Skip to main content
Log in

Modelling tail risk with tempered stable distributions: an overview

  • S.I.: Recent Developments in Financial Modeling and Risk Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this study, we investigate the performance of different parametric models with stable and tempered stable distributions for capturing the tail behaviour of log-returns (financial asset returns). First, we define and discuss the properties of stable and tempered stable random variables. We then show how to estimate their parameters and simulate them based on their characteristic functions. Finally, as an illustration, we conduct an empirical analysis to explore the performance of different models representing the distributions of log-returns for the S&P500 and DAX indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This approach has been investigated under the extreme value theory (EVT). Other approaches are used in the context of the EVT, such as block-maxima, peak-over-threshold, and limiting the distribution of the threshold, e.g., the generalised Pareto distribution. The application of the generalised Pareto distribution is canonical in the EVT. More information about the EVT was provided by McNeil et al. (2005)

  2. There are several methods for calculating the value-at-risk and expected shortfall: (1) variance-covariance approach; (2) Monte Carlo simulation, and; (3) historical simulation. Detailed information about these approaches was provided by Tompkins and D’Ecclesia (2006) and Cerqueti et al. (2018).

  3. Using a flexible distribution that captures all of the empirical regularities in the data can overcome this problem. Fallahgoul et al. (2018c) presented an approach for mitigating the model risk and they applied it to an asset allocation problem.

  4. This is an informal definition of the heavy tail property but several others are available, e.g., see McNeil et al. (2005).

  5. However, it should be noted that all classes of the tempered stable distribution that are defined based on a subordinator can be extended to a multivariate model (e.g., see Bianchi et al. 2016; Fallahgoul et al. 2016, 2018b). In particular, if we replace the physical time of a multivariate Brownian motion with a subordinator, then we obtain a multivariate model.

  6. We use a slight abuse of notation where a random variable is a snapshot at a given time for a random process.

  7. Detailed information about this approach was provided by Fallahgoul et al. (2016, 2019).

  8. It should be noted that some random variables are a special case of a stable random variable such as Lévy and Gamma random variables, and they have closed-form formulae for their pdf and cdf.

  9. The arrival rate of jumps of size \( x\in {\mathbb {R}}\backslash \{0\} \).

  10. A Gaussian random variable is a special case of a stable variable when \( \alpha =2 \) and \( \beta =0 \).

  11. An empirical study by Kim et al. (2011) determined this range of \( \alpha \) for stable and tempered stable distributions.

  12. Some studies refer to a stable random variable as \( \alpha - \)stable. In addition, different parameterisations are possible for a stable random variable. Detailed information regarding the parameterisation of a stable random variable was provided by Nolan (2003) and Rachev et al. (2011).

  13. For more information about the connections among different definitions of a stable random variable, see Chapter 1 in the study by Samorodnitsky and Taqqu (1994).

  14. Loosely speaking, a process has finite variation when the lengths of its sample paths are locally finite almost surely.

  15. Detailed information about tempered stable processes and their properties was given by Rachev et al. (2011), Fallahgoul et al. (2016), and Fallahgoul et al. (2019), and their references.

  16. Readers may to the study by Rachev et al. (2011) for detailed information about these classes of distributions and processes.

  17. In the study by Carr et al. (2003), they represented the tail parameter by Y instead of \( \alpha \), and the \( \lambda _+ \) and \( \lambda _- \) were given by G and M, respectively.

  18. Detailed information about hypergeometric functions was given by Andrews (1992).

  19. Detailed information about the Bessel function was given by Andrews (1992). This random variable was introduced by Kim et al. (2008).

  20. Modified tempered stable and rapidly decreasing tempered stable distributions are parametric examples in the tempered infinitely divisible class introduced by Bianchi et al. (2010).

  21. Detailed information about a subordinator was given by Cont and Tankov (2003) and Fallahgoul et al. (2016, 2019).

  22. Previously, we have only discussed the unconditional tempered random variables; in particular, we have only assumed that the physical time is one.

  23. This Lévy measure is the positive side of the Lévy measure of a RDTS random variable.

  24. Detailed information about G can be found in the Online Appendix given by Fallahgoul et al. (2018b).

  25. See McNeil et al. (2005) and Fallahgoul et al. (2016).

  26. See Longin and Solnik (2001).

  27. See McNeil et al. (2005), Fallahgoul et al. (2016), and the references therein.

  28. This approach was also studied by Rachev and Mittnik (2000), Stoyanov and Racheva-Jotova (2004), and Scherer et al. (2012).

  29. For example, see Bailey and Swarztrauber (1994).

  30. More details regarding the accuracy of this approach for the stable distribution were given by Menn and Rachev (2006).

  31. For detailed information about the derivation of (7), see Proposition 1 given by Kim et al. (2010a).

  32. The accuracy and speed of this approximation can be increased by using different numerical integration methods (see Menn and Rachev 2006; Kim et al. 2010a; Fallahgoul et al. 2018b).

  33. See McNeil et al. (2005) and Rachev et al. (2011).

  34. Detailed information can be found in the studies by Bates (2012), Fallahgoul et al. (2016, 2018a, 2019), and the references therein.

  35. The results obtained with the Kolmogorov–Smirnov test are shown in Table 1.

  36. Most of the variance is predicted by the assumption of normality, where this is a strong but not perfect signal.

  37. See Lilliefors (1967).

  38. The same results were obtained using filtered data and they are available upon request. It should be noted that other graphical tests such as sequential moments, box plot, and histogram methods obtained the same results, where the former method is based on the extreme value theory and it can be used as a suitable alternative to QQ-plots (see McNeil et al. 2005).

  39. Detailed information about these tests as well as the performance of stable and tempered stable distributions was given by Fallahgoul et al. (2016, 2018b, 2019).

  40. Detailed information about this hypergeometric function can be found in Andrews (1992).

References

  • Andrews, L. C. (1992). Special functions of mathematics for engineers. New York: McGraw-Hill.

    Google Scholar 

  • Bailey, D. H., & Swarztrauber, P. N. (1994). Computing VAR and AVaR in infinitely divisible distributions. SIAM Journal on Scientific Computing, 5, 1105–1110.

    Google Scholar 

  • Barndorff-Nielsen, O. E., & Shephard, N. (2001). Normal modified stable processes. Theory of Probability and Mathematical Statistics, 1, 1–19.

    Google Scholar 

  • Bates, D. S. (2012). US stock market crash risk, 1926–2010. Journal of Financial Economics, 105, 229–259.

    Google Scholar 

  • Bianchi, M. L., & Tassinari, G. L. (2018). Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform. ArXiv preprintarXiv:1805.05584.

  • Bianchi, M. L. (2015). Are the log-returns of Italian open-end mutual funds normally distributed? A risk assessment perspective. Journal of Asset Management, 16, 437–449.

    Google Scholar 

  • Bianchi, M. L., Rachev, S. T., & Fabozzi, F. J. (2017). Tempered stable Ornstein–Uhlenbeck processes: A practical view. Communications in Statistics-Simulation and Computation, 46, 423–445.

    Google Scholar 

  • Bianchi, M. L., Rachev, S. T., Kim, Y. S., & Fabozzi, F. J. (2010). Tempered stable distributions and processes in finance: numerical analysis. In C. Perna & M. Sibillo (Eds.), Mathematical and statistical methods for actuarial sciences and finance (pp. 33–42). Berlin: Springer.

    Google Scholar 

  • Bianchi, M. L., Tassinari, G. L., & Fabozzi, F. J. (2016). Riding with the four horsemen and the multivariate normal tempered stable model. International Journal of Theoretical and Applied Finance, 19, 1650027.

    Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Google Scholar 

  • Boyarchenko, S. I., & Levendorskiĭ, S. Z. (2000). Option pricing for truncated Lévy processes. International Journal of Theoretical and Applied Finance, 3, 549–552.

    Google Scholar 

  • Boyarchenko, S. I., & Levendorskiĭ, S. Z. (2002). Non-Gaussian Merton–Black–Scholes Theory. Singapore: World Scientific.

    Google Scholar 

  • Carr, P., Geman, H., Madan, D. B., & Yor, M. (2003). Stochastic volatility for Lévy processes. Mathematical Finance, 13, 345–382.

    Google Scholar 

  • Cerqueti, R., Giacalone, M., & Panarello, D. (2018). A generalized error distribution-based method for conditional value-at-risk evaluation. In C. Perna & M. Sibillo (Eds.), Mathematical and statistical methods for actuarial sciences and finance (pp. 209–212). Berlin: Springer.

    Google Scholar 

  • Chambers, J. M., Mallows, C. L., & Stuck, B. (1976). A method for simulating stable random variables. Journal of the American Statistical Association, 71, 340–344.

    Google Scholar 

  • Cont, R., & Tankov, P. (2003). Financial modelling with jump processes (Vol. 2). Boca Raton: CRC Press.

    Google Scholar 

  • Devroye, L. (2009). Random variate generation for exponentially and polynomially tilted stable distributions. ACM Transactions on Modeling and Computer Simulation (TOMACS), 19, 18.

    Google Scholar 

  • DuMouchel, W. H. (1973). On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution. The Annals of Statistics, 1, 948–957.

    Google Scholar 

  • DuMouchel, W. H. (1975). Stable distributions in statistical inference: 2. Information from stably distributed samples. Journal of the American Statistical Association, 70, 386–393.

    Google Scholar 

  • DuMouchel, W. H. (1983). Estimating the stable index \(\alpha \) in order to measure tail thickness: A critique. Annals of Statistics, 11, 1019–1031.

    Google Scholar 

  • Fallahgoul, H., Hugonnier, J., & Mancini, L. (2018a). Time changes, Lévy jumps, and asset returns. CQFIS working paper.

  • Fallahgoul, H., Kim, Y. S., Fabozzi, F. J., & Park, J. (2018b). Quanto option pricing with Lévy models. Computational Economics, 53(3), 1279–1308.

    Google Scholar 

  • Fallahgoul, H., Mancini, L., & Stoyanov, S. V. (2018c). Model risk and disappointment aversion. CQFIS working paper.

  • Fallahgoul, H., Kim, Y. S., & Fabozzi, F. J. (2016). Elliptical tempered stable distribution. Quantitative Finance, 16, 1069–1087.

    Google Scholar 

  • Fallahgoul, H., Veredas, D., & Fabozzi, F. J. (2019). Quantile-based inference for tempered stable distributions. Computational Economics, 53, 51–83.

    Google Scholar 

  • Fama, E. F., & Roll, R. (1968). Some properties of symmetric stable distributions. Journal of the American Statistical Association, 63, 817–836.

    Google Scholar 

  • Fama, E. F., & Roll, R. (1971). Parameter estimates for symmetric stable distributions. Journal of the American Statistical Association, 66, 331–338.

    Google Scholar 

  • Feller, W. (1971). Law of large numbers for identically distributed variables. In W. Feller (Ed.), An introduction to probability theory and its applications (Vol. 2, pp. 231–234). Hoboken: Wiley.

    Google Scholar 

  • Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.

    Google Scholar 

  • Gnedenko, B. V., & Kolmogorov, A. N. (1954). Limit distributions for sums of independent random variables. Addison-Wesley Mathematics Series (Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob). Cambridge, MA: Addison-Wesley.

  • Grabchak, M. (2018). Rejection sampling for tempered Levy processes. ArXiv preprint arXiv:1806.00671.

  • Grabchak, M. (2012). On a new class of tempered stable distributions: Moments and regular variation. Journal of Applied Probability, 49, 1015–1035.

    Google Scholar 

  • Grabchak, M. (2016). Tempered stable distributions (pp. 15–45). Berlin: Springer.

    Google Scholar 

  • Guillaume, F. (2013). The \(\alpha \)VG model for multivariate asset pricing: Calibration and extension. Review of Derivatives Research, 16, 25–52.

    Google Scholar 

  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054.

    Google Scholar 

  • Hitaj, A., Hubalek, F., Mercuri, L., & Rroji, E. (2018). On properties of the MixedTS distribution and its multivariate extension. International Statistical Review, 86, 512–540.

    Google Scholar 

  • Hurst, S. R., Platen, E., & Rachev, S. T. (1997). Subordinated market index models: A comparison. Financial Engineering and the Japanese Markets, 4, 97–124.

    Google Scholar 

  • Hurst, S. R., Platen, E., & Rachev, S. T. (1999). Option pricing for a logstable asset price model. Mathematical and Computer Modelling, 29, 105–119.

    Google Scholar 

  • Imai, J., & Kawai, R. (2011). On finite truncation of infinite shot noise series representation of tempered stable laws. Physica A: Statistical Mechanics and its Applications, 390, 4411–4425.

    Google Scholar 

  • Jelonek, P. (2012). Generating tempered stable random variates from mixture representation. Technical report

  • Kawai, R., & Masuda, H. (2011a). Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes. Monte Carlo Methods and Applications, 17, 279–300.

    Google Scholar 

  • Kawai, R., & Masuda, H. (2011b). On simulation of tempered stable random variates. Journal of Computational and Applied Mathematics, 235, 2873–2887.

    Google Scholar 

  • Kawai, R., & Masuda, H. (2012). Infinite variation tempered stable Ornstein–Uhlenbeck processes with discrete observations. Communications in Statistics-Simulation and Computation, 41, 125–139.

    Google Scholar 

  • Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2010a). Computing VaR and AVaR in infinitely divisible distributions. Probability and Mathematical Statistics, 30, 223–245.

    Google Scholar 

  • Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2010b). Tempered stable and tempered infinitely divisible GARCH models. Journal of Banking & Finance, 34, 2096–2109.

    Google Scholar 

  • Kim, Y. S., Rachev, S. T., Bianchi, M. L., Mitov, I., & Fabozzi, F. J. (2011). Time series analysis for financial market meltdowns. Journal of Banking & Finance, 35, 1879–1891.

    Google Scholar 

  • Kim, Y. S., Rachev, S. T., Chung, D. M., & Bianchi, M. L. (2008). A modified tempered stable distribution with volatility clustering. New Developments in Financial Modelling, 344, 344–365.

    Google Scholar 

  • Kim, Y. S., Rachev, S. T., Chung, D. M., & Bianchi, M. L. (2009). Modified tempered stable distribution, GARCH models and option pricing. Probability and Mathematical Statistics, 29, 91–117.

    Google Scholar 

  • Lilliefors, H. W. (1967). On the Kolmogorov–Smirnov test for normality with mean and variance unknown. Journal of the American statistical Association, 62, 399–402.

    Google Scholar 

  • Longin, F., & Solnik, B. (2001). Extreme correlation of international equity markets. Journal of Finance, 56, 649–676.

    Google Scholar 

  • McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters. Communications in Statistics-Simulation and Computation, 15, 1109–1136.

    Google Scholar 

  • McNeil, A. J., Frey, R., Embrechts, P., et al. (2005). Quantitative risk management: Concepts, techniques and tools (Vol. 3). Princeton: Princeton University Press.

    Google Scholar 

  • Menn, C., & Rachev, S. T. (2006). Calibrated FFT-based density approximations for \(\alpha \)-stable distributions. Computational Statistics & Data Analysis, 50, 1891–1904.

    Google Scholar 

  • Nolan, J. (2003). Stable distributions: Models for heavy-tailed data. New York: Birkhauser.

    Google Scholar 

  • Rachev, S., & Mittnik, S. (2000). Stable Paretian models in finance. Wiley. https://www.wiley.com/en-au/Stable+Paretian+Models+in+Finance-p-9780471953142.

  • Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering (Vol. 187). Hoboken: Wiley.

    Google Scholar 

  • Rosiński, J. (2001). Series representations of Lévy processes from the perspective of point processes. In J. Bertoin (Ed.), Lévy processes (pp. 401–415). Berlin: Springer.

    Google Scholar 

  • Rosiński, J. (2007). Tempering stable processes. Stochastic Processes and their Applications, 117, 677–707.

    Google Scholar 

  • Rosinski, J., & Sinclair, J. (2010). Generalized tempered stable processes. Stability in Probability, 90, 153–170.

    Google Scholar 

  • Rroji, E., & Mercuri, L. (2015). Mixed tempered stable distribution. Quantitative Finance, 15, 1559–1569.

    Google Scholar 

  • Samorodnitsky, G., & Taqqu, M. S. (1994). Stable non-Gaussian random processes: stochastic models with infinite variance (Vol. 1). Boca Raton: CRC Press.

    Google Scholar 

  • Scherer, M., Rachev, S. T., Kim, Y. S., & Fabozzi, F. J. (2012). Approximation of skewed and leptokurtic return distributions. Applied Financial Economics, 22, 1305–1316.

    Google Scholar 

  • Stoyanov, S., & Racheva-Jotova, B. (2004). Numerical methods for stable modeling in financial risk management. In G. A. Anastassiou (Ed.), Handbook of computational and numerical methods in finance (pp. 299–329). Berlin: Springer.

    Google Scholar 

  • Tassinari, G. L., & Bianchi, M. L. (2014). Calibrating the smile with multivariate time-changed Brownian motion and the Esscher transform. International Journal of Theoretical and Applied Finance, 17, 1450023.

    Google Scholar 

  • Terdik, G., & Woyczynski, W. A. (2006). Rosinski measures for tempered stable and related Ornstein–Uhlenbeck processes. Probability and Mathematical Statistics, 26, 213.

    Google Scholar 

  • Tompkins, R. G., & D’Ecclesia, R. L. (2006). Unconditional return disturbances: A non-parametric simulation approach. Journal of Banking & Finance, 30, 287–314.

    Google Scholar 

  • Zolotarev, V. M. (1986). One-dimensional stable distributions (Vol. 65). Providence: American Mathematical Society.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Frank Fabozzi, Young (Aaron) Kim, and Stoyan Stoyanov for helpful comments. We also thank the editor and two anonymous referees for insightful remarks. The Centre for Quantitative Finance and Investment Strategies has been supported by BNP Paribas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Fallahgoul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Lévy measure and characteristic function

In this section, we describe the Lévy measure and characteristic function for the stable and different classes of the tempered stable processes.

  • The Lévy measure and characteristic function of a stable random variable \( X_{S} \) are given respectively by

    $$\begin{aligned} \nu (dx)&=\left( \frac{C_+}{x^{1+\alpha }}1_{x>0} + \frac{C_-}{x^{1+\alpha }}1_{x<0}\right) dx.\\ \Phi (u;S)&=\mathbb {E}[e^{iuX_S}]\\&=\left\{ \begin{array}{ll} \exp \left( i\mu u - |\sigma u|^{\alpha }\left( 1- i\beta (\text {sign} ~ u)\tan \left( \frac{\pi \alpha }{2}\right) \right) \right) , &{}\quad \alpha \ne 1 \\ \exp \left( i\mu u - \sigma |u|\left( 1+ i\beta \frac{2}{\pi } (\text {sign} ~ u)\ln |u| \right) \right) , &{}\quad \alpha = 1 \end{array} \right. \end{aligned}$$

    where

    $$\begin{aligned} \text {sign} ~u = \left\{ \begin{array}{ll} 1,&{}\quad u>0\\ 0,&{} \quad u=0\\ -1,&{}\quad u<0, \end{array} \right. \end{aligned}$$

    \( 0<\alpha \le 2 \), \( \sigma \ge 0 \), \( -1\ge \beta \ge 1 \), and \( \mu \in \mathbb {R} \).

  • The Lévy measure and characteristic function of a Classical Tempered Stable (CTS) random variable \( X_{CTS} \) are given respectively by

    $$\begin{aligned} \nu (dx)&=\left( C\frac{e^{-\lambda _+ x}}{x^{1+\alpha }}1_{x>0} + C\frac{e^{-\lambda _- x}}{x^{1+\alpha }}1_{x<0}\right) dx.\\ \Phi (u;X_{CTS})&= {\mathbb {E}}[e^{iuX_{CTS}}] \\&= \int _{\mathbb {R}}e^{iux}f_X(x)dx\\&= exp\left( -iuC\Gamma (1-\alpha )(\lambda _+^{\alpha - 1} - \lambda _-^{\alpha - 1})\right. \\&\quad + C\Gamma (-\alpha )\left( (\lambda _+ - iu)^{\alpha } - \lambda _+^{\alpha } + (\lambda _- + iu)^{\alpha } - \lambda _-^{\alpha } \right) \Big ). \end{aligned}$$
  • The Lévy measure and characteristic function of a Generalised Tempered Stable (GCTS) random variable are given respectively by

    $$\begin{aligned} \nu (dx)&=\left( C_+\frac{e^{-\lambda _+ x}}{x^{1+\alpha }}1_{x>0} + C_-\frac{e^{-\lambda _- x}}{x^{1+\alpha }}1_{x<0}\right) dx.\\ \Phi (u;X_{GCTS})&= {\mathbb {E}}[e^{iuX_{GCTS}}] \\&= \int _{\mathbb {R}}e^{iux}f_X(x)dx\\&= exp\left( -iu\Gamma (1-\alpha _+)(C_+\lambda _+^{\alpha _+- 1} - C_-\lambda _-^{\alpha _- - 1} )\right. \\&\quad + C_+\Gamma (-\alpha _+)\left( (\lambda _+ - iu)^{\alpha _+} - \lambda _+^{\alpha _+} )\right) \\&\quad + C_-\Gamma (-\alpha _-)\left( (\lambda _- + iu)^{\alpha _-} - \lambda _-^{\alpha _-} )\right) \end{aligned}$$

    where \( \alpha _+, \alpha _-\in (0,1) \cup (1,2)\), \( C_+, C_-, \lambda _+, \text {and}, \lambda _->0 \).

  • The Lévy measure and characteristic function of a Modified Tempered Stable (MTS)s random variable are given respectively by

    $$\begin{aligned} \nu (dx)&=C\left( \frac{\lambda _+^{\frac{\alpha +1}{2}}K_{\frac{\alpha +1}{2}}(\lambda _+x)}{x^{\frac{\alpha +1}{2}}}1_{x>0}+ \frac{\lambda _-^{\frac{\alpha +1}{2}}K_{\frac{\alpha +1}{2}}(\lambda _-x)}{x^{\frac{\alpha +1}{2}}}1_{x<0}\right) dx.\\ \Phi (u;X_{MTS})&= {\mathbb {E}}[e^{iuX_{MTS}}] \\&= \int _{\mathbb {R}}e^{iux}f_X(x)dx\\&= exp\Big (G_R(u;\alpha ,C,\lambda _+,\lambda _-)+G_I(u;\alpha ,C,\lambda _+,\lambda _-)\Big ) \end{aligned}$$

    where for \( u\in \mathbb {R} \)

    $$\begin{aligned} G_R(u;\alpha ,C,\lambda _+,\lambda _-)=\sqrt{\pi }2^{-\frac{\alpha }{2}-\frac{3}{2}}C\Gamma (-\frac{\alpha }{2})\left( (\lambda _+^2+u^2)^{\frac{\alpha }{2}} - \lambda _+^\alpha + (\lambda _-^2+u^2)^{\frac{\alpha }{2}}-\alpha _-^\alpha \right) \end{aligned}$$

    and

    $$\begin{aligned} G_I(u;\alpha ,C,\lambda _+,\lambda _-)&=\frac{iuC\Gamma (\frac{1-\alpha }{2})}{2^{\frac{\alpha +1}{2}}}\left( \lambda _+^{\alpha -1}F\left( 1,\frac{1-\alpha }{2};\frac{3}{2};-\frac{u^2}{\lambda _+^2}\right) \right. \\&\left. \quad - \lambda _-^{\alpha -1}F\left( 1,\frac{1-\alpha }{2};\frac{3}{2};-\frac{u^2}{\lambda _-^2}\right) \right) \end{aligned}$$

    where F is the hypergeometric function.Footnote 40

  • The Lévy measure and characteristic function of a Rapidly Decreasing Tempered Stable (RDTS random) variable are given respectively by

    $$\begin{aligned} \nu (dx)&=\left( C\frac{e^{-\frac{\lambda _+^2x^2}{2}}}{x^{\alpha +1}}1_{x>0}+C\frac{e^{-\frac{\lambda _-^2x^2}{2}}}{x^{\alpha +1}}1_{|x|<0}\right) dx.\\ \Phi (u;X_{RDTS})&= {\mathbb {E}}[e^{iuX_{RDTS}}] \\&= \int _{\mathbb {R}}e^{iux}f_X(x)dx\\&= exp\Big (C(G(iu;\alpha ,\lambda _+) + G(-iu;\alpha ,\lambda _-))\Big ) \end{aligned}$$

    where

    $$\begin{aligned} G(x;\alpha ,\lambda )&=2^{-\frac{\alpha }{2}-1}\lambda ^{\alpha }\Gamma \left( -\frac{\alpha }{2} \right) \left( M\left( -\frac{\alpha }{2},\frac{1}{2};\frac{x^2}{2\lambda ^2}\right) -1 \right) \\&\quad +2^{-\frac{\alpha }{2}-\frac{1}{2}}\lambda ^{\alpha -1}\Gamma \left( \frac{1-\alpha }{2} \right) \left( M\left( \frac{1-\alpha }{2},\frac{3}{2};\frac{x^2}{2\lambda ^2}\right) -1 \right) \end{aligned}$$

    and M is the confluent hypergeometric function.

  • The Lévy measure and characteristic function of a Normal tempered stable (NTS random) variable are given respectively by

    $$\begin{aligned} \nu (dx)&=\left( \dfrac{\sqrt{2}\theta ^{1-\frac{\alpha }{2}}(\beta ^2+2\gamma \lambda )^{\frac{\alpha +1}{4}}}{\sqrt{\pi }\gamma \Gamma (1-\frac{\alpha }{2})}\exp \left( \dfrac{x\gamma }{\gamma ^2}\right) \dfrac{K_{\frac{\alpha +1}{2}}\left( \frac{|x|\sqrt{\beta ^2+2\sigma ^2\lambda }}{\gamma ^2}\right) }{|x|^{\frac{\alpha +1}{2}}} \right) dx.\\ \Phi (u;X_t)&= exp\left( iu(\mu - \beta )t -\frac{2\theta ^{1-\frac{\alpha }{2}}}{\alpha }\Big (\big (\theta - i\beta u +\frac{\sigma ^2u^2}{2}\big )^{\frac{\alpha }{2}} - \theta ^{\frac{\alpha }{2}}\Big )t\right) . \end{aligned}$$
  • The characteristic function of an exponential tilting stable (ETS random) variable is given by

    $$\begin{aligned} \Phi (u;X_t) = exp\left( iu(\mu - \beta )t -\frac{2\theta ^{1-\frac{\alpha }{2}}}{\alpha }\Big (\big (\theta - i\beta u +\frac{\sigma ^2u^2}{2}\big )^{\frac{\alpha }{2}} - \theta ^{\frac{\alpha }{2}}\Big )t\right) . \end{aligned}$$

    The Lévy measure of the ETS random variable is not available in a closed-form (see, Fallahgoul et al. 2018b).

Appendix B: Modified Bessel function of the second kind

The modified Bessel function is the solution of a differential equation called modified Bessel’s equation. It is given by

$$\begin{aligned} K_{\nu }(z)=\left( \dfrac{\pi }{2}\right) \dfrac{I_{-\nu }(z) - I_{\nu }(z)}{\sin (\nu \pi )} \end{aligned}$$

where \( I_{-\nu }(z) \) and \( I_{\nu }(z) \) are the fundamental solutions of the modifies Bessel’s equation. \( I_{\nu }(z) \) is given by

$$\begin{aligned} I_{\nu }(z) =\left( \dfrac{z}{2}\right) ^{\nu }\sum _{k=0}^{\infty }\dfrac{\left( \dfrac{z^2}{4}\right) ^{k}}{k\!\Gamma (\nu +k+1)} \end{aligned}$$

where \( \Gamma (a) \) is the Gamma function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahgoul, H., Loeper, G. Modelling tail risk with tempered stable distributions: an overview. Ann Oper Res 299, 1253–1280 (2021). https://doi.org/10.1007/s10479-019-03204-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03204-3

Keywords

JEL classification

Navigation