30

7.
78

4.
29

4.
33

6.
87

3.
72

3.
58

6.
82

3.
71

3.
58

A
ve
ra
ge

12
.1
2

8.
75

8.
72

10
.8
9

7.
84

7.
82

9.
07

6.
61

6.
54

9.
04

6.
52

6.
50

8.
37

6.
21

6.
19

9.
12

8.
33

6.
18

6.
17

123

286 Annals of Operations Research (2020) 285:273–293

0.00

2.00

4.00

6.00

8.00

10.00

12.00

TS ACO RSA ABC HABC GALA WO

B P S

Fig. 2 Average results for all algorithms

The algorithms were evaluated by running 15 instances for each job-machine combination
and under three dominance settings: balanced setup and processing times, dominant setup
times, and dominant processing times; i.e. a total of 45 instances for each job-machine
combination.

The algorithms are compared based on the percentage deviation from the lower bound (LB)
proposed by Al-Salem (2004), using Eq. (9). Similar computational tests were conducted by
Lin and Ying (2014).

CmaxAlgori thm − LB

LB
× 100% (9)

Table 8 lists the average deviations for every algorithm and all test instances, with the
smallest values across algorithms bolded. It clearly indicates that WO and HABC performed
the best under the three dominance settings, with the former slightly better. Figure 2 depicts
the averages of the seven algorithms’ deviations, and consistently with Table 8, shows an
outperformance of WO and HABS, followed by ABC, RSA, GALA, ACO, and TS, respec-
tively. GALA results were only reported under balanced dominance and up to 10 machines,
as per their paper.

Tables 9, 10 and 11 provide more detailed results, by listing the mean values of the
minimum, maximum, average and standard deviation of Cmax for the 15 instances of the
job-machine combinations. A similar analysis was conducted by Lin and Ying (2014) and
it is repeated here for benchmarking purposes. Like Table 8, the detailed results indicate
the superiority of WO and HABS, and reflect their comparable performance. Subsequently,
and as WO and HABS reported the same results in many instances, paired t-tests on the
average deviations from LB with 95% confidence interval were performed to verify WO’s
effectiveness. The results are shown in Table 12 for the three dominance settings and they
confirm the statistical significance of the mean difference between WO and HABS, with the
former having the lower mean.

The computational times of ACO, RSA, ABC, HABC and WO were indirectly compared
using the same approach shown in Arnaout et al. (2017). In particular, and as ACO was
implemented on Intel Pentium 4@ 2GHz, RSA on Intel Pentium 4@ 1.5 GHz, ABC/HABC
on an Intel Core Duo @ 2.66 GHz, and WO on Intel Core i3-370 M @ 2.4 GHz, direct
comparison becomesmeaningless. Subsequently, the different processors’ CPU performance
were normalized using Table 13, which is extracted from https://www.cpubenchmark.net/.

123

https://www.cpubenchmark.net/

Annals of Operations Research (2020) 285:273–293 287

Table 9 Mean values of the minimum, average, maximum, and standard deviation of Cmax for the Processing
Dominant Times

m n TS ACO WO

Min Avg Max SD Min Avg Max SD Min Avg Max SD

2 20 1957 2010 2075 35.25 1920 1983 2047 28.56 1920 1981 2045 34.91

40 3904 3981 4036 32.87 3832 3903 3935 29.70 3829 3898 3927 28.39

60 5848 5993 6127 66.68 5758 5830 5948 48.24 5758 5829 5948 48.24

80 7863 7957 8078 50.41 7675 7741 7860 55.12 7675 7741 7860 55.16

6 20 740 750 761 7.00 731 750 759 7.79 731 745 757 6.41

40 1312 1332 1357 12.75 1276 1324 1344 17.17 1276 1297 1312 9.43

60 1898 1939 1970 25.16 1894 1916 1934 11.66 1870 1882 1901 10.29

80 2583 2620 2658 19.94 2571 2597 2622 14.98 2541 2553 2564 6.32

12 20 388 396 404 4.51 384 391 398 4.37 377 382 388 2.92

40 732 736 742 2.39 742 750 765 6.57 726 731 735 2.72

60 946 957 974 8.17 955 971 989 9.54 930 937 942 4.02

80 1298 1307 1324 7.99 1304 1318 1336 9.65 1282 1286 1292 3.11

m n RSA ABC HABC

Min Avg Max SD Min Avg Max SD Min Avg Max SD

2 20 1920 1984 2051 30.06 1920 1982 2048 35.35 1920 1981 2045 34.91

40 3841 3909 3946 29.73 3834 3906 3948 30.74 3829 3900 3929 28.08

60 5777 5860 5966 48.58 5775 5850 5966 48.66 5776 5842 5966 48.04

80 7704 7780 7900 64.05 7698 7784 7914 60.92 7691 7764 7888 59.78

6 20 731 746 758 6.65 731 745 757 6.41 731 745 757 6.41

40 1292 1303 1325 9.93 1288 1302 1315 8.78 1288 1299 1312 8.30

60 1879 1891 1910 9.04 1873 1890 1921 13.30 1870 1882 1901 10.29

80 2548 2560 2577 8.30 2541 2559 2575 8.86 2543 2556 2569 6.96

12 20 377 382 388 3.28 377 383 389 3.83 377 382 388 2.92

40 729 733 741 2.86 726 732 737 3.13 728 732 736 2.56

60 935 945 952 4.96 933 943 950 4.35 930 937 942 4.02

80 1284 1289 1300 4.42 1282 1286 1292 3.11 1285 1288 1293 2.57

Bold refers to smallest values across the algorithms

The CPU mark refers to the performance of the processor, where a higher number refers to
better performance. The ABC/HABC platform was used as the base (factor of 1), and the
running times of ACO, RSA, and WO are multiplied by their respective factors in order to
have a sense of how the three algorithms measure up. The normalized computational times
of the algorithms are shown in Table 14, which shows that WO computational time is within
acceptable range relative to the other algorithms.

123

288 Annals of Operations Research (2020) 285:273–293

Ta
bl
e
10

M
ea
n
va
lu
es

of
th
e
m
in
im

um
,a
ve
ra
ge
,m

ax
im

um
,a
nd

st
an
da
rd

de
vi
at
io
n
of

C
m
a
x
fo
r
th
e
ba
la
nc
ed

tim
es

m
n

T
S

A
C
O

G
A
L
A

W
O

M
in

A
vg

M
ax

SD
M
in

A
vg

M
ax

SD
M
in

A
vg

M
ax

SD
M
in

A
vg

M
ax

SD

2
20

12
07

12
65

13
25

37
.5
7

11
92

12
38

12
95

30
.1
6

11
96

12
36

12
97

31
.3
9

11
92

12
35

12
95

31
.8
7

40
24

13
24

87
25

66
39

.5
4

23
32

23
98

24
78

34
.8
7

23
56

24
26

25
01

36
.0
1

23
28

23
97

24
77

35
.0
3

60
35

98
37

36
38

18
55

.6
1

35
09

35
75

36
21

32
.6
2

35
80

36
42

36
99

38
.4
5

35
09

35
74

36
21

32
.7
5

80
48

17
49

42
50

74
70

.3
6

46
43

47
30

48
63

57
.8
0

47
60

48
34

49
57

53
.8
4

46
43

47
30

48
63

57
.8
0

6
20

44
1

44
9

46
1

6.
23

44
1

45
3

46
2

6.
77

43
4

44
6

45
2

4.
76

43
4

44
6

45
2

4.
84

40
78

8
80

4
82

1
10

.5
1

78
7

80
5

82
3

10
.3
9

77
8

79
1

80
5

8.
42

76
5

77
8

79
2

7.
86

60
11

45
11

79
12

20
22

.0
6

11
39

11
63

11
92

15
.8
7

11
47

11
62

11
76

8.
62

11
24

11
33

11
47

6.
20

80
15

32
15

69
16

16
25

.8
3

15
23

15
45

15
60

11
.4
9

15
26

15
44

15
69

10
.0
0

14
91

15
13

15
31

10
.9
4

10
20

24
6

26
0

27
3

8.
40

2
24

2
25

3
26

5
6.
19

8
23

9
24

6
25

1
4.
18

23
7

24
3

24
6

2.
31

40
46

6
47

5
48

3
4.
88

1
47

1
48

6
50

3
8.
99

1
46

9
47

5
48

1
3.
48

45
2

45
9

46
5

4.
33

60
67

7
69

3
70

5
8.
39

6
69

0
70

8
72

4
8.
43

9
68

9
69

9
71

1
5.
73

66
6

67
3

68
1

4.
45

80
89

9
92

1
96

5
15

.8
4

90
8

92
6

94
6

10
.2
8

92
1

92
7

93
5

4.
70

88
5

89
3

90
2

4.
77

12
20

23
6

24
5

25
4

6.
65

22
9

24
2

25
3

5.
55

N
/A

22
5

23
1

23
4

2.
56

40
43

0
43

7
44

4
3.
94

43
7

44
8

45
7

6.
32

42
7

43
1

43
5

2.
40

60
57

3
57

7
58

4
3.
54

58
6

59
7

61
3

8.
93

55
6

56
2

56
5

2.
60

80
76

1
77

8
79

5
9.
50

77
8

79
0

80
1

6.
62

75
4

76
2

77
0

4.
20

m
n

R
SA

A
B
C

H
A
B
C

M
in

A
vg

M
ax

SD
M
in

A
vg

M
ax

SD
M
in

A
vg

M
ax

SD

2
20

11
93

12
39

12
97

29
.8
4

11
92

12
36

12
95

31
.5
8

11
92

12
35

12
95

31
.8
7

40
23

62
24

11
24

82
32

.5
3

23
31

24
05

24
78

35
.0
4

23
28

24
00

24
77

34
.5
3

60
35

36
35

99
36

47
35

.7
9

35
39

35
92

36
46

34
.8
7

35
23

35
84

36
30

35
.4
2

80
47

02
47

76
49

02
54

.4
3

46
83

47
64

49
03

58
.4
6

46
77

47
55

48
84

56
.6
5

123

Annals of Operations Research (2020) 285:273–293 289

Ta
bl
e
10

co
nt
in
ue
d

m
n

R
SA

A
B
C

H
A
B
C

M
in

A
vg

M
ax

SD
M
in

A
vg

M
ax

SD
M
in

A
vg

M
ax

SD

6
20

43
8

44
6

45
2

4.
21

43
4

44
6

45
2

4.
81

43
4

44
6

45
2

4.
84

40
77

1
78

4
79

9
8.
72

77
1

78
3

79
3

6.
52

76
5

77
9

79
2

8.
51

60
11

27
11

41
11

58
8.
15

11
25

11
38

11
47

6.
34

11
24

11
33

11
51

7.
02

80
15

03
15

28
15

48
11

.4
7

15
00

15
23

15
44

12
.7
1

14
91

15
14

15
32

10
.6
6

10
20

23
9

24
4

25
0

3.
16

24
1

24
6

25
1

3.
31

23
7

24
3

24
6

2.
31

40
45

7
46

4
47

1
3.
71

45
7

46
6

47
8

5.
15

45
2

45
9

46
5

4.
42

60
67

3
68

2
69

1
4.
95

67
5

68
2

68
7

3.
78

66
6

67
3

68
1

4.
54

80
89

1
90

2
91

2
5.
25

89
1

90
2

91
5

6.
78

88
5

89
3

90
2

4.
77

12
20

22
5

23
1

23
6

2.
83

22
5

23
2

23
7

3.
18

22
5

23
1

23
4

2.
56

40
43

0
43

3
44

0
2.
45

43
0

43
4

44
0

2.
94

42
7

43
1

43
5

2.
39

60
56

4
57

0
57

5
3.
24

56
3

57
2

57
9

4.
97

55
6

56
2

56
5

2.
64

80
75

6
76

6
77

8
5.
31

76
3

76
9

77
7

4.
35

75
4

76
2

77
0

4.
20

B
ol
d
re
fe
rs
to

sm
al
le
st
va
lu
es

ac
ro
ss

th
e
al
go
ri
th
m
s

123

290 Annals of Operations Research (2020) 285:273–293

Table 11 Mean values of the minimum, average, maximum, and standard deviation of Cmax for the setup
dominant times

m n TS ACO WO

Min Avg Max SD Min Avg Max SD Min Avg Max SD

2 20 1944 2017 2075 32.80 1923 1986 2047 20.62 1923 1982 2045 25.73

40 3902 3985 4083 42.29 3837 3898 3996 37.78 3837 3892 3971 33.41

60 5914 5972 6027 36.31 5780 5824 5878 32.47 5773 5823 5878 33.62

80 7845 7939 8078 68.74 7631 7715 7822 51.45 7631 7715 7822 51.45

6 20 739 749 761 6.13 739 749 759 6.55 734 744 752 5.34

40 1316 1336 1349 8.88 1310 1328 1340 7.45 1290 1303 1314 7.51

60 1911 1932 1958 18.31 1884 1913 1939 15.01 1873 1884 1898 8.19

80 2572 2611 2652 20.20 2548 2591 2609 15.02 2535 2549 2565 9.63

12 20 386 395 407 7.37 380 390 408 7.07 375 381 384 2.38

40 733 737 744 3.21 744 750 759 4.03 727 731 735 2.40

60 944 957 976 7.82 961 973 988 8.89 930 937 944 3.83

80 1301 1310 1333 8.06 1304 1317 1334 7.71 1275 1285 1293 4.36

m n RSA ABC HABC

Min Avg Max SD Min Avg Max SD Min Avg Max SD

2 20 1923 1985 2045 13.01 1923 1983 2048 26.08 1923 1982 2045 25.73

40 3850 3899 3977 32.68 3848 3899 3971 33.07 3837 3894 3976 34.60

60 5783 5848 5912 41.56 5790 5841 5885 35.61 5773 5832 5878 34.79

80 7644 7744 7864 55.59 7653 7748 7861 55.93 7648 7738 7853 55.04

6 20 734 744 752 5.34 734 744 752 5.34 734 744 752 5.34

40 1293 1307 1320 7.72 1290 1307 1320 7.29 1294 1304 1315 7.00

60 1877 1892 1910 8.29 1875 1889 1912 11.34 1873 1885 1898 7.79

80 2545 2559 2583 11.10 2537 2555 2570 11.14 2535 2552 2584 13.77

12 20 375 381 384 2.38 375 381 386 2.76 375 381 384 2.38

40 728 733 737 2.48 729 732 735 1.99 727 731 735 2.40

60 940 945 953 3.82 941 945 950 2.58 930 938 945 3.96

80 1275 1289 1299 5.26 1277 1287 1296 4.08 1279 1287 1293 3.58

Bold refers to smallest values across the algorithms

Table 12 Paired t-tests on deviations from LB

Paired t-tests Dominance Mean
DIFFERENCE
(MD)

SD t-stat Two-tailed p 95% CI on MD

HABC–WO P 0.051193 0.080877 3.797855 0.000557876 [0.02383,
0.07502]

B 0.0936333 0.15233 3.688036 0.000761698 [0.04209,
0.14517]

S 0.0405932 0.070107 3.474117 0.001384536 [0.01687,
0.06431]

123

Annals of Operations Research (2020) 285:273–293 291

Table 13 Normalization of CPU performance

ACO RSA ABC HABC WO
Intel Pentium 4 @
2.00 GHz

Intel Pentium 4 @
1.5 GHz

Intel Core Duo @
2.66 GHz

Intel Core i3-370 M @
2.4 GHz

CPU mark 189 131 1719 2025

Normalization factor 0.1099 0.0762 1 1.1780

Table 14 Normalized
computational times (sec)

m n ACO RSA ABC HABC WO

2 20 7.06 0.16 0.9 1.4 1.77

40 14 0.79 9.12 2.8 13.8

60 28.1 2.41 31.4 4.2 53.4

80 45.8 4.62 86.4 5.6 82.9

100 68.9 8.11 178 7 177

120 96.1 13.9 317 8.41 20.1

4 20 6.73 0.15 0.52 2.81 0.46

40 10.6 0.84 5.56 5.6 6.04

60 21.2 2.55 21.1 8.41 17.9

80 34.2 5.22 50.4 11.2 44.8

100 61.3 9.21 118 14 124

120 80 17.5 200 16.8 152

6 20 6.6 0.17 23.8 22.5 1.16

40 10.4 1.02 4.02 8.41 5.34

60 20.7 2.48 15 12.6 9.37

80 33.4 5.12 32.2 16.8 17.7

100 59.9 11 76 21 53.9

120 82.8 17.7 143 25.2 114

8 20 7.26 0.23 0.38 5.6 1.47

40 11.3 0.98 3.07 11.2 2.07

60 22.7 2.59 9.89 16.8 9.27

80 36.6 6.64 28.2 22.4 9.13

100 65.6 13.4 28 28 38.4

120 90.8 20.1 110 33.6 55.8

10 20 7.45 0.25 0.31 7 3.92

40 11.7 1.11 1.92 14 5.05

60 23.4 3.42 8.16 21 12.1

80 37.7 7.71 22.5 28 10.5

100 67.6 16.8 44.3 35 60.5

120 93.5 30.2 82.9 42 92

12 20 N/A 0.28 0.44 8.41 6.07

40 1.05 1.7 16.8 2.72

60 3.92 7.29 25.2 7.86

80 9.01 20 33.6 12.9

100 13.2 34.8 42 46.4

120 31.7 62.5 50.4 54.8

Average 38.8 7.38 49.4 17.7 36.8

123

292 Annals of Operations Research (2020) 285:273–293

4 Conclusion and future research

In this paper, we have introduced a Worm Optimization algorithm (WO) for minimizing the
makespan on the unrelated parallel machine scheduling problem with sequence-dependent
setup times.

WO was compared to tabu search (TS) by Helal et al. (2006), ant colony optimization
(ACO) by Arnaout et al. (2010), restrictive simulated annealing (RSA) by Ying et al. (2012),
genetic algorithm (GA) by Eroglu et al. (2014), and ABC/HABC by Lin and Ying (2014).
The tests showed the superiority of WO, followed by HABC, ABC, RSA, GALA, ACO,
and TS last. WO’s average deviation from the lower bound was less than 1% for some job-
machine combinations, with an average of~7% over all dominance settings. In addition, the
prediction expression that was generated using Design of Experiments indicated that a lower
production rate φ leads to better results, as this will delay the convergence of WO. Finally,
the worms’ unique behaviors were attributed to better solutions; e.g. the solitary behavior
ensures that more search space is visited, and the Dauer behavior gives a unique convergence
to WO.

An extension to this researchwould be to testWOon the stochastic version of the problem,
in particular, under machine breakdowns.

Acknowledgements This work was funded in part by a Grant from the Kuwait Foundation for the Advance-
ment of Sciences (KFAS Grant # P115-18EO-02). The authors would like to express their sincere gratitude to
Reviewer 1 for his detailed and constructive comments, which aided in significantly improving the quality of
this work.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. Euro-
pean Journal of Operational Research, 246, 345–378.

Al-Salem,A. (2004). Scheduling tominimizemakespan onunequal parallelmachineswith sequence dependent
setup times. Engineering Journal of the University of Qatar, 17, 177–187.

Arnaout, J.-P. (2016). Worm optimization for the traveling salesman problem. In G. Rabadi (Ed.), Heuristics,
meta-heuristics and approximate methods in planning and scheduling, international series in operations
research & management science. Switzerland: Springer.

Arnaout, J.-P. (2017). Worm optimization for the multiple level warehouse layout problem. Annals of Opera-
tions Research, 269, 29–51.

Arnaout, J.-P., ElKhoury, C., Karayaz, G. (2017). Solving the multiple level warehouse layout problem using
ant colony. Operational Research: An International Journal, 1–18.

Arnaout, J.-P., Musa, R., & Rabadi, G. (2014). A two-stage Ant Colony optimization algorithm to minimize
the makespan on unrelated parallel machines: Part II—enhancements and experimentations. Journal of
Intelligent Manufacturing, 25, 43–53.

Arnaout, J.-P., Rabadi, G., &Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize the
makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent
Manufacturing, 21, 693–701.

Avalos-Rosales, O., Angel-Bello, F., & Alvarez, A. (2015). Efficient metaheuristic algorithm and re-
formulations for the unrelated parallel machine scheduling problem with sequence and machine-
dependent setup times. The International Journal of Advanced Manufacturing Technology, 76,
1705–1718.

123

http://creativecommons.org/licenses/by/4.0/

Annals of Operations Research (2020) 285:273–293 293

Brabazon, A., McGarraghy, S. (2018). Worm foraging algorithm. In G. Rozenberg, Th. Bäck, A. E. Eiben,
J. N. Kok, & H. P. Spaink (Eds.), Foraging-inspired optimisation algorithms. Natural computing series.
Springer, Cham.

Chang, P. C., & Chen, S. H. (2011). Integrating dominance properties with genetic algorithms for parallel
machine scheduling problems with setup times. Applied Soft Computing, 11, 1263–1274.

Diana, R. O.M., de França Filho, M. F., de Souza, S. R., & de Almeida Vitor, J. F. (2015). An immune-inspired
algorithm for an unrelated parallel machines’ scheduling problem with sequence and machine dependent
setup-times for makespan minimisation. Neurocomputing, 163, 94–105.

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. BioSystems, 43,
73–81.

Eroglu, D. Y., Ozmutlu, H. C., & Ozmutlu, S. (2014). Genetic algorithm with local search for the unrelated
parallel machine scheduling problem with sequence-dependent set-up times. International Journal of
Production Research, 52(19), 5841–5856.

Ezugwu, A. E., Adeleke, O. J., & Viriri, S. (2018). Symbiotic organisms search algorithm for the unrelated
parallel machines scheduling with sequence-dependent setup times. PLoS ONE, 13(7), 1–23.

Fisher, R. A. (1960). The design of experiments. New York: Hafner Publishing Company.
Garey,M.R.,& Johnson,D. S. (1979).Computers and intractability: A guide to the theory of NP-completeness.

San Francisco: W. H. Freeman and Company.
Helal,M., Rabadi, G.,&Al-Salem,A. (2006). ATabu search algorithm tominimize themakespan for unrelated

parallel machines scheduling problem with setup times. International Journal of Operations Research,
3(3), 182–192.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Tatcher (Eds.),
Complexity of computer computations (pp. 85–103). New York: Plenum Press.

Lin, S.-W., & Ying, K.-C. (2014). ABC-based manufacturing scheduling for unrelated parallel machines with
machine-dependent and job sequence-dependent setup times. Computers & Operations Research, 51,
172–181.

NIST/SEMATECH e-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/. Accessed
February, 2018.

Rabadi, G., Moraga, R., & Al-Salem, A. (2006). Heuristics for the unrelated parallel machine scheduling
problem with setup times. Journal of Intelligent Manufacturing, 17, 85–97.

Ross, P. (1996). Taguchi techniques for quality engineering. New York: McGraw Hill.
SchedulingResearch. (2005). http://SchedulingResearch.com. Accessed February, 2018.
Taguchi, G. (1993). Taguchi methods: Design of experiments. Michigan: American Supplier Institute Inc.
Wang, L., Wang, S., & Zheng, X. (2016). Hybrid estimation of distribution algorithm for unrelated parallel

machine scheduling with sequence-dependent setup times. IEEE/CAA Journal of Automatica Sinica,
3(3), 235–246.

Ying, K.-C., Lee, Z.-J., & Lin, S.-W. (2012). Makespan minimization for scheduling unrelated parallel
machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1795–1803.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.itl.nist.gov/div898/handbook/
http://SchedulingResearch.com

	A worm optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times
	Abstract
	1 Introduction
	2 Worm optimization
	2.1 Solving the RM|Sijk|Cmax using WO
	2.1.1 WO local search: dwelling
	2.1.2 WO bad solution list (ADF)
	2.1.3 WO dauer stage modeling
	2.1.4 WO summary

	2.2 WO originality

	3 Computational tests
	4 Conclusion and future research
	Acknowledgements
	References

