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Abstract

We consider the problem of computing the Credit Value Adjustment (CVA) of a European
option in presence of the Wrong Way Risk (WWR) in a default intensity setting. Namely
we model the asset price evolution as solution to a linear equation that might depend on
different stochastic factors and we provide an approximate evaluation of the option’s price, by
exploiting a correlation expansion approach, introduced in [2]. We compare the numerical
performance of such a method with that recently proposed by Brigo et al. ([8], [10]) in
the case of a call option driven by a GBM correlated with the CIR default intensity. We
additionally report some numerical evaluations obtained by other methods.

Keywords: Credit Value Adjustment; Vulnerable Options; Conterparty Credit Risk; Wrong
Way Risk; Affine Processes; Duhamel Principle; Girsanov Theorem.

1 Introduction

Vulnerable options are financial contracts that are subject to some default event concerning the
solvability of the option’s seller. The classical reference on this topic is the paper by Johnson
and Stulz, [25], the first to price European options with Counterparty Credit Risk (CCR). Their
work was developed within the structural approach to credit risk and it considered the option
as the sole liability of the counterparty. Later Klein, in [27], discussed more general liability
structures and the presence of correlation between the option’s underlying and the option’s
seller’s assets, while in [28] interest rate risk was included and in [29] a (stochastic) default
barrier depending on the value of the option was considered. In all these works default could
happen only at maturity.

In the meantime reduced-form models to price bonds or options that might default at any
time prior to maturity, started to be proposed. We refer the reader to Hull and White ([21])
and Jarrow and Turnbull ([24]) for the case of vulnerable options and to [15] and the references
therein for a more general framework. Some more recent papers on vulnerable options include
[14], [12], [39], [16] and [23].

Even before the last financial crisis (2007-2008), the focus on CCR started to increase notably
(see [11]) and attention shifted to building a general framework for the evaluation of a premium to
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compensate a derivative’s holder (in particular of Interest Rate Swaps) for taking (counterparty
credit) risk. This risk premium was then clearly defined in a paper by Zhu and Pykhtin ([40]),
under the name of Credit Value Adjustment (CVA). In the post-crisis era CVA became a key
quantity to be taken into account when trading derivatives in the OTC markets and this spurred
a lot of research in the field: see [20], [9] and [5] just to mention some. In practice, CVA is an
adjustment of the default-free value of a portfolio, to reduce this price in order to include the
default risk. Along the years, other value adjustments have been introduced leading to the
acronym (X)VA.

In the present paper we deal only with plain vanilla (unilateral) CVA. An important aspect
of CVA and of its correct evaluation is the presence of Wrong Way Risk (WWR) that is, a
decrease in the credit quality of the counterparty producing a higher exposure in the portfolio
of the derivative’s holder. Under independence between the exposure and the credit quality
of the counterparty, computation of CVA simplifies, while it becomes computationally much
more delicate if dependence is assumed. To overcame this difficulty, several methods have been
proposed: Monte Carlo methods, from brute force to enhanced ones (see [22] and [38]), the
copula method or static approach (see [35], [13]), sharp bounding estimates (see [19]). Here, we
propose a new method and we compare it with another recently investigated in [8].

In this paper we exploit the reduced-form or stochastic intensity approach, where the default
event is characterized by means of a random time, representing the time of default, when the
investor might face either a total loss or a partial recovery of the investment’s current value.
Within this context, the computational difficulty in the evaluation of the CVA is twofold. First,
the default time might be not completely measurable with respect to the information generated
by the market prices, since it reflects also other exogenous factors, secondly even under full
knowledge of the default time, the derivative’s evaluation calls for the joint distributions of the
random time and the price processes, usually very difficult to know.

In order to characterize the distribution of the default time, conditionally to the information
generated by the market prices, under appropriate conditions the joint dynamics of the asset
prices, of the default time and of the other stochastic factors can be described as a Markovian
system, whose components may exhibit correlation. This correlation is going to be modeled by
means of a set of parameters linking the processes driving the dynamics. In this framework, the
usual theory of stochastic calculus allows to set up a PDE system, whose solution, though not
easily computable, may be approximated. Several methods of approximations of PDE’s are at
disposal, the majority of them being based on some clever numerical discretization scheme, see
e.g. [26].

In this paper we propose an alternative method, introduced in the papers [2] and [3], which
expands theoretically the solution of the PDE system in a Taylor’s series with respect to the
correlation parameters. Indeed, under quite general hypotheses, it is straightforward to verify
that the solution to the PDE is regular with respect to the correlation parameters and therefore
it can be expanded in series around the zero value for all of them.The coefficients of the series
are characterized, by using Duhamel’s principle, as solutions to a chain of PDE problems and
they are therefore identified by means of Feynman-Kac formulas and expressed as expectations,
that turn to be easier to compute or to approximate.

There are several advantages in using this method:

• Expanding around the zero values of the correlation parameters means that the series coef-
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ficients are expectations of functionals of independent driving processes, easier to compute
or to approximate.

• In many cases the zeroth term of the series can be explicit computed, increasing the
precision of the approximation.

• Comparing with Finite Differences methods or Monte Carlo methods, often a comparable
accuracy is reached by the first order expansion.

• Consequently the computational times are very little.

• Compared to the other methods, our extends quite easily and in a straightforward way to
multi-factor models, as shown is Section 5.

In the next section we introduce the general problem and setting, in the third section we de-
fine our market model, while in the fourth we give the appropriate conditions for the convergence
of the series and we show in detail how the method works in absence of interest rate risk, finally
a stochastic interest rate is considered in the fifth section. It follows a short section recalling
the main features and results of the method [8], based on a change of measure technique and in
the last section we provide numerical comparisons among the different methodologies previously
discussed.

2 CVA Evaluation of Vulnerable Options in an Intensity Model

We consider a finite time interval [0, T ] and a complete probability space (Ω,F , P ), endowed
with a filtration {Ft}t∈[0,T ], augmented with the P−null sets and made right continuous. We
assume that all the processes have a cádlág version.

The market is described by the interest rate process rt determining the money market account
denoted by B(t, s) = e

∫ s
t
rudu and by a processXt representing an asset log-price (whose dynamics

will be specified later), this process may depend also on other stochastic factors. We assume

• that the filtration {Ft}t∈[0,T ] is rich enough to support all the aforementioned processes;

• to be in absence of arbitrage;

• that the given probability P is a risk neutral measure, already selected by some criterion.

In this market a defaultable European contingent claim paying f(XT ) at maturity is traded,
where f is a function whose regularity properties will be specified later. We denote by τ (not
necessarily a stopping time w.r.t. the filtration Ft) the default time of the contingent claim and
by Zt an Ft−measurable bounded recovery process.

To properly evaluate this type of derivative we need to include the information generated
by the default time. We denote by Gt the progressively enlarged filtration, that makes τ a
Gt−stopping time, that is Gt = Ft ∨ σ({τ ≤ t}). From now on, we indicate by Ht = 1{τ≤t}, the
process generating the filtration Ht, so that Gt = Ft ∨Ht.

We make the fundamental assumption, known as the H-hypothesis (see e.g. [18] and [17]
and the references therein), that

3



(H) Every Ft−martingale remains a Gt−martingale.

Under this assumption, we may affirm that eXs/B(t, s) for s ≥ t remains a Gs−martingale under
the unique extension of the risk neutral probability to the filtration Gs. (To keep notation light,
we do not indicate explicitly the probability we use for the expectations, assuming that we are
always working with the one corresponding to the filtration in use).

In this setting, for any given time t ∈ [0, T ], the price of a defaultable claim, with positive
final value f(XT ), default time τ and recovery process Zt, is given by

cd(t, T ) = E[B−1(t, T )f(XT )1{τ>T} +B−1(t, τ)Zτ1{t<τ≤T}|Gt], (1)

while the corresponding default free value is

c(t, T ) = E[B−1(t, T )f(XT )|Ft]. (2)

Correspondingly the CVA, as a function of the running time and of the maturity, is given by

CV A(t, T ) = E(B−1(t, τ)Zτ 1{t<τ≤T}|Gt) = 1{τ>t}[c(t, T ) − cd(t, T )]. (3)

In many situations, investors do not know the default time and they may observe only whether
it happened or not. The actual observable quantity is the asset price, therefore it is interesting
to write the pricing formula (1) in terms of Ft, rather than in terms of Gt. For that we have the
following Key Lemma, see [7] or [5].

Lemma 2.1 For any integrable G−measurable r.v. Y , the following equality holds

E
[

1{τ>t}Y |Gt

]

= P (τ > t|Gt)
E
[

1{τ>t}Y |Ft

]

P (τ > t|Ft)
. (4)

Applying this lemma to the first and the second term of (1) and recalling that 1−Ht = 1{τ>t}
is Gt−measurable, we obtain

E[B−1(t, T )f(XT )1{τ>T}|Gt] = 1{τ>t}
E[B−1(t, T )f(XT )1{τ>T}|Ft]

P (τ > t|Ft)
(5)

E[B−1(t, τ)Zτ1{t<τ≤T}|Gt] = 1{τ>t}
E[B−1(t, τ)Zτ1{t<τ≤T}|Ft]

P (τ > t|Ft)
, (6)

which may be made more explicit by following the hazard process approach.
We denote the conditional distribution of the default time τ given Ft by

Ft = P (τ ≤ t|Ft), ∀ t ≥ 0, (7)

whence, for u ≥ t, P (τ ≤ u|Ft) = E(P (τ ≤ u|Fu)|Ft) = E(Fu|Ft). If Ft(ω) < 1 for all t > 0
(which automatically excludes that Gt ≡ Ft), we can well define the so called F- hazard process
of τ as

Γt := − ln(1− Ft) ⇒ Ft = 1− e−Γt ∀ t > 0, Γ0 = 0, (8)

moreover
St := 1− Ft = e−Γt ∀ t > 0, S0 = 1, (9)
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is the F-survival process. We assume Γt to be differentiable. Its derivative, known as the
intensity process and denoted by λt, is such that Γt =

∫ t

0 λudu.
Exploiting (5) and (6) to pass to the Ft filtration and assuming that B(t, ·)Z. is a boundedF−

martingale (which is usually the case), by an extension of Proposition 5.1.1 of [6], as developed
in [4], we may rewrite the pricing formula (1) as

cd(t, T ) = 1{τ>t}E[e−
∫ T
t
(rs+λs)dsf(XT )|Ft]

+ 1{τ>t}E[

∫ T

t

Zsλse
−

∫ s
t
(ru+λu)duds|Ft],

(10)

recovering formulas (3.1) and (3.3) in [32], that the author obtained by modeling directly the
random time τ .

This formula can be specialized even further if we assume fractional recovery, Zt = Rc(t, T )
for some 0 ≤ R < 1. Using the Optional Projection Theorem, see e.g. theorem 4.16 in [34] , one
gets to

cd(t, T ) = 1{τ>t}
[

RE[e−
∫ T
t

ruduf(XT )|Ft]

+ (1−R)E[e−
∫ T
t
(ru+λu)duf(XT )|Ft]

]

,
(11)

which can be interpreted as a convex combination of the default free price and the price with
default. As a consequence, from (3) we have an expression also for the unilateral CVA as

CV A(t, T ) = 1{τ>t}(1−R)E[e−
∫ T
t

ruduf(XT )(1− e−
∫ T
t

λudu)|Ft]. (12)

Remark 2.1 Last formula, by means of the survival process, could be briefly rewritten as

CV A(t, T ) = −1{τ>t}(1−R)E[

∫ T

t

f(XT )

B(t, T )
dSu|Ft]. (13)

If G(t) = P (τ > t) = E[1τ>t] is the (deterministic) survival function, assuming it can be written

as G(t) = e−
∫ t
0 hsds, for some non-negative function h, then we have that E(St) = G(t) for all

t ≥ 0 (see (8) and (9))and

dSt = λtStdt =
λtSt

htG(t)
dG(t) = ζtdG(t)

where we set ζt :=
λtSt

htG(t)
. Consequently, using the optional projection theorem, the expectation

in (13) may be rewritten as

E[

∫ T

t

f(XT )

B(t, T )
dSu|Ft] = E

[

∫ T

t

f(XT )

B(t, T )
ζudG(u)|Ft

]

= E
[

∫ T

t

E[
f(XT )

B(t, T )
ζu|Fu]dG(u)|Ft

]

= E
[

∫ T

t

E[
f(XT )

B(t, T )
|Fu]ζu]dG(u)|Ft

]

= E
[

∫ T

t

c(u, T )ζu
B(t, u)

dG(u)|Ft

]

=

∫ T

t

E[
c(u, T )ζu
B(t, u)

|Ft]dG(u)

and

CV A(t, T ) = −1{τ>t}(1−R)

∫ T

t

E[
c(u, T )ζu
B(t, u)

|Ft]dG(u). (14)
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For t = 0 and a generic portfolio price process Vt (the positive part V +
t coinciding in our case

with c(t, T ), the default free price of the claim ) this formula is the starting point of the analysis
developed in [8].

Finally we remark that under independence between λt and (Xt, rt), the second term in (11)
simplifies further to

E[e−
∫ T

t
(rs+λs)dsf(XT )|Ft] = E[e−

∫ T

t
rsdsf(XT )|Ft]E[e−

∫ T

t
λsds|Ft]. (15)

Correspondingly, we get a similar factorization for the CVA

CV A(t, T ) = 1{τ>t}(1−R)E[e−
∫ T
t

ruduf(XT )|Ft]E[(1− e−
∫ T
t

λudu)|Ft]

= 1{τ>t}(1−R)c(t, T )
P (t < τ ≤ T |Ft)

P (τ ≥ t|Ft)
, (16)

where the last equality follows from the Key Lemma and the definition of hazard process (see e.g.
[6], Sect. 8.2). In this case, the two factors are respectively the price of a European derivative
and the price of a bond. Thus we may arrive at explicit formulas whenever the models for X
and λ are appropriately chosen.

3 The model

We assume that in the given probability space, the following diffusion dynamics are satisfied

Xs = x+

∫ s

t

(ru −
σ2

2
)du+ σ(Bs −Bt), x ∈ R (17)

λs = λ+

∫ s

t

γ(θ − λu)du+ η

∫ s

t

√

λudYu, λ > 0 (18)

rs = r +

∫ s

t

k(µ − ru)du+ ν(Ws −Wt), r > 0, (19)

where the parameters are such that k, θ, η, σ, µ > 0, γ, ν ≥ 0, 2kθ > η2 andB,Y,W are correlated
Brownian motions with a given correlation matrix. To simplify calculations, in what follows we
assume independence between the interest rate and default intensity, i.e. between Y and W ;
with this choice we may represent the triple B,Z,W as

Bt = ρB1
t + δB2

t +
√

1− ρ2 − δ2B3
t , Yt = B1

t , Wt = B2
t ;

where (B1, B2, B3) is a 3-dimensional Brownian motion and δ2 + ρ2 ≤ 1.

We remark that under independence we have an explicit expression of the factor E[e−
∫ T
t

λsds|Ft]
appearing in (15), being the bond price with a CIR interest rate. The problem is then reduced
to computing the other factor representing the price of the European derivative.
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4 Correlation expansion

For the sake of simplicity, in this section we assume R = 0 and the short rate to be constant,
rt ≡ r for all t ∈ [0, T ]. To consider r a function in time is a straightforward generalization,
while a stochastic interest rate will be considered specifically in the next section.

The model, which we write in flow notation, is hence reduced to







Xt,x,λ
s = x+ (r − σ2

2 )(s−t) + σ
[

ρ(B1
s−B1

t ) +
√

1−ρ2(B2
s −B2

t )
]

λt,λ
s = λ+

∫ s

t
γ(θ − λt,λ

u )du+
∫ s

t
η

√

λt,λ
u dB1

u.
(20)

The two-dimensional diffusion U
t,x,λ,ρ
t := (Xt,x,λ

s , λt,λ
s ) is a Markov process since the coefficients,

µ(x, λ) :=

(

r − σ2

2
γ(θ − λ)

)

, and Σ(x, λ) :=

(

σρ σ
√

1− ρ2

η
√
λ 0

)

are deterministic. This implies that the price cd(t, T ) of any European defaultable derivative

with payoff F (Ut,x,λ,ρ
T ) will be a deterministic function u(·) of all the initial data, that is

u(x, λ, t, T ; ρ) = e−r(T−t)E(e−
∫ T

t
λ
t,λ
s dsF (Ut,x,λ,ρ

T )). (21)

We remind that this computation is a crucial step towards the evaluation of the defaultable
derivative (11) and of the corresponding CVA.

When ρ = 0, the vector process Ut,x,λ,0
t is also affine, since both

µ(x, λ) and Σ(x, λ)Σ(x, λ)′ =

(

σ2 0
0 η2λ

)

have components which are affine functions. Therefore one may employ Fourier transform
techniques to evaluate u(x, λ, t; 0). In particular, if the payoff F is chosen in the class of affine
functions

F (Ut,x,λ,0
T ) = ev·U

t,x,λ,0
T , v = (v1, v2) ∈ C

2,

then also the conditional expectation is exponentially affine

u(x, λ, t, T ; 0) = e−r(T−t)+α(T−t)·Ut,x,λ,0
t ,

for some complex-valued vector function α(s) = (α1, (s)α2(s)), whose components verify a Ric-
cati system of ODE’s with initial values (α1(0), α2(0)) = (v1, v2). In the present paper we

shall consider the payoff of a plain vanilla call option written on the stock, hence F (Ut,x,λ,ρ
T ) =

f(XT ) := (eXT −K)+, but our methodology may be extended to other derivatives. For ρ = 0,
even if the payoff is not exponentially affine (unless K = 0), it is possible to reduce the problem
to that case and solve it by Fourier transform.

When ρ 6= 0, the power of Fourier transform is lost and we have to resort to alternative
method to evaluate (21).
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Here we use a technique introduced in [2] and [3], that gives an expression of u(x, λ, t; ρ) as
a power series of ρ around 0

u(x, λ, t, T ; ρ) =

∞
∑

k=0

∂ku

∂ρk
∣

∣

ρ=0

ρk

k!
,

since it is quite immediate to show that u depends smoothly on the correlation parameter. Since
the diffusion coefficient of X is a constant, σ > 0, the conditions in [2] to guarantee this power
series has a strictly positive convergence radius are automatically satisfied, as long as F is an
integrable payoff.

The series expansion gives a tool to approximate u(x, λ, t, T ; ρ), by stopping it at any chosen
order. The coefficient g0(x, λ, t, T ) equals u(x, λ, t, T ; 0) and it can be computed in closed form.
As we mentioned before, this corresponds to the independent case when the vector process U

is affine. All the other coefficients, gk(x, λ, t, T ) can be iteratively computed by exploiting the
Duhamel’s principle, as we are going to show.

By the Feymann-Kac formulas, u(x, λ, t, T ; ρ) solves the parabolic PDE

{

∂u
∂t

+ Lρu = 0

u(x, λ, T, T ; ρ) = (ex −K)+,
(22)

where we denoted Lρ = L0 + ρA, with

L0 :=
σ2

2

∂2

∂x2
+

η2λ

2

∂2

∂λ2
+ (r − σ2

2
)
∂

∂x
+ γ(θ − λ)

∂

∂λ
− r − λ (23)

A := ησ
√
λ

∂2

∂x∂λ
. (24)

By differentiating and taking ρ = 0, it is readily seen that the coefficients gk(x, λ, t, T ) must
respectively satisfy the following parabolic equations

{

∂g0
∂t

+ L0g0 = 0

g0(x, λ, T, T ) = (ex −K)+,

{

∂gk
∂t

+ L0gk = −Agk−1

gk(x, λ, T, T ) = 0.
k ≥ 1. (25)

Once again, by the Markov property and Feymann-Kac formulas, g0(x, λ, t, T ) admits the fol-
lowing representation

g0(x, λ, t, T ) = e−r(T−t)E(e−
∫ T
t

λ
t,λ
s ds(eX

t,x,λ
T −K)+)

= E(e−
∫ T

t
λ
t,λ
s ds)e−r(T−t)E((eX

t,x
T −K)+), (26)

where in the last passage we used the independence of the processes (Xt) and (λt) (ρ = 0). The
first factor is the bond price with a CIR process and presents an exponentially affine solution,
while the second is the usual Black & Scholes price of a European call option, cBS(x, t, T ), hence
we have

g0(x, λ, t, T ) = e−α1(T−t)−α2(T−t)λcBS(x, t, T )

=e−B1(T−t)−B2(T−t)λ
[

exN(d1(x, T − t)−Ke−r(T−t)N(d2(x, T − t))
]

,
(27)
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where d1,2(x, τ) =
x−κ+(r±σ2

2
)τ

σ
√
τ

, κ = lnK and

B1(τ) =
2γθ

η2
ln

(

2βe
γ+β
2

τ

β − γ + (γ + β)eβτ

)

(28)

B2(τ) =
2(eβτ − 1)

β − γ + (γ + β)eβτ
, (29)

with β =
√

γ2 + η2, τ = T−t. The other equations of (25) can be solved by Duhamel’s principle
which states that

gk(x, λ, t, T ) = −
∫ T

t

gαk (x, λ, t)dα,

where gαk (x, λ, t) is the solution to the PDE problem
{

∂gα
k

∂t
+ L0gαk = 0,

gαk (x, λ, α) = −Agk−1(x, λ, α, T )
(30)

for any fixed α ∈ (t, T ]. This sets up an iterative procedure to compute theoretically the
coefficients of any order, by means of a repeated application of Feymann-Kac formulas. Indeed
we have

gk(x, λ, t, T ) = −
∫ T

t

gαk

k (x, λ, t)dαk

=

∫ T

t

E
(

e−r(αk−t)e−
∫ αk
t λ

t,λ
s dsAgk−1(X

t,x
αk

, λt,λ
αk
, αk, T )

)

dαk

and we can iterate the procedure arriving to a formula involving k integrals but depending only
on g0.

Inevitably, coefficients of higher order are harder to compute. In the hope to obtain good
numerical results, we consider the first order approximation

ū(x, λ, t, T ; ρ) := u(x, λ, t, T ; 0) + (
∂u

∂ρ

∣

∣

ρ=0
)ρ ≡ g0(x, λ, t, T ) + g1(x, λ, t, T )ρ.

From(27), we may explicitly compute

Ag0(x, λ, t, T ) = ησ
√
λ

∂2

∂x∂λ
g0(x, λ, t, T )

= −ησ
√
λB2(T − t)e−B1(T−t)−B2(T−t)λ ∂

∂x
cBS(x, t, T )

= −ησ
√
λB2(T − t)e−B1(T−t)−B2(T−t)λexN(d1(x, T − t))

and consequently

g1(x, λ, t, T ) = −
∫ T

t

gα1 (x, λ, t)dα

=

∫ T

t

E
(

e−r(α−t)e−
∫ α

t
λ
t,λ
s dsAg0(X

t,x
α , λt,λ

α , α, T )
)

dα

= −ησ

∫ T

t

E
[

√

λt,λ
α B2(T−α)e−B1(T−α)−B2(T−α)λt,λ

α eX
t,x
α N(d1(X

t,x
α , T− α))

]

dα

9



We remark that the expectation in the integral is to be evaluated under independence of the
two processes X and λ, therefore we have

ησE
(

e−r(α−t)e−
∫ α

t
λ
t,λ
s dsAg0(X

t,x
α , λt,λ

α , α, T )
)

=Γ(t, α, T )E
[

√

λt,λ
α e−B2(T−α)λt,λ

α −
∫ α
t

λ
t,λ
s ds

]

E
[

eX
t,x
α N(d1(X

t,x
α , T− α))

]

(31)

where Γ(t, α, T ) ≡ ησe−r(α−t)B2(T − α)e−B1(T−α).
From the above formula we remark that g1(x, λ, t) < 0 implying that the price of the de-

faultable European call increases with ρ in a small interval around ρ = 0.

Remark 4.1 Let t = 0 , then from (3) and (26) we have

CV A(0, T ) =c(0, T ) − cd(0, T )

≈c(0, T ) − g0(x, λ, 0, T ) − g1(x, λ, 0, T )ρ

=c(0, T ) − c(0, T )P (τ > T )− g1(x, λ, 0, T )ρ

=c(0, T )P (τ ≤ T )− g1(x, λ, 0, T )ρ.

(32)

The first term on the right-hand side represents the CVA under independence between the de-
fault event and the exposure (see (16)). Hence g1(x, λ, 0, T ) measures the impact of the factor
correlation on CVA.

We now focus on the first expectation in (31). Let us set bα := B2(T − α) let us condition

internally with respect to λt,λ
α , obtaining

E
[

√

λt,λ
α e−bαλ

t,λ
α −

∫ α

t
λ
t,λ
s ds

]

=

∫ +∞

0
E
[

√

λt,λ
α e−bαλ

t,λ
α −

∫ α

t
λ
t,λ
s ds|λt,λ

α = ζ
]

f
λ
t,λ
α
(ζ)dζ

=

∫ +∞

0

√

ζe−bαζE
[

e−
∫ α
t

λ
t,λ
s ds|λt,λ

α = ζ
]

f
λ
t,λ
α
(ζ)dζ.

The density f
λ
t,λ
α

is explicitly known ( see for instance [1]). Moreover in [33] or in [36] an explicit

expression of the conditional moment generating function of

∫ α

t

λt,λ
s ds is provided as

E
[

e−
∫ α
t

λ
t,λ
s ds|λt,λ

α = ζ
]

=
Mt,α(λ, ζ)

f
λ
t,λ
α
(ζ)

Iν

( 2γ̄
√
ζλ

σ2 sinh
( γ̄(α−t)

2

)

)

,

where ν = 2γθ
σ2 − 1, γ̄ =

√

γ2 + 2σ2,

Iν(z) ≡ (
z

2
)ν

∞
∑

n=0

(z
2

4 )
n

n!Γ(ν + k + 1)

is the modified Bessel function of the first kind and

Mt,α(λ, ζ) =
2γ̄

σ2

( ζ

λ

)
ν
2
e
− γ̄(α−t)

2
− 1

σ2 [γ̄(λ+ζ) e
γ̄(α−t)+1

eγ̄(α−t)−1
−γ(λ−ζ)−θγ2(α−t)]

1− e−γ̄(α−t)
.

10



Setting an(ν) ≡ [2ν+2nn!Γ(ν + n + 1)]−1 and zt,α(λ, ζ) = 2γ̄
√
ζλ

σ2 sinh
(

γ̄(α−t)
2

) , we may write our

expectation as a power series

E
[

√

λt,λ
α e−bαλ

t,λ
α −

∫ α

t
λ
t,λ
s ds

]

=

∞
∑

n=0

an(ν)

∫ +∞

0

√

ζe−bαζMt,α(λ, ζ)[zt,α(λ, ζ)]
ν+2ndζ

that can be truncated at any given order.
Since Xt,x

α ∼ N(x+ (r − σ2

2 )(α− t)), σ2(α− t)), the second expectation in (31) becomes

E
[

eX
t,x
α N(d1(X

t,x
α , T− α))

]

=

∫

R

eyN(d1(y, T − α))

exp

{

[y−x−(r−σ2

2
)(α−t)]2

σ2(α−t)

}

√

2πσ2(α− t)
dy.

5 A three-factor model

In this section we shortly present the correlation expansion for the more general market model
(17), to show that the method can be easily extended to multi-factor models. Indeed the method-
ology remains the same and it is just a matter of handling slightly more complex calculations
that lead nevertheless to computable formulas. As in the previous section we take R = 0.

Let c = (ρ, δ) be the correlations vector, then by the Feymann-Kac theorem, the call price
u(x, λ, r, t, T ; c) must solve the following parabolic PDE:

{

∂u
∂t

+ Lcu = 0
u(x, λ, r, T, T ; c) = (eXT −K)+

(33)

where

Lc ≡ L0 + ρ(ση
√
λ

∂2

∂x∂λ
) + δ(σν

∂2

∂x∂r
) ≡ L0 + c · (Aρ, Aδ)

and

L0 ≡ σ2

2

∂2

∂x2
+

η2λ

2

∂2

∂λ2
+

ν2

2

∂2

∂r2
+ (r − σ2

2
)
∂

∂x
+ γ(θ − λ)

∂

∂λ
+ k(µ− r)

∂

∂r
− r − λ

By definition the first-order approximation of the call price is given by

ū(x, λ, r, t, T ; c) ≡ g0(x, λ, r, t, T ) + c · g
1
(x, λ, r, t, T ) (34)

where g0 solves (33) with c = (0, 0) and g
1
= (v,w)′. The functions v = v(x, λ, r, t, T ) and

w = w(x, λ, r, t, T ) can be computed by the same method used in section 4 as we are showing
below. Indeed by the Feymann-Kac theorem and the independence of the processes at c = 0,
we first get explicitly g0 as

g0(x, λ, r, t, T ) = E(e−
∫ T
t

λ
t,λ
s ds)E(e−

∫ T
t

r
t,r
s dseX

t,x
T −K)+)

= e−B1(T−t)−B2(T−t)λcVBS(x, r, t, T ),

where cVBS(x, r, t, T ) = exN(D1) −KP r(r, t, T )N(D2). Here P r(r, t, T ) = e−A1(T−t)−A2(T−t)r is
the Vasicek ZCB price maturing at T and the functions D1,2 = D1,2(x, r, V (T − t)) and V (T − t)
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are known (see [37]). Then the derivatives
∂

∂x
cVBS and

∂

∂r
cVBS are also explicitly computable

and so are the terms Aρg0 and Aδg0. By Duhamel’s principle we get

v(x, λ, r, t, T ) =

∫ T

t

vα(x, λ, r, t, T )dα, w(x, λ, r, t, T ) =

∫ T

t

wα(x, λ, r, t, T )dα,

where vα and wα solve PDE’s analogous to (30). They are given by:

vα(x, λ, r, t, T ) = σηB2(T − α)e−B1(T−α)E
[

√

λt,λ
α e−

∫ α
t

λ
t,λ
s ds−B2(T−α)λt,λ

α

]

×E
[

eX
t,x
α N(D1(X

t,x
α , rt,rα , σ, T − α))

]

(notice that all processes are evaluated for c = (0, 0)) and

wα(x, λ, r, t, T ) = −σν
A2(T − α)
√

V (T − α)
E
[

e−
∫ α
t

λ
t,λ
s ds−B2(T−α)λt,λ

α

]

×E
[

e−
∫ α

t
r
t,r
s dseX

t,x
α N ′(D1(X

t,x
α , rt,rα , V (T − α)))

]

.

The expectations involving only the intensity process are similar to those of the previous section.
The other expectations are relative to Gaussian processes. Therefore (34) is numerically fully
implementable.

6 CVA and the change of measure approach

Recently Brigo and Vrins [8] proposed a method for addressing the CVA computational problem
under WWR based on a change of measures, e.g. Girsanov’s theorem, in the stochastic-intensity
default setup. Their starting point is the following formula for the time-zero CVA (compare with
(14)) of portfolio price process Vt :

CV A(0, T ) = −(1−R)

∫ T

0
E[

V +
t

B(0, t)
ζt]dG(t), (35)

where E[·] is the expectation under the risk-neutral measure. The EPE (expected positive
exposure) under WWR is the function

EPE(t) = E[
V +
t

B(0, t)
ζt].

Girsanov’s theorem is used to factorize the EPE. Indeed by defining an equivalent martingale
measure QCF,t ∼ Q as

Zt
s :=

dQCF,t

dQ
=

M t
s

M t
0

, where M t
s = E[

1

B(0, t)
λtSt|Fs], s ∈ [0, t],

in [8] they prove that

E[
V +
t

B(0, t)
ζt] = ECF,t

[V +
t ]E[

ζt
B(0, t)

].

12



The measure QCF,t
is called wrong-way measure and it is associated to the numéraire CF ,t

· =
B(0, ·)M t

· .
In order to apply such a methodology, it is therefore necessary to obtain the dynamics of Vt

under the measure QCF,t
. By assuming a continuous dynamic for Vt under Q described by a

SDE, the change of measure results in a drift adjustment, we refer to [8] for the full details.
In [10] Brigo et al. applied the results obtained in [8] to the calculation of CVA under WWR

for a call option in the market model described by (20). The risk free rate being constant implies
that E[B(0, t)−1ζt] = −e−rt. Moreover the explicit expression of the new drift is

θst ≡ θst (λt) = ρη
√

λt

(

Aλ(s, t)Bλ
t (s, t)

Aλ(s, t)Bλ
t (s, t)λt −Aλ

t (s, t)
−Bλ(s, t)

)

, (36)

the functions logAλ = −B1 and Bλ = B2 being as in (28). In order to be able to compute the
expectations, it was necessary to replace the process λt with a deterministic proxy λ(t) in (36).

Once the chosen approximant is plugged into (36), the expression EPE(t) = −e−rtECF,t
[c(t, T )]

can be evaluated analytically leading to (see [10])

ECF,t

[
c(t, T )

B(0, t)
]

≈ex0+σΘtN

(

α̂(t) + β(t)σ
√
t

√

1 + β2(t)

)

− eκ−rTN

(

α̂(t)− σ
√
T − t

√

1 + β2(t)

) (37)

where

Θ(t) =

∫ t

0
θ(u, t)du, θ(u, t) = θtu(λ(u)), α̂(t) = α(t) +

Θt√
T − t

α(t) =
1

σ
√
T − t

(

x0 − κ+

(

r +
σ2

2

)

T − σ2t

)

, β(t) =

√

t

T − t
.

Two deterministic proxies λ(t) were considered: E[λt] and ECF,t
[λt]. While the first is analyti-

cally known, the second requires a further approximation step (see [10]). Inserting (37) in (35)
a numerical integration procedure gives the CVA under WWR.

Remark 6.1 It should be noticed that other methods based on the approximation of the process
(λt) could be exploited in order to price a vulnerable call option in the market model (20), and
hence its CVA. For instance, the volatility expansion method of Kim and Kunimoto, see [30],
considers a Taylor expansion of the process (λt) in powers of η around η = 0. Stopping the
series at the first order in η and setting λ(s) = λ exp(−γ(s − t)) + θ(1 − exp(−γ(s − t))), they
have for all s ≥ t and λt = λ:

λs = λ(s) + η

∫ s

t

e−γ(s−u)
√

λ(u)(ρdB1
u +

√

1− ρ2dB2
u) + o(η). (38)

Inserting the approximation (38) in the evaluation formula for the vulnerable call option, after
some manipulations the following result is obtained

u(x, λ, t, T ; ρ) ≈ e−
∫ T
t

λ(s)ds
[

cBS(x, t, T )−ρσηex−
σ2

2
(T−t)N(d1)Λ(λ, t, T )] (39)

13



with cBS denoting the classical Black-Scholes price and

Λ(λ, t, T ) =

∫ T

t

∫ T

u

e−γ(s−u)
√

λ(u)duds.

In the next section we are going to provide a comparison of the numerical performances of the
different methods which have been presented.

7 Numerical results

In this section we compare numerically our method to compute the CVA for a vulnerable option
with the methods mentioned above, exploiting the Monte Carlo approximations as a benchmark.

We considered model (20) with exogenously chosen parameters γ = 0.2, θ = 0.05, λ0 = 0.04
and S0 = 100. Instead, we varied ρ, σ and η to check the performances of the methods. Positive
correlation values relate to the WWR effect on the call option. The strike price is fixed to
K = 100 and the maturity is T = 1: without loss of generality we also set the risk-free rate
r = 0 and t = 0. All the pricing methods have been implemented in MatLab (R2017).

For the benchmark, Monte Carlo method was implemented with an Euler discretization of
the CIR process, while the geometric Brownian motion was exactly simulated. In order to
improve the Monte Carlo estimates, we implemented a control variate technique by using the
default-free call price as a control. In these experiments we set n = 1000 time step points in
[0, T ] and M = 1000 000 samples.

For the first order approximation of the expansion we proposed in section 4, we computed
g0 analitically, while for g1, we first computed the term gα1 on a grid of equispaced points αk in
[0, T ] by using the adaptive Gauss-Kronrod quadrature algorithm and then the resulting vector
was interpolated and finally integrated by using once again the GK algorithm to get g1. On
a Intel Core i7 (2.40 GHz), the whole procedure requires about 0.3 secs. Of course, the CVA
approximation for different values of ρ is simply obtained by linearity, see eq. (32), without any
further computational cost.

The drift adjustment method recalled in section 6 is based on the replacement of the pro-
cess λt with a deterministic proxy in the drift (36). As it was pointed out, different choices
can be made: we have chosen to implement λ(t) = E[λt]. Inserting (37) in (35) a numerical
integration procedure gives the CVA. This numerical approximation (taking about 0.6 secs in
our implementation) must be repeated for every value of ρ.

The volatility expansion introduced in Remark 6.1 is easily implemented, all the terms being
available in closed forms with the exception of Λ(λ, 0, T ) which was computed by a standard
quadrature (GK) algorithm. The procedure is very fast (about 0.5 × 10−3 secs.) and since the
approximation is linear in ρ, the estimated CVA is computed once for all values of ρ, as for the
correlation expansion method.

The approximation methods are compared to MC (with control variates) estimates, the error

being defined as ĈV AMC − ĈV AMethod. A positive sign indicates an underestimation of the
CVA with respect to MC. In our experiments (Tables (1) to (5)) we noticed that the three
methods provide better approximation for small values of |ρ|: the correlation expansion, which
is linear in ρ, provides a lower bound for CVA, while the drift adjustment gives a uniformly level
of approximations which, however slightly, worsens as the values of ρ become larger and positive
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ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)

-0.9 0.11780 (0.00253) 0.11729 ( 0.00304) 0.12215 (-0.00181) 0.12034 (0.00009)
-0.7 0.12712 (0.00150) 0.12677 ( 0.00184) 0.12970 (-0.00108) 0.12861 (0.00010)
-0.5 0.13643 (0.00084) 0.13625 ( 0.00102) 0.13769 (-0.00042) 0.13727 (0.00012)
-0.3 0.14575 (0.00023) 0.14573 ( 0.00026) 0.14615 (-0.00017) 0.14598 (0.00013)
-0.1 0.15506 (0.00009) 0.15520 (-0.00004) 0.15508 ( 0.00008) 0.15516 (0.00014)
0.1 0.16438 (0.00004) 0.16468 (-0.00026) 0.16448 (-0.00006) 0.16443 (0.00015)
0.3 0.17369 (0.00014) 0.17416 (-0.00033) 0.17437 (-0.00053) 0.17383 (0.00015)
0.5 0.18301 (0.00062) 0.18364 (-0.00000) 0.18473 (-0.00110) 0.18364 (0.00015)
0.7 0.19233 (0.00156) 0.19312 ( 0.00077) 0.19558 (-0.00169) 0.19389 (0.00015)
0.9 0.20164 (0.00250) 0.20260 ( 0.00154) 0.20692 (-0.00277) 0.20414 (0.00014)

Table 1: Numerical results for varying ρ, σ = 0.1. In parenthesis the errors with respect to the
MC values and, for the MC values, the 95% confidence interval length. The CIR volatility is
η = 0.1.

ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)

-0.9 0.04460 (0.02252) 0.03199 ( 0.03514) 0.07181 (-0.00468) 0.06713 (0.00015)
-0.7 0.06979 (0.01364) 0.06042 ( 0.02302) 0.08500 (-0.00156) 0.08344 (0.00020)
-0.5 0.09499 (0.00688) 0.08886 ( 0.01302) 0.10125 ( 0.00063) 0.10188 (0.00027)
-0.3 0.12018 (0.00247) 0.11729 ( 0.00536) 0.12100 ( 0.00166) 0.12265 (0.00034)
-0.1 0.14537 (0.00014) 0.14573 (-0.00050) 0.14462 ( 0.00060) 0.14522 (0.00041)
0.1 0.17057 (0.00025) 0.17416 (-0.00334) 0.17237 (-0.00155) 0.17082 (0.00047)
0.3 0.19576 (0.00251) 0.20260 (-0.00432) 0.20437 (-0.00610) 0.19827 (0.00052)
0.5 0.22095 (0.00689) 0.23103 (-0.00318) 0.24059 (-0.01275) 0.22784 (0.00056)
0.7 0.24614 (0.01360) 0.25946 ( 0.00029) 0.28087 (-0.02111) 0.25975 (0.00057)
0.9 0.27134 (0.02248) 0.28790 ( 0.00592) 0.32493 (-0.03111) 0.29382 (0.00056)

Table 2: Numerical results for varying ρ, σ = 0.1. In parenthesis the errors with respect to the
MC values and, for the MC values, the 95% confidence interval length. The CIR volatility is
η = 0.3.
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ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)

-0.9 0.00005 (0.04704) -0.05330 ( 0.10029) 0.04566 ( 0.00132) 0.04698 (0.00016)
-0.7 0.03431 (0.02821) -0.00591 ( 0.06844) 0.05762 ( 0.00489) 0.06252 (0.00024)
-0.5 0.06868 (0.01433) 0.04147 ( 0.04154) 0.07493 ( 0.00807) 0.08301 (0.00036)
-0.3 0.10305 (0.00530) 0.08886 ( 0.01950) 0.09960 ( 0.00875) 0.10836 (0.00049)
-0.1 0.13742 (0.00052) 0.13625 ( 0.00170) 0.13361 ( 0.00433) 0.13795 (0.00063)
0.1 0.17179 (0.00041) 0.18364 (-0.01143) 0.17841 (-0.00620) 0.17220 (0.00077)
0.3 0.20616 (0.00528) 0.23103 (-0.01959) 0.23451 (-0.02306) 0.21144 (0.00090)
0.5 0.24053 (0.01653) 0.27842 (-0.02135) 0.30140 (-0.04432) 0.25707 (0.00103)
0.7 0.27491 (0.02987) 0.32581 (-0.02102) 0.37783 (-0.07304) 0.30478 (0.00111)
0.9 0.30928 (0.05128) 0.37320 (-0.01263) 0.46226 (-0.10169) 0.36057 (0.00115)

Table 3: Numerical results for varying ρ, σ = 0.1. In parenthesis the errors with respect to the
MC values and, for the MC values, the 95% confidence interval length. The CIR volatility is
η = 0.5.

ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)

-0.9 0.34222 ( 0.00937) 0.34623 ( 0.00537) 0.35829 (-0.00667) 0.35160 (0.00030)
-0.7 0.37230 ( 0.00576) 0.37557 ( 0.00249) 0.38192 (-0.00386) 0.37806 (0.00036)
-0.5 0.40238 ( 0.00292) 0.40490 ( 0.00040) 0.40714 (-0.00184) 0.40530 (0.00040)
-0.3 0.43246 ( 0.00046) 0.43424 (-0.00132) 0.43403 (-0.00110) 0.43292 (0.00044)
-0.1 0.46254 (-0.00005) 0.46358 (-0.00109) 0.46262 (-0.00014) 0.46249 (0.00048)
0.1 0.49262 ( 0.00023) 0.49292 (-0.00006) 0.49299 (-0.00013) 0.49285 (0.00050)
0.3 0.52270 ( 0.00077) 0.52225 ( 0.00122) 0.52517 (-0.00169) 0.52348 (0.00051)
0.5 0.55278 ( 0.00288) 0.55159 ( 0.00407) 0.55921 (-0.00354) 0.55566 (0.00052)
0.7 0.58286 ( 0.00605) 0.58093 ( 0.00799) 0.59514 (-0.00622) 0.58892 (0.00057)
0.9 0.61294 ( 0.00922) 0.61027 ( 0.01190) 0.63300 (-0.01083) 0.62216 (0.00048)

Table 4: Numerical results for varying ρ, σ = 0.3. In parenthesis the errors with respect to the
MC values and, for the MC values, the 95% confidence interval length. The CIR volatility is
η = 0.1.
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ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)

-0.9 0.54936 ( 0.01904) 0.55828 ( 0.01012) 0.56840 (-0.01310) 0.56840 (0.00054)
-0.7 0.60299 ( 0.01159) 0.61017 ( 0.00441) 0.61459 (-0.00784) 0.61459 (0.00064)
-0.5 0.65663 ( 0.00519) 0.66207 (-0.00026) 0.66182 (-0.00453) 0.66182 (0.00073)
-0.3 0.71026 ( 0.00163) 0.71397 (-0.00208) 0.71189 (-0.00163) 0.71189 (0.00081)
-0.1 0.76390 ( 0.00089) 0.76587 (-0.00108) 0.76479 ( 0.00069) 0.76479 (0.00087)
0.1 0.81753 (-0.00007) 0.81777 (-0.00030) 0.81746 (-0.00078) 0.81746 (0.00092)
0.3 0.87117 ( 0.00269) 0.86966 ( 0.00419) 0.87386 (-0.00225) 0.87386 (0.00096)
0.5 0.92480 ( 0.00615) 0.92156 ( 0.00939) 0.93095 (-0.00689) 0.93095 (0.00096)
0.7 0.97844 ( 0.01078) 0.97346 ( 0.01576) 0.98922 (-0.01436) 0.98922 (0.00096)
0.9 1.03207 ( 0.01804) 1.02536 ( 0.02475) 1.05011 (-0.02337) 1.05011 (0.00091)

Table 5: Numerical results for varying ρ, σ = 0.5. In parenthesis the errors with respect to the
MC values and, for the MC values, the 95% confidence interval length. The CIR volatility is
η = 0.1.

η 0.1 0.2 0.3 0.4 0.5

|g1| 0.0466 0.0898 0.1260 0.1532 0.1719

Table 6: The absolute value of g1 for different volatilities η.

(other choices of the λ(t) tend to mitigate this effect, see [10]). In particular we experienced
a systematic underestimation of the WWR effect for the correlation expansion method and an
overestimation for the drift adjustment method, while the volatility expansion has not a definite
behavior. This kind of pattern is still observed for the other parameter sets considered (see
Figures (1), (2)).

As pointed out in Remark (4.1), the contribution to the CVA due to the correlation ρ is
quantified by g1: its behavior is reported in Table (6) and it suggests an increasing impact of
WWR for the volatility of the default intensity becoming larger.

We further compared the approximation methods on the same two sets of parameters (set
1 and 3) used in [10] for the CIR dynamic, see Table (7). The results for T = 1 and T = 5 are
reported graphically in Fig. (1) and Fig. (2), respectively confirming the behavior observed.

8 Conclusions

We considered the pricing problem for financial options subject to counterparty credit risk. The
impact of a credit event is quantified by the Credit Value Adjustment, which we modeled in
a stochastic intensity framework. This allows to represent the CVA as the expectation of the

λ0 γ θ η

Set 1 0.03 0.02 0.161 0.08
Set 3 0.01 0.8 0.02 0.2

Table 7: Parameter sets.
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Figure 1: Comparison of all methods for the set of parameters in Brigo et al. [10], maturity
T = 1, parameter set 1 on the left and parameter set 3 on the right.
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Figure 2: Comparison of all methods for the set of parameters in Brigo et al. [10], maturity
T = 5, parameter set 1 on the left and parameter set 3 on the right.
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derivative’s payoff discounted with a rate given by the sum of the risk-free and of the default
intensity. Wrong Way Risk is accounted for by considering positive dependence between the
exposure and the default event. The calculation of such a quantity may be tackled by classical
Monte Carlo methods once the dynamics of the stochastic state variables (underlying, risk-
free rate and default intensity) are chosen, but it is computationally very expensive. As an
alternative to that, we proposed in this paper the correlation expansion method to evaluate
CVA with WWR, when the underlying and the intensity dynamics are respectively given by a
geometrical Brownian motion and a CIR process. Finally we compared the performance of our
method with that of two other semi-analytical techniques: the drift adjustment introduced in
[8] and the volatility expansion technique used in [30].
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