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Abstract

For a set F of graphs, an instance of the F -free Sandwich Problem is a pair (G1, G2)

consisting of two graphs G1 and G2 with the same vertex set such that G1 is a subgraph of

G2, and the task is to determine an F -free graph G containing G1 and contained in G2, or to

decide that such a graph does not exist. Initially motivated by the graph sandwich problem

for trivially perfect graphs, which are the {P4, C4}-free graphs, we study the complexity of the

F -free Sandwich Problem for sets F containing two non-isomorphic graphs of order four.

We show that if F is one of the sets {diamond,K4}, {diamond, C4}, {diamond, paw},
{

K4,K4

}

,

{P4, C4},
{

P4, claw
}

, {P4, paw},
{

P4, diamond
}

, {paw, C4}, {paw, claw},
{

paw, claw
}

, {paw, paw},
{

C4, C4

}

,
{

claw, claw
}

, and
{

claw, C4

}

, then the F -free Sandwich Problem can be solved

in polynomial time, and, if F is one of the sets {C4,K4}, {paw,K4},
{

paw,K4

}

,
{

paw, C4

}

,
{

diamond, C4

}

,
{

paw, diamond
}

, and
{

diamond, diamond
}

, then the decision version of the F -

free Sandwich Problem is NP-complete.

Keywords: Graph sandwich problem; forbidden induced subgraph
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1 Introduction

Graph sandwich problems [12] are a natural generalization of recognition problems, and have received

considerable attention [5,7–10,13,18,19]. It is not unusual that graph classes for which the recognition

is very easy lead to challenging graph sandwich problems, which are either intractable or require

interesting structural and algorithmic arguments for their solution. In such a situation, the graph

sandwich problem motivates a detailed analysis of the corresponding graph class leading to insights

that were probably not needed for some efficient ad-hoc recognition algorithm but are essential for the

solution of the sandwich problem.

Good examples for this effect are graph classes defined by a finite set F of forbidden induced

subgraphs. In [7] Dantas, de Figueiredo, da Silva, and Teixeira initiated the study of graph sandwich

problems for F-free graphs, where F contains a single graph. In [8] Dantas, de Figueiredo, Maffray,

and Teixeira provided further results along this line, and, in particular, settled the complexity status

of the graph sandwich problem for {F}-free graphs for every graph F of order four. Considering

forbidden induced subgraph of order four is rather natural, because many well known graph classes [3]

are defined by one or more such graphs, and various aspects of these classes have been studied [2,6,14].

Originally motivated by the graph sandwich problem for trivially perfect graphs, which are the

{P4, C4}-free graphs, and following a suggestion by Golumbic, we initiate the study of the graph

sandwich problem for F-free graphs, where F is a set of two non-isomorphic graphs of order four.

In order to obtain our results, we rely on known results [1, 4, 15–17] for some cases, and develop new

arguments for other cases.

Before we proceed to our results, we recall some relevant definitions. We consider finite, simple, and

undirected graphs, and use standard terminology and notation. For a graph property Π, that is, Π is

a set of graphs, the corresponding graph sandwich problem is the following.

Π-Sandwich Problem

Instance: A pair (G1, G2) of two graphs such that G1 and G2 have the same vertex set, and

G1 is a subgraph of G2.

Task: Determine a graph G with G1 ⊆ G ⊆ G2 and G ∈ Π, or conclude that no such graph

exists.

Let F be a set of graphs. A graph G is F-free if no induced subgraph of G is in F . Let F be
{

F : F ∈ F
}

, where F is the complement of a graph F . For two graphs G1 and G2 such that G1 and

G2 have the same vertex set, and G1 is a subgraph of G2, let SWF (G1, G2) be the set of F-free graphs

G with G1 ⊆ G ⊆ G2.

Here is the type of problem we consider.

F-free Sandwich Problem

Instance: A pair (G1, G2) of two graphs such that G1 and G2 have the same vertex set, and

G1 is a subgraph of G2.

Task: Determine a graph G in SWF (G1, G2), or conclude that this set is empty.

The F-free Sandwich Decision Problem has the same input as the F-free Sandwich Problem

but the task is merely to decide whether SWF (G1, G2) is non-empty. It is easy to see that the F-

free Sandwich Problem can be solved in polynomial time if and only if the F-free Sandwich

Decision Problem can. In fact, if SWF (G1, G2) is non-empty, then iteratively applying an efficient

algorithm for the F-free Sandwich Decision Problem, one can determine in polynomial time an
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Figure 1: All graphs of order four.

edge-minimal graph G with G1 ⊆ G ⊆ G2 such that SWF (G1, G) is still non-empty, and this graph

G actually lies in SWF (G1, G2). We collect some simple observations.

Observation 1.1 Let F be a set of graphs, and let (G1, G2) be an instance of the F-free Sandwich

Problem.

(i) SW
F

(

G2, G1

)

= SWF (G1, G2).

(ii) If all graphs in F are connected, and SWF (G1, G2) is non-empty, then there is some graph G in

SWF (G1, G2) such that the vertex sets of the components of G1 are the same as the vertex sets

of the components of G.

(iii) If no graph in F has a universal vertex, and u is a universal vertex in G2, then SWF (G1, G2)

is non-empty if and only if SWF (G1 − u,G2 − u) is non-empty.

(iv) If every graph F in F has a unique F-free supergraph F ∗ with V (F ) = V (F ∗), then the F-free

Sandwich Problem can be solved in polynomial time.

Proof: (i) This follows immediately from the definition.

(ii) Since the vertex set of each component of a graph G in SWF (G1, G2) is the union of vertex sets

of components of G1, and all edges of G between components of G1 belong to G2, removing from G

all such edges yields another graph in SWF (G1, G2) that has the desired property.

(iii) If G ∈ SWF (G1, G2), then G − u ∈ SWF (G1 − u,G2 − u), which implies the necessity. By the

assumption on F , adding a universal vertex to an F-free graph yields an F-free graph, which implies

the sufficiency.

(iv) Starting with G1, and iteratively adding the uniquely determined sets of edges to every induced

subgraph from F using edges of G2 yields a graph in SWF (G1, G2). If, at some point, the graph G2

does not contain the necessary edges, then SWF (G1, G2) is empty. ✷

As said above, our goal it to study the complexity of the F-free Sandwich Problem for sets F

containing two non-isomorphic graphs of order four. Figure 1 illustrates all such graphs together with

the names we are using. By Observation 1.1(i), it suffices to consider the sets F up to complementation.

Note that P4 is the only self-complementary graph of order four. Hence, up to complementation, there

are 5 sets F that contain P4. There are 10 sets F containing two non-isomorphic graphs with less

than four edges, and, up to complementation, there are 15 sets F containing one graph with less than

four edges and one graph with more than four edges. Altogether, the 30 choices for F illustrated in

Figure 2 represent all sets of two non-isomorphic graphs of order four up to complementation.

3



t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t
P (1.1) NPC (3.2) NPC (3.1) NPC (3.3) P (2.1)

P (1.1) P (1.1) P (2.5) NPC (3.8) NPC (3.6) NPC(3.9)

P (2.7) P (2.2) P (2.13) NPC (3.5) P (2.11)

P (2.8) P (2.3) P (2.9) P (2.10)

P (2.3) P (2.12)

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

❅
❅❅

Figure 2: All 30 pairs of non-isomorphic graphs of order four up to complementation, together with
the status of the corresponding sandwich decision problem, where “P” means “polynomial time solv-
able”, “NPC” means “NP-complete”, and the number in the bracket is the reference number of the
corresponding result within this paper.

In Sections 2 and 3, we collect our positive and negative results, respectively. In a final section, we

conclude with some comments on the open cases.

2 Some Tractable Cases

We present our positive results in an order of roughly increasing difficulty.

Observation 1.1(i) and (iv) imply that the F-free Sandwich Problem can be solved in poly-

nomial time if F or F is one of the sets

{P3}, {diamond,K4} , {diamond, C4} , or {diamond,paw} .
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In order to understand the complexity of the F-free Sandwich Problem, if F is as in Observation

1.1(ii), then it suffices to consider instances (G1, G2) such that G1 is connected, and, if F is as in

Observation 1.1(iii), then it suffices to consider instances (G1, G2) such that G2 has no universal

vertex; otherwise, in both cases some simple algorithmic reduction applies.

For positive integers s and t, let R(s, t) be the Ramsey number, in particular, every graph of order

R(s, t) contains an induced Ks or Kr.

Theorem 2.1 The
{

K4,K4

}

-free Sandwich Problem can be solved in polynomial time.

Proof: No instance (G1, G2) of the
{

K4,K4

}

-free Sandwich Problem for which G1 has order at

least R(4, 4) has a solution. Instances (G1, G2) for which G1 has order less than R(4, 4) can be solved

in constant time. ✷

It is well-known [3] that, for every P4-free graph G or order at least 2, either G or G is disconnected.

Theorem 2.2 The {P4, C4}-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F = {P4, C4}. By

Observation 1.1(ii) and (iii), we may assume that G1 is connected, and that G2 has no universal

vertex. Suppose that SWF (G1, G2) contains some graph G. Let u is a vertex of maximum degree in

G. Since u is not universal, there is an induced path uvw of order 3 in G. Since w is a neighbor of

v but not of u, and u has at least as many neighbors as v, there is a vertex x that is a neighbor of

u but not of v. Nevertheless, the subgraph G[{u, v, w, x}] of G induced by {u, v, w, x} is either P4 or

C4, which is a contradiction. Hence, either one of the two algorithmic reductions corresponding to

Observation 1.1(ii) and (iii) applies, or SWF (G1, G2) is necessarily empty. ✷

The following result concerns the two cases F = {P4,paw} and F =
{

P4, claw
}

.

Theorem 2.3 The {P4,K1 ∪ F2}-free Sandwich Problem can be solved in polynomial time for

F2 ∈ {K3, P3}.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F = {P4,K1∪F2}, where

n(G1) ≥ 2. If SWF (G1, G2) contains some disconnected graph G, then G is {P4, F2}-free. Since, by

Observation 1.1(iv), the {P4, F2}-free Sandwich Problem can be solved in polynomial time, this

possibility can be checked in polynomial time. Hence, we may assume that SWF (G1, G2) contains no

disconnected graph. If G2 is connected, then, since, for every graph G in SWF (G1, G2), the graph G is

P4-free and contains G2, SWF (G1, G2) is empty. Hence, we may assume that G2 is disconnected. Note

that, if H is the join of two graphs H1 and H2, then every induced P4 or K1 ∪ F2 in H is completely

contained either in H1 or in H2. Hence, if K is the vertex set of some component of G2, then

SWF (G1, G2) is non-empty if and only if SWF (G1[K], G2[K]) and SWF (G1 −K,G2 −K) are both

non-empty, that is, in polynomial time, one can reduce the instance (G1, G2) to two smaller instances

(G′
1, G

′
2) and (G′′

1 , G
′′
2) such that n(G1) = n(G′

1) + n(G′′
1), which implies the desired statement. ✷

Deciding the existence of a complete bipartite sandwich can easily be reduced to 2Sat [12, 18]. We

give a different argument leading to a simpler algorithm.

Lemma 2.4 If Π is the set of all complete bipartite graphs, then the Π-Sandwich Problem can be

solved in polynomial time.

5



Proof: Let (G1, G2) be an instance of the Π-Sandwich Problem. Clearly, we may assume that

all components K1, . . . ,Kp of G1 are bipartite. Let Ki have the partite sets Ai and Bi for i ∈ [p].

Initialize a set P as {{A1, B1}, . . . , {Ap, Bp}}, and, iteratively and as long as possible, whenever P

contains two distinct sets {X,Y } and {X ′, Y ′} such that, in G2, some vertex in X is non-adjacent

to some vertex in X ′, then replace {X,Y } and {X ′, Y ′} within P by {X ∪X ′, Y ∪ Y ′}; breaking ties

arbitrarily. Note that X ∪X ′ is the union of partite sets of components of G1 that necessarily belong

to the same partite set of any solution. When P no longer changes, then, for every two distinct sets

{X,Y } and {X ′, Y ′} in P, the graph G2 contains all edges between X ∪ Y and X ′ ∪ Y ′. Therefore, if

the final P contains the sets {X1, Y1}, . . . , {Xq, Yq}, then there is a complete bipartite graph G with

G1 ⊆ G ⊆ G2 if and only if G2 contains all edges between Xi and Yi for every i ∈ [q]. Furthermore,

such a graph G can easily be determined. ✷

Theorem 2.5 The
{

P4,diamond
}

-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F =
{

P4,diamond
}

,

where m(G1) > 0.

Suppose that SWF (G1, G2) contains some disconnected graph G. Since G is P4-free, G is a

connected graph in SW
F

(

G2, G1

)

. Let G be the join of the two non-empty graphs GL and GR. Since

G is diamond-free, the two graphs GL and GR are P3-free, that is, they are the unions of kL and

kR complete graphs, respectively. Since G has at least one edge, we may assume, by symmetry, that

kR ≥ 2. Since G is diamond-free, this implies that all vertices of GL are isolated. If kL = 1, then

GL consists of a universal vertex uL of G. Since the {P3}-free Sandwich Problem can be solved

in polynomial time, considering all n(G1) choices for uL, one can check in polynomial time whether

SWF (G1, G2) contains such a graph G. Hence, we may assume that kL ≥ 2. Since G is diamond-free,

this implies that all vertices of GR are isolated, that is, G is a complete bipartite graph. By Lemma

2.4, one can check in polynomial time whether SW
F

(

G2, G1

)

contains a complete bipartite graph.

Altogether, it follows that one can check in polynomial time whether SWF (G1, G2) contains some

disconnected graph. Hence, we may assume that SWF (G1, G2) contains no disconnected graph.

If G2 is connected, then, similarly as in the proof of Theorem 2.3, SWF (G1, G2) is empty. Hence,

we may assume that G2 is disconnected. IfK is the vertex set of some component of G2, then, similarly

as in the proof of Theorem 2.3, SWF (G1, G2) is non-empty if and only if SWF (G1[K], G2[K]) and

SWF (G1 −K,G2 −K) are both non-empty, which implies the desired statement. ✷

Our next few results involve the paw, and the following result of Olariu is quite useful.

Lemma 2.6 (Olariu [17]) A connected graph is paw-free if and only if it is triangle-free or P3-free.

Theorem 2.7 The {paw, C4}-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F = {paw, C4}. By

Observation 1.1(ii), we may assume that G1 is connected.

Suppose that SWF (G1, G2) contains some graph G. By Lemma 2.6, G is triangle-free or P3-free.

Since G is {K3, C4}-free if and only if G = G1, and G1 is {K3, C4}-free, we may assume that G is
{

P3, C4

}

-free. This implies that G is a complete multipartite graph with at most one partite set of

order more than 1, that is, G has at most one edge. This implies that G2 has at most one edge, and,

hence, that G2 is
{

P3, C4

}

-free. Altogether, if SWF (G1, G2) is non-empty, then G1 or G2 belongs to

this set. ✷

6



Theorem 2.8 The {paw, claw}-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F = {paw, claw}. By

Observation 1.1(ii), we may assume that G1 is connected.

Suppose that SWF (G1, G2) contains some graph G. By Lemma 2.6, G is triangle-free or P3-free.

Since G is {K3, claw}-free if and only if G = G1, and G1 is {K3, claw}-free, we may assume that

G is
{

P3, claw
}

-free. This implies that G is a complete multipartite graph such that each partite

set contains at most two vertices, that is, G has maximum degree at most 1. This implies that G2

has maximum degree at most 1, and, hence, that G2 is
{

P3, claw
}

-free. Similarly as in the proof of

Theorem 2.7, if SWF (G1, G2) is non-empty, then G1 or G2 belong to this set. ✷

Theorem 2.9 The
{

paw, claw
}

-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F =
{

paw, claw
}

.

Suppose that SWF (G1, G2) contains some graph G. If G is triangle-free, then G1 is also triangle-

free, and, hence, lies in SWF (G1, G2). Hence, we may assume that G is not triangle-free. Since G is

claw-free, G is connected. By Lemma 2.6, G is P3-free. Since a graph is
{

P3, claw
}

-free if and only

if it is P3-free, and the
{

P3

}

-free Sandwich Problem can be solved in polynomial time, one can

check in polynomial time whether SWF (G1, G2) contains such a graph. ✷

Theorem 2.10 The {paw,paw}-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F = {paw,paw}.

Suppose that SWF (G1, G2) contains some graph G. Since F = F , we may assume, by Observation

1.1, that G is connected. By Lemma 2.6, this implies that G is triangle-free or P3-free. Since a graph

is
{

paw, P3

}

-free if and only if it is P3-free, and the
{

P3

}

-free Sandwich Problem can be solved in

polynomial time, one can check in polynomial time whether SWF (G1, G2) contains a
{

paw, P3

}

-free

graph. Hence, we may assume that G is {paw,K3}-free.

By Lemma 2.4, we may assume that G is not complete bipartite. If the maximum degree of G

is at most 2, then G has at most 5 vertices. Hence, we may assume that G has maximum degree at

least 3. Let u be a vertex of maximum degree. Let B be the neighborhood of u. Let A be the set

of vertices whose neighborhood is B. Since G is triangle-free, G[A ∪B] is a complete bipartite graph

with partite sets A and B. Since G is connected but not complete bipartite, some vertex in B has a

neighbor w outside of A. By the definition of A, w has a non-neighbor v in B. Since G is paw-free, v

is the only non-neighbor of w in B. Now, v, w, and two further vertices from B induce a paw, which

is a contradiction. ✷

Our next result relies on Maffray and Preissmann’s [15] characterization of pseudo-split graphs, and

Golumbic, Kaplan, and Shamir’s [12] algorithm for the split sandwich problem.

Theorem 2.11 The
{

C4, C4

}

-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F =
{

C4, C4

}

. Suppose

that SWF (G1, G2) contains some graph G. By a result of Maffray and Preissmann [15], there is a set

C of at most five vertices such that G − C is a split graph. Considering the O
(

n(G1)
5
)

choices for

C, and applying the polynomial time algorithm of Golumbic, Kaplan, and Shamir [12] to G−C, one

can decide in polynomial time whether SWF (G1, G2) is non-empty. ✷

The next proof uses a result of Brandstädt and Mahfud [4] concerning prime
{

claw, claw
}

-free graphs.
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Theorem 2.12 The
{

claw, claw
}

-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F =
{

claw, claw
}

, with

n(G1) ≥ 10. Suppose that SWF (G1, G2) contains some graph G. We will show that either G or G

has maximum degree at most 2, that is, it is the union of paths and cycles. If G has maximum degree

at most 2, then G1 belong to SWF (G1, G2), and, if G has maximum degree at most 2, then G2 belong

to SWF (G1, G2), which clearly implies the desired statement.

If G is disconnected, then G is {claw,K3}-free, which clearly implies that G has maximum degree

at most 2. Hence, by symmetry, we may assume that G and G are both connected. If G is prime,

then Brandstädt and Mahfud [4] showed that G or G has maximum degree at most 2. Hence, we

may assume that G contains a homogeneous set U of vertices, that is, 2 ≤ |U | ≤ n(G) − 1, and

V (G) = U ∪ A ∪ B, where A is the set of vertices in V (G) \ U that are adjacent to every vertex

in U , and, B is the set of vertices in V (G) \ U that are adjacent to no vertex in U . Since G and

G are both connected, there are vertices a and a′ in A, and, b and b′ in B such that a and b are

adjacent, and, a′ and b′ are non-adjacent. Let u and u′ be two vertices in U . If u and u′ are adjacent,

then G[{u, u′, a′, b′}] is a claw, and, if u and u′ are not adjacent, then G[{u, u′, a, b}] is a claw, which

completes the proof. ✷

Theorem 2.13 The
{

claw, C4

}

-free Sandwich Problem can be solved in polynomial time.

Proof: Let (G1, G2) be an instance of the F-free Sandwich Problem for F =
{

claw, C4

}

, which, by

Observation 1.1(i), is equivalent to the {claw, C4}-free Sandwich Problem. By Observation 1.1(iii),

we may assume that G2 has no universal vertex. If G1 is {K3, C4}-free, then G1 ∈ SWF (G1, G2).

Hence, we may assume that G1 contains an induced K3 or C4, which implies that every graph in

SWF (G1, G2) contains a triangle, and, hence, in view of claw, is connected.

Suppose that SWF (G1, G2) contains some graph G such that not all vertices of G lie on triangles.

Let T be the set of vertices of G that lie on triangles, and let R = V (G) \ T , in particular, T and

R are both non-empty. Since G is claw-free, every vertex in R has a neighbor in T . If some vertex

u in R has two neighbors v and w in T , then, since u does not lie on a triangle, v and w are not

adjacent. Let vxy be a triangle that contains v. Since G is claw-free, w is adjacent to x or y, and

uvxwu or uvywu is a C4, which is a contradiction. Hence, every vertex in R has exactly one neighbor

in T . Let v1, . . . , vp be the vertices in T that are the neighbor of some vertex in R. Since R is not

empty, we have p ≥ 1. Let ui be a neighbor of vi in R for i ∈ [p]. Since G is claw-free, every triangle

of G contains all vertices v1, . . . , vp, which implies p ≤ 3. If xy is an edge between two vertices in R,

then x and y have different neighbors, say vi and vj, among v1, . . . , vp. Since vi and vj both belong to

every triangle, they are adjacent, and the vertices x, y, vi, and vj form a C4, which is a contradiction.

Hence, R is independent. If p = 1, then v1 is a universal vertex of G, and, hence, also of G2, which

is a contradiction. Hence, p ∈ {2, 3}. If p = 3, then T = {v1, v2, v3}, that is, G contains exactly one

triangle, and considering the O
(

n(G1)
3
)

choices for v1, v2, and v3, it is possible to check in polynomial

time whether SWF (G1, G2) contains such a graph. If p = 2, then V (G)\{v1, v2} is independent, which

implies that considering the O
(

n(G1)
2
)

choices for v1 and v2, it is possible to check in polynomial time

whether SWF (G1, G2) contains such a graph. Altogether, it follows that one can check in polynomial

time whether SWF (G1, G2) contains some graph G such that not all vertices of G lie on triangles.

Hence, we may assume that all vertices of every graph in SWF (G1, G2) lie on triangles.

Suppose that G is an edge-maximal graph in SWF (G1, G2). If G contains K1 ∪ C4 as an induced

subgraph, then the vertex of degree 4 in K1 ∪ C4 is universal in G, which is a contradiction. Hence,
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G is K1 ∪ C4-free. Our next goal is to show that G contains the diamond as an induced subgraph.

Suppose, for a contradiction, that G is diamond-free. Since G has no universal vertex, there is a

triangle uvw in G as well as a vertex x distinct from u, v, and w such that x in not adjacent to u.

Since G is diamond-free, we may assume that x is adjacent to v but not to to w. Since x lies on some

triangle, it has a neighbor y outside of {u, v, w}. Since G is
{

claw, C4

}

-free, y is adjacent to v. Since

G is K1 ∪ C4-free, y is adjacent to u or w, which yields a diamond in both cases. Hence, G contains

a diamond.

Let u, v, w, and x induce a diamond inG such that u and x are not adjacent. Clearly, every vertex of

G is adjacent to v or w or both. Since G2 has no universal vertex, the two sets Nv = NG(v)\NG[w] and

Nw = NG(w)\NG[v] are both not empty. Since G is
{

claw, C4

}

-free, Nv∪Nw is independent. Let R be

the set of vertices in NG(v)∩NG(w) that have a neighbor in Nv∪Nw, and let S = (NG(v)∩NG(w))\R.

By definition, G contains no edge between Nv ∪Nw and S. Since every vertex of G lies on a triangle,

every vertex in Nv ∪Nw has a neighbor in R, in particular, R is not empty. Furthermore, since G is

claw-free, Nv ∪Nw is completely joined to R. If R contains two non-adjacent vertices x and y, then x,

y, a vertex from Nv, and a vertex from Nw form a C4. Hence, R is a clique. Since G is claw-free, S is

independent. Since G is claw-free, every vertex in S has at most one non-neighbor in R. Since adding

an edge between Nv and w or between Nw and v does not create an induced subgraph claw or C4,

the edge-maximality of G implies that G contains all edges of G2 between {v,w} and V (G1) \ {v,w}.

Similarly, since adding an edge between R and S does not create an induced subgraph claw or C4, the

edge-maximality of G implies that G contains all edges of G2 between R and S. Altogether, it follows

that there is an edge vw of G2, and a partition of the set NG2
(v)∩NG2

(w) into two sets R and S such

that

(i) the two sets Nv = NG2
(v) \NG2

[w] and Nw = NG2
(w) \NG2

[v] are non-empty,

V (G1) = {v,w} ∪Nv ∪Nw ∪ (NG2
(v) ∩NG2

(w)),

Nv ∪Nw is independent in G1, and,

(ii) R is a clique in G2,

S is independent in G1,

G2 contains all possible edges between R and Nv ∪Nw,

G1 contains no edge between S and Nv ∪Nw, and,

in G2, every vertex in S has at most one non-neighbor in R.

Conversely, if there is an edge vw of G2, and a partition of the set NG2
(v) ∩NG2

(w) into two sets R

and S such that (i) and (ii) are satisfied, then it is easy to see that SWF (G1, G2) is non-empty.

Let vw be an edge of G2, and let Nv and Nw be as in (i). Clearly, deciding whether (i) is satisfied

can be done in polynomial time. Furthermore, we now explain how to decide in polynomial time

using 2Sat whether NG2
(v) ∩ NG2

(w) has a partition into two sets R and S that satisfies (ii). Let

X = NG2
(v) ∩NG2

(w). For every vertex x in X, we introduce a boolean variable x, which should be

true if x is in R, and false if x is in S. Now, we construct a 2Sat formula f as follows.

• For every two vertices x and y in X that are non-adjacent in G2, we add to f the clause x̄ ∨ ȳ,

reflecting that R is a clique in G2.

• For every two vertices x and y in X that are adjacent in G1, we add to f the clause x ∨ y,

reflecting that S is independent in G1.
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• For every vertex x in X that is non-adjacent in G2 to some vertex in Nv ∪Nw, we add to f the

clause x̄, reflecting that G2 contains all possible edges between R and Nv ∪Nw.

• For every vertex x in X that is adjacent in G1 to some vertex in Nv∪Nw, we add to f the clause

x, reflecting that G1 contains no edge between S and Nv ∪Nw.

• For every two vertices x and y in X, for which there is a third vertex z in X such that x and

y are both non-adjacent in G2 to z, we add to f the clause x̄ ∨ ȳ, reflecting that, in G2, every

vertex in S has at most one non-neighbor in R.

It is easy to see that f is satisfiable if and only if NG2
(v) ∩NG2

(w) has the desired partition. There-

fore, considering all O
(

n(G1)
2
)

edges vw of G2, one can determine in polynomial time whether

SWF (G1, G2) is non-empty. ✷

3 Some Hard Cases

For every finite set F of graphs, the F-free Sandwich Decision Problem clearly belongs to NP.

Dantas, de Figueiredo, da Silva, and Teixeira [7] showed that the {C4}-free Sandwich Decision

Problem is NP-complete. Considering the proof of the corresponding result (Theorem 1 in [7]), it is

easy to see that the very same proof yields the following result.

Theorem 3.1 The {C4,K4}-free Sandwich Decision Problem is NP-complete.

Our next two results rely on the hardness of deciding 3-colorability.

Theorem 3.2 The {paw,K4}-free Sandwich Decision Problem is NP-complete.

Proof: By Lemma 2.6, a connected graph G that contains a triangle is {paw,K4}-free if and only if it

is
{

P3,K4

}

-free if and only if it is complete multipartite with at most three partite sets. Furthermore,

a graph is 3-colorable if and only if it has a complete multipartite supergraph with at most three

partite sets. Therefore, a given connected graph G that contains a triangle is 3-colorable if and only

if SWF

(

G,Kn(G)

)

is non-empty for F = {paw,K4}. Since deciding 3-colorability for such graphs is

NP-complete, the desired statement follows. ✷

Theorem 3.3 The
{

paw,K4

}

-free Sandwich Decision Problem is NP-complete.

Proof: Let H be a graph. Let G1 arise from H by adding three disjoint sets X, Y , and Z each

containing R(3, 4) new vertices, and adding all edges between X and Y , between X and Z, and

between Y and Z. Let G2 arise from G1 by adding all edges between V (H) and X ∪ Y ∪ Z, and by

adding all edges of H. Note that H is 3-colorable if and only if G1 is 3-colorable. Furthermore, for

every 3-coloring of G1, the three sets X, Y , and Z are subsets of different color classes. Hence, if

G1 is 3-colorable, then G2 contains a complete multipartite supergraph of G1 with three partite sets.

We will show that H is 3-colorable if and only if SWF (G1, G2) is non-empty for F = {paw,K4}. By

Observation 1.1(i), this implies the desired statement.

First, suppose that H is 3-colorable. As observed above, G2 contains a complete multipartite

supergraph G of G1 with three partite sets. Since G is in SWF (G1, G2), the necessity follows. For

the proof of the sufficiency, suppose that G is in SWF (G1, G2). First, suppose that G is connected.

By Lemma 2.6, G is
{

K3,K4

}

-free or
{

P3,K4

}

-free. In the first case, n(G1) ≤ R(3, 4), which is a
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contradiction. In the second case, G is a complete multipartite graph with partite sets of order at

most 3, which implies the contradiction ∆(G1) ≤ ∆(G) ≤ 2. Hence, G is disconnected. Since G is

K4-free, G has either two or three components. First, suppose that G has two components. Since G is
{

paw,K4

}

-free, one component, say K, of G is a clique, and, by Lemma 2.6, the other component, say

K ′, of G is
{

K3,K3

}

-free or
{

P3,K3

}

-free. If K ′ is
{

K3,K3

}

-free, then n(K ′) ≤ R(3, 3). Since V
(

K
)

is independent in G, we may assume, by symmetry between X, Y , and Z, that V
(

K ′
)

contains a

vertex of X. Since G contains all edges between V
(

K
)

and V
(

K ′
)

, this implies that the independent

set X is contained in V
(

K
)

, which is impossible because |X| = R(3, 4) > n(K ′). Hence, K ′ is
{

P3,K3

}

-free. This implies that K ′ is a complete multipartite graph with partite sets of order at

most 2 and, hence, G, G1, and H are 3-colorable. Finally, suppose that G has three components. It

follows that each component of G is complete, that is, G is a complete multipartite graph with three

partite sets. Therefore, G, and, thus, also G1 and H are 3-colorable. ✷

Our next two results rely on related results concerning
{

C4, C3, C5

}

-free graphs, which are known

as chain graphs or difference graphs (cf. Theorem 2.4.4 in [16]). Clearly, chain graphs are bipartite.

While the next two proofs are based on essentially the same approach, we argue from first principle

for the first, and rely on results about prime
{

diamond, C4

}

-free graphs [1] for the second.
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Figure 3: The chain graph Ch3.

Lemma 3.4 Let F =
{

paw, C4

}

. Let G1 be the disjoint union of a graph G and the graph Ch3 in

Figure 3, and let G2 arise from G1 by adding all edges between V (G) and V (Ch3).

(i) If G is C3 or C5, then SWF (G1, G2) is empty.

(ii) If G is a chain graph, then SWF (G1, G2) contains a chain graph.

Proof: (i) We only give details for the case that G is a triangle xyz. The case that G is a C5 can be

settled similarly.

For a contradiction, suppose that SWF (G1, G2) contains a graph H. Since H is C4-free, consid-

ering the edges a3b3 and xy, we may assume, by symmetry, that a3 and x are adjacent. Since H is

paw-free, considering a3 and the triangle xyz, we may assume, by symmetry, that a3 is adjacent to

y. Since H is paw-free, considering b3 and the triangle a3xy, we may assume, by symmetry, that b3

is adjacent to y. Since H is paw-free, considering any of the vertices a1, a2, and b2 together with the

triangle a3b3y, we obtain that a1, a2, and b2 are adjacent to y. Now, H[{a1, a2, b2, y}] is a paw, which

is a contradiction.

(ii) Let G have the partite sets A and B. Let G′ arise from the disjoint union of G and Ch3 by adding

all edges between V (G) and {a1, a2, a3}. Clearly, the sets A
′ = A∪{a1, a2, a3} and B′ = B∪{b1, b2, b3}

form a bipartition of G′. Suppose that G′ contains an induced C4 with the two edges ab and a′b′,
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where a, a′ ∈ A′. If a ∈ {a1, a2, a3}, then, in view of the edges between V (G) and {a1, a2, a3}, it follows

that b′ ∈ {b1, b2, b3}, which implies that a′ ∈ {a1, a2, a3}, and, hence, by symmetry, b ∈ {b1, b2, b3}.

Nevertheless, since Ch3 is a chain graph, this is a contradiction. If a ∈ A, then, in view of the structure

of G′, it follows that b ∈ B, which implies that a′ ∈ A, and, hence, by symmetry, b′. Nevertheless,

since G is a chain graph, this is a contradiction. Altogether, G′ is a bipartite C4-free graph, that is,

G′ is a chain graph. By construction, G′ belongs to SWF (G1, G2). ✷

Theorem 3.5 The
{

paw, C4

}

-free Sandwich Decision Problem is NP-complete.

Proof: Let F =
{

paw, C4

}

, and let Π be the set of all chain graphs. In [9] Dantas, Figueiredo,

Golumbic, Klein, and Maffray describe a polynomial reduction of an instance f of an NP-complete

variant of Satisfiability to an instance (G1, G2) of the Π-Sandwich Decision Problem; the

decision variant of the Π-Sandwich Problem. Let G′
1 be the disjoint union of G1 and the graph

Ch3, and, let G
′
2 arise from the disjoint union of G2 and the graph Ch3 by adding all edges between

V (G2) and V (Ch3).

If there is a chain graph G with G1 ⊆ G ⊆ G2, then, by Lemma 3.4(ii), SWF (G′
1, G

′
2) is non-

empty. Conversely, if SWF (G′
1, G

′
2) contains some graph G′, then, by Lemma 3.4(i), the graph

G = G′ − V (Ch3) is
{

C4, C3, C5

}

-free, that is, G is a chain graph. By construction, G1 ⊆ G ⊆ G2.

Altogether, we obtain a polynomial reduction of some NP-complete problem to the
{

paw, C4

}

-free

Sandwich Decision Problem, which completes the proof. ✷
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Figure 4: The graph ECh4; the vertex b is adjacent to all vertices in the independent set {c1, c2, c3, c4},
and, the vertex c is adjacent to all vertices in the independent set {b1, b2, b3, b4}.

Theorem 3.6 The
{

diamond, C4

}

-free Sandwich Decision Problem is NP-complete.

Proof: Let F =
{

diamond, C4

}

, and let Π be the set of all chain graphs. In [9] Dantas, Figueiredo,

Golumbic, Klein, and Maffray describe a polynomial reduction of an instance f of an NP-complete

variant of Satisfiability to an instance (G1, G2) of the Π-Sandwich Decision Problem, where

the edges of G1 form a perfect matching. We proceed similarly as in the proof of Theorem 3.5, that

is, we describe a polynomial reduction of (G1, G2) to an instance (G′
1, G

′
2) of the F-free Sandwich

Decision Problem.

Let G′
1 be the disjoint union of G1 and the graph ECh4 in Figure 4, and, let G′

2 arise from the

disjoint union of G2 and the graph ECh4 by adding all edges between V (G2) and V (ECh4) \ {a}.

First, suppose that there is a chain graph G with G1 ⊆ G ⊆ G2. Since G1 has no isolated vertices,

and G is C4-free, it follows that G is connected. Let B and C be the partite sets of G. Let G′ arise
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from the disjoint union of G1 and the graph ECh4 by adding all edges between {b, b1, b2, b3, b4} and

C as well as all edges between {c} and B. Similarly as in the proof of Lemma 3.4(ii), it follows that

G′ ∈ SWF (G
′
1, G

′
2).

Next, suppose that SWF (G
′
1, G

′
2) contains some graph G′. Since G′

1 has no isolated vertices, and

G′ is C4-free, it follows that G′ is connected. In view of the edges of Ech4, and, since the vertex a

has no neighbor in V (G1), also G′ is connected. Suppose that U is a homogeneous set of G′. Let A

be the set of vertices in V (G) \ U that are adjacent to every vertex in U , and, let N be the set of

vertices in V (G) \ U that are adjacent to no vertex in U . Since G′ and G′ are connected, both sets

A and N are non-empty. Since G′ is connected and diamond-free, the graph G′[U ] is P3-free. If U is

neither independent nor a clique, then, since G′ is diamond-free, it follows that A contains only one

vertex, and, since G′ is C4-free, it follows that N is independent. In this case, since G is connected,

the unique vertex in A is universal in G′, which is a contradiction, because G2 has no universal vertex.

If U is a clique, then, since G′ is F-free, it follows that A is a clique and N is independent. Since

G′ is diamond-free, every vertex in N has exactly one neighbor in A. In particular, it follows that

the vertices of degree at least 2 in G′ form a clique, which is a contradiction in view of the two non-

adjacent vertices b2 and c2, which have degree at least 2 in G1. Hence, every homogeneous set of G′

is independent. This easily implies that {a}, {b}, and {c} are maximal homogeneous sets of G′, and,

that all remaining vertices of ECh4 belong to distinct maximal homogeneous sets of G′. This implies

that Ech4 as an induced subgraph of the characteristic graph G∗ of G′; in particular, the order of G∗

is at least 11. By a result of Brandstädt [1], G∗ is

(i) either a thin spider, that is, V (G∗) can be partitioned into a clique C and a stable set S, and

the edges between C and S form a matching that covers all of S and all but at most one vertex

of C,

(ii) or G∗ arises from the disjoint union of a triangle a∗b∗c∗ and a connected chain graph with partite

sets B∗ and C∗ by adding all edges between b∗ and C∗ as well as all edges between c∗ and B∗.

If G∗ is a thin spider, then, since the vertices that belong to maximal homogeneous sets represented

by S have independent neighborhoods, the vertices a, b, and c of ECh4 correspond to maximal

homogeneous sets in C. Since b4 is non-adjacent to c, and, c4 is non-adjacent to b, the vertices b4 and

c4 lie in S, which is a contradiction, since S is independent. Hence, G∗ is as in (ii). Since a is the

only vertex of G′ whose removal yields a bipartite graph without creating a new vertex of degree 1,

it follows that {a} = a∗, and, by symmetry, {b} = b∗ and {c} = c∗. Since G∗ − {a∗, b∗, c∗} is a chain

graph, and, every homogeneous set of G′ is independent, it follows that G′ − {a, b, c}, and, hence also

G = G′ − V (ECh4) is a chain graph. Since, by construction, G1 ⊆ G ⊆ G2, this completes the proof.

✷

For our last two hardness results, we prove the following auxiliary hardness result, which might be of

independent interest.

Theorem 3.7 Let Π be the set of all bipartite graphs G with a bipartition A and B such that every

vertex in A has at most one non-neighbor in B, and, every vertex in B has at most one non-neighbor

in A.

The Π-Sandwich Decision Problem is NP-complete.

Proof: The considered decision problem is clearly in NP. In order to complete the proof, we describe a

polynomial reduction of the well known NP-complete One-in-Three 3Sat (cf. [LO4] in [11]) to the
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Π-Sandwich Decision Problem. Therefore, let f be an instance of One-in-Three 3Sat consisting

of the clauses C1, . . . , Cm over the boolean variables x1, . . . , xn. We construct an instance (G1, G2)

of the Π-Sandwich Decision Problem whose size is polynomially bounded in terms of n and m

such that f is a ‘yes’-instance of One-in-Three 3Sat if and only if (G1, G2) is a ‘yes’-instance of the

Π-Sandwich Decision Problem.

Starting with the empty graph, we construct G1 as follows.

• For every clause Cj with literals u, v, and w, add the eight vertices cj , dj, uj , vj, wj , pj(u),

pj(v), and pj(w), add the four edges cjdj , ujp(u)j , vjp(v)j , and wjp(w)j , and let

Ej = {cjuj, cjvj, cjwj} ∪ {djpj(u), djpj(v), djpj(w)}

∪{ujpj(v), ujpj(w), vjpj(u), vjpj(w), wjpj(u), wjpj(v)}.

See Figure 5 for an example.

• For every i, j ∈ [m], and k ∈ [n], add the edge cidj , and, if the corresponding vertices exists, the

edge xikx̄
j
k.

Let G2 arise from G1 by adding all edges in E
(

G1

)

\
⋃

j∈[m]

Ej . Clearly, the size of (G1, G2) is polyno-

mially bounded in terms of n and m.

s s

s s

s s

s scj dj

pj(x1)

pj(x̄2)

pj(x3)

x
j
1

x̄
j
2

x
j
3

Figure 5: The vertices added for the clause Cj = x1 ∨ x̄2 ∨ x3. The dashed lines are the edges in Ej.

First, suppose that there is a truth assignment such that every clause of f contains exactly one

true literal. Let

T =
⋃

j∈[m]

{

dj
}

∪
⋃

i∈[n]:xi is a true literal in Cj

{

x
j
i

}

∪
⋃

i∈[n]:xi is a false literal in Cj

{

p(xi)
j
}

,

F =
⋃

j∈[m]

{

cj
}

∪
⋃

i∈[n]:xi is a true literal in Cj

{

p(xi)
j
}

∪
⋃

i∈[n]:xi is a false literal in Cj

{

x
j
i

}

,

V (G) = V (G1), and

E(G) = {e ∈ E(G2) : |e ∩ T | = 1}.

Clearly, G1 ⊆ G ⊆ G2. Furthermore, if the clause Cj contains the three literals u, v, and w, and u is

the true literal in Cj , then, within the graph G,

• uj is the only non-neighbor of cj in T , cj is the only non-neighbor of uj in F ,

• p(u)j is the only non-neighbor of dj in F , dj is the only non-neighbor of p(u)j in T ,
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• p(w)j is the only non-neighbor of vj in T , vj is the only non-neighbor of p(w)j in F ,

• p(v)j is the only non-neighbor of wj in T , and wj is the only non-neighbor of p(v)j in F .

Altogether, it follows that G solves the Π-Sandwich Problem.

Now, suppose that G solves the Π-Sandwich Problem. Let T and F denote a bipartition of

G. In view of the edges of G1, we may assume that T contains the vertices d1, . . . , dm, and, that F

contains the vertices c1, . . . , cm. Let j ∈ [m], and let the clause Cj contain the literals u, v, and w.

In view of the edges in Ej incident with cj and dj , respectively, it follows that T contains at most

one vertex from {u, v, w}, and, that F contains at most one vertex from {p(u), p(v), p(w)}. Now, the

edges in Ej between {u, v, w} and {p(u), p(v), p(w)} imply that T contains exactly one vertex from

{u, v, w}. Hence, in view of the edges of the form xikx̄
j
k, setting the variables xi that correspond to a

vertex x
j
i in T to true yields a consistent truth assignment for which each clause of f contains exactly

one true literal. ✷

Theorem 3.8 The
{

paw,diamond
}

-free Sandwich Decision Problem is NP-complete.

Proof: Let F =
{

paw,diamond
}

, and, let Π be as in Theorem 3.7. We describe a polynomial reduction

of an instance (G1, G2) of the NP-complete Π-Sandwich Decision Problem to an instance (G′
1, G

′
2)

of the F-free Sandwich Decision Problem. In view of the proof of Theorem 3.7, we may assume

that G1 has order at least 8, and contains no isolated vertex.

Let P : a1b1a2b2 be an induced P4. Let G′
1 be the disjoint union of G1 and P , and, let G′

2 arise

from the disjoint union of G2 and P by adding all edges between V (G2) and V (P ).

First, suppose that G solves the Π-Sandwich Problem, and, that the sets A and B form a

suitable bipartition of G. If G′ arises from the disjoint union of G and P by adding all edges between

{a1, a2} and B as well as all edges between {b1, b2} and A, then G′ ∈ SWF (G′
1, G

′
2). Conversely,

suppose that SWF (G′
1, G

′
2) contains a graph G′. In view of P , some component of G′ contains

an induced P3. Since G′ is diamond-free, this implies that G is connected. By Lemma 2.6, G′ is
{

K3,diamond
}

-free. Suppose that G′ is not bipartite. Let C : u1 . . . uℓ be a shortest odd cycle in

G′. Since G′ is triangle-free, ℓ is at least 5. Since G′ is diamond-free, ℓ is at most 5, that is, ℓ is 5.

Since G′ has order more than 5, there is some vertex v in V (G′) \ V (C). Since G′ is triangle-free, we

may assume, by symmetry, that NG(v) ∩ V (C) is contained in {u1, u3}. Now, G′[{u2, u4, u5, v}] is a

diamond, which is a contradiction. Hence, G′ is bipartite. Let the sets A′ and B′ form a bipartition of

G′ with a1, a2 ∈ A′ and b1, b2 ∈ B′. Let G = G′ − V (P ). Let A = A′ \ {a1, a2} and B = B′ \ {b1, b2}.

Suppose that some vertex a in A is non-adjacent to two vertices b and b′ in B. Since G1 has no

isolated vertex, a has a neighbor b′′ in B, and, G[{a, b, b′, b′′}] is a diamond, which is a contradiction.

By symmetry, it follows that G solves the Π-Sandwich Problem ✷

Theorem 3.9 The
{

diamond,diamond
}

-free Sandwich Decision Problem is NP-complete.

Proof: Let F =
{

diamond,diamond
}

, and, let Π be as in Theorem 3.7. We describe a polynomial

reduction of an instance (G1, G2) of the NP-complete Π-Sandwich Decision Problem to an instance

(G′
1, G

′
2) of the F-free Sandwich Decision Problem. In view of the proof of Theorem 3.7, we

may assume that G1 has order at least 8, and contains no isolated vertex.

Let P ′ be the graph with vertices a1, a2, b1, b
′
1, and b2, and edges a1b1, a1b

′
1, b1, a2, and a2b2.

Let G′
1 be the disjoint union of G1 and P ′, and, let G′

2 arise from the disjoint union of G2 and P ′ by

adding all edges between V (G2) and V (P ′).
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First, suppose that G solves the Π-Sandwich Problem, and, that the sets A and B form a

suitable bipartition of G. If G′ arises from the disjoint union of G and P ′ by adding all edges between

{a1, a2} and B as well as all edges between {b1, b
′
1, b2} and A, then G′ ∈ SWF (G′

1, G
′
2). Conversely,

suppose that SWF (G′
1, G

′
2) contains a graph G′. Since P contains an induced P4, some component

of G′ as well as some component of G′ contains an induced P3. Since G′ and G′ are diamond-free,

this implies that G and G′ are connected. If G′ is prime, then, since G′ contains the triangle b1b
′
1b2,

a result of Brandstädt and Mahfud [4] implies that G′ is a bipartite graph with partite sets A′ and

B′ such that every vertex in A′ has at most one non-neighbor in B′, and, every vertex in B′ has at

most one non-neighbor in A′. Now, G = G′ − V (P ′) solves the Π-Sandwich Problem. Hence, we

may assume that G′ contains a homogeneous set U of vertices, that is, 2 ≤ |U | ≤ n(G′) − 1, and

V (G′) = U ∪ A ∪ B, where A is the set of vertices in V (G′) \ U that are adjacent to every vertex in

U , and, B is the set of vertices in V (G′) \ U that are adjacent to no vertex in U . Suppose that U

contains two adjacent vertices. Since G′ is diamond-free, A is a clique. Since G′ is diamond-free, B is

a clique. Since G′ and G′ are connected, we have |A| ≥ 2 or |B| ≥ 2. Since G′ is F-free, U is a clique.

Nevertheless, this implies that G′ is bipartite, which is impossible in view of the triangle b1b
′
1b2 in G′.

Hence, we may assume that U contains two non-adjacent vertices. Arguing similarly as above, this

implies that A, B, and U are independent, that is, G′ is bipartite with bipartition A and U ∪ B. If

some vertex a in A has two non-neighbors b and b′ in B, then a, b, b′, and a vertex from U induce a

diamond, which is a contradiction. If some vertex b in B has two non-neighbors a and a′ in A, then,

since G is connected, b has a neighbor a′′ in A, and, b, a, a′, and a′′ induce a diamond, which is a

contradiction. This completes the proof. ✷

4 Conclusion

Figure 2 shows eight open cases, and, since the hardness results were typically slightly harder to

obtain, we tend to believe that most of the corresponding problems are hard.
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