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Abstract
The situation where serviceable products are sold together with a proportion of deteriorat-
ing products to consumers is rarely discussed in the literature. This article proposes an 
inventory model with disparate inventory ordering policies under a situation where a por-
tion of serviceable products and a portion of deteriorating products are sold together to 
consumers (i.e. mixed sales). The ordering policies consider a hybrid payment strategy 
with multiple prepayment and partial trade credit schemes linked to order quantity under 
situations where no inventory shortage is allowed and inventory shortage is allowed with 
full backorder. The hybrid payment policy offered by a supplier is introduced into the clas-
sical economic ordering quantity model to investigate the optimal inventory cycle and the 
fraction of demand that is filled from the deteriorating products under inspection policy. 
Further, a new solution method is proposed that identifies optimal annual total profit with 
mixed sales assuming no inventory shortage and inventory shortage with full backorder. 
The impact of an inspection policy is investigated on the optimality of the solution under 
hybrid payment strategies for the deteriorating products. The validation of the proposed 
model and its solution method is demonstrated through several numerical examples. The 
results indicate that the inventory model along with the solution method provide a power-
ful tool to the retail managers under real-world situations. Results demonstrate that it is 
essential for the managers to consider inclusion of an inspection policy in the mixed sales 
of products, as the inspection policy significantly increases the net annual profit.
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1  Introduction

The classical economic order quantity (EOQ) model has several assumptions that are 
rarely addressed in the literature. The assumption that the qualities of all products 
remain perfect is an unrealistic expectation. The model should consider decrease in 
product quality owing to deterioration that adds to the inventory holding cost (Dobson 
et al. 2017). Deterioration is a process that decreases usefulness and utility of a prod-
uct from its original state (Bakker et  al. 2012). Research on inventory policies under 
deterioration usually assumes that deteriorating products are monitored after they are 
deteriorated. Product samples are inspected to ascertain if they have serviceable quality 
before storing. The products held in stores gradually deteriorate, and these products are 
sold together with serviceable products to consumers.

The classical EOQ model assumes that purchasing cost is paid once an order is 
placed by a retailer. In reality, sometimes a wholesaler prefers the buyer to pay before 
the date of delivery as a prepayment (i.e. advance payment) to prevent cancellation of 
the orders and manage the products. Again, some sellers offer their buyers a delayed 
payment to stimulate their sales.

This research uses the above two realistic incentive schemes, viz. prepayment and 
trade credit (i.e. delayed payment). Trade credit (Seifert et  al. 2013) and prepayments 
are two widely used incentive schemes in business. Trade credit scheme is used as a 
motivational policy to increase sales or decrease on hand inventory level to encourage 
the customers. This scheme motivates the buyers to place larger orders with decreased 
capital investment.

Prepayment increases sales and promotes the product. Sometimes customers prefer to 
pay the purchasing cost in advance in several instalments and get the cooperative profit 
from the manufacturer when the interest earned rate is more than bank’s capital rate. To 
produce a special product, manufacturer may have to pay additional costs for setting up 
a new process. This requires the manufacturer to get a fraction of production or purchas-
ing cost in advance. This scheme is used to ensure that the buyer will not giving up the 
order at a loss to the manufacturer.

Inventory model for deteriorating products is a widely researched area (Khan et  al., 
2011a, b; Olsson 2014; Sarkar et al. 2015; Ghoreishi et al. 2015; Das et al. 2015; Tiwari 
et al. 2017; Lashgari et al. 2018). The first model (Ghare and Schrader 1963) introduced 
deterioration of products at a constant deterioration rate into an EOQ model. Goyal and Giri 
(2001) and Bakker et al. (2012) reported comprehensive reviews of deterioration inventory 
literature since early 1990s till 2011. Goyal (1985) derived an EOQ model under trade 
credit. Later, Aggarwal and Jaggi (1995) modified Goyal’s model by adding deterioration 
to the model. The model was further extended by Jamal et al. (1997) considering inven-
tory shortage. Teng (2002) altered Goyal’s model (1985) by differentiating the purchasing 
cost and selling price. Numerous articles in this area have been reported in literature (Teng 
2009; Musa and Sani 2012; Guria et al. 2013; Wu et al. 2014; Vandana and Sharma 2016). 
Examples of trade credit in the models are reported in Min et al. (2010), Chen and Kang 
(2010), Kreng and Tan (2011), Lee and Rhee (2011), Soni and Patel (2012), Ouyang and 
Chang (2013), Chen and Teng (2015), Ting (2015). In recent times, Kaya and Polat (2017) 
proposed a deterministic perishable inventory system with decay. However, literature does 
not report a model where a portion of deteriorating products and serviceable products are 
sold together to consumers (Pentico and Drake 2011; Taleizadeh and Noori-Daryan 2015; 
Tat et al. 2015; Taleizadeh et al. 2013, b, c).
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Khouja and Mehrez (1996) proposed a link to order trade credit, which was extended by 
Huang (2007) by introducing a partial postponed payment. Ouyang et al. (2009) addressed 
this issue for deteriorating products under partially delayed payment. Chung (2013) 
extended the work of Ouyang et al. (2009) by assuming that the interest paid was greater 
than the interest earned. Chang et al. (2009) addressed a seller-buyer system under link to 
order trade credit with a descending function of the selling price for demand rate. Maihami 
et  al. (2017) proposed a model under trade credit and partially backlogged shortage for 
non-instantaneous deteriorating products with price-dependent demand. Mahata et  al. 
(2018) addressed trade credit for deteriorating products considering risk and credit period 
dependent demand rate. Later, some models in this area were reported by Chung and Liao 
(2009), Chen et al. (2014), Taleizadeh and Nematollahi (2014) and Jaggi et al. (2017). A 
comprehensive and up-to-date review of trade credit inventory literature was provided by 
Kawale and Sanas (2017). More recent literature reports inventory models considering var-
ying deterioration rate with shortages (Prasad and Mukherjee 2016), controllable deteriora-
tion rate with shortages (Mishra et al. 2017), prepayment and planned backordering (Talei-
zadeh et al. 2018), partial prepayment and trade credit (Lashgari et al. 2016), and inventory 
and credit decisions for deteriorating items (Jaggi et al. 2019). However, these publications 
do not report any inventory model where a portion of serviceable products and a portion 
of deteriorating products are sold together to consumers considering multiple prepayments 
and a partial trade credit linked to order quantity under an inspection policy.

Unlike delayed payment, the impact of prepayment on inventory model has been less 
investigated in literature. Taleizadeh et al. (2013a) addressed multiple prepayments assum-
ing no inventory shortage with full backlogging and partial backlogging. Taleizadeh 
(2014a) developed a model under multiple prepayments for deteriorating products with 
constant deterioration rate. The model was extended for an evaporating product under par-
tial backlogging (Taleizadeh 2014b). Tavakoli and Taleizadeh (2017) proposed an inven-
tory system for a decaying item under full prepayment scheme. Consideration of a com-
bined prepayment and partial trade credit in the inventory model is a realistic assumption. 
A few articles reported the model with partial prepayment and delayed payments linked to 
order quantity (Zhang et al. 2014; Zia and Taleizadeh 2015).

Consideration of an inspection policy in the inventory model is scant in the literature. 
Khan et al. (2011a) used Salameh and Jaber (2000) approach to solve a model consisting 
of inspection cost and cost of errors due to inappropriate inspection. Tai et al. (2016) pre-
sented an inventory model to formulate the process in which deteriorating products were 
sold together with serviceable products.

Various inventory models on relevant ordering policies reported in the extant literature 
are mapped and illustrated in Table 1. It is evident from Table 1 that the literature does not 
report inventory models with an inspection policy, where a portion of serviceable products 
and a portion of deteriorating products are sold together to consumers considering a hybrid 
payment scheme having multiple prepayment and partial trade credit linked to the order 
quantity. Further, the extant literature does not report any inventory model that investigates 
mixed sales’ impact on the annual total profit.

This article addresses the shortcoming of all the previous models (listed in Table 1) in 
the domain of perishable inventory literature and contributes to the knowledge domain by 
introducing the following aspects:

•	 a realistic situation of mixed sale of products is introduced in the inventory model 
where a portion of deteriorating products and a portion of serviceable products are sold 
together to consumers,
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•	 the impact of an inspection policy on the mixed sale of products under a hybrid pay-
ment scheme is investigated,

•	 the hybrid payment policy consisting of multiple prepayment and partial delayed 
payment is formulated,

•	 the model is formulated under two situations viz. (i) no inventory shortage and (ii) 
inventory shortage with full backorder, to analyse the outcomes comprehensively, 
and

Table 1   Identified research gaps on inventory models having disparate ordering policies found from the 
extant literature

FB Full backordering, PB Partial backordering, No No inventory shortage

Reference Payment schemes Linked 
to order 
quantity

Shortage Deterioration Inspection

Advanced 
payment

Trade credit

Covert and Philip (1973) No
√

Aggarwal and Jaggi 
(1995)

√

No
√

Zhang (1996)
√

No
Jamal et al. (1997)

√

FB
√

Teng (2002)
√

No
Huang (2007)

√ √

No
Chang et al. (2009)

√ √

No
Maiti et al. (2009)

√

FB
Teng (2009)

√

No
Min et al. (2010)

√

No
√

Skouri et al. (2011)
√

No
√

Mahata (2012)
√

No
Soni and Patel (2012)

√

No
Thangam (2012)

√ √

No
√

Chung (2013)
√ √

No
√

Chung et al. (2013)
√ √

No
Sarkar and Sarkar (2013) PB

√

Taleizadeh et al. (2013a)
√

No, FB, PB
Teng et al. (2013)

√ √

No
Guria et al. (2013)

√

FB
Wu et al. (2014)

√

No
√

Chen et al. (2014)
√ √

No
Taleizadeh (2014a)

√

FB
√

Taleizadeh (2014b)
√

PB
√

Zhang et al. (2014)
√ √

No
Zia and Taleizadeh 

(2015)

√ √ √

FB

Tai et al. (2016) No, FB
√ √

This article
√ √ √

No, FB
√ √
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•	 a new solution method is provided that examines three decision variables, viz. the 
replenishment cycle, the fraction of demand which will be filled from the inventory and 
the inspection time.

The article is organised as follows. Section 2 describes the problem. The mathemati-
cal model with disparate inventory ordering policies is proposed in Sect. 3. Section 4 
explains the solution method. Section 5 illustrates numerical examples, results and sen-
sitivity analyses of the outcomes, and it further discusses managerial implication of the 
results. Section 6 concludes the article with an implication to future research.

2 � Problem description

The notations used in formulating the inventory models are illustrated in Table  6 
(“Appendix A”). Situations arise when deteriorating products and serviceable products 
are sold together to the consumers (Fig. 1). When the defective products are sold to the 
consumers, the sales volume decreases because of return of the products. Further, the 
payment strategy comprises a hybrid payment scheme in which the wholesaler desires 
his buyer to prepay purchasing cost as multiple prepayments in equal instalments before 
the orders are delivered, if the order quantity is less than a specific threshold value, W 
(i.e., Case 1: T ≤ Tw ). Alternatively, the buyer is offered to prepay � percent of the pur-
chasing cost and pay ( 1 − � ) percent of the cost as partial trade credit (i.e. delayed pay-
ment) (i.e., Case 2: T > Tw ). Case 2 is divided based on the values of T0 into three pos-
sible sub-cases, viz. Case 2.1: T0 ≤ M ≤ FT  , Case 2.2: M ≤ T0 and Case 2.3: M ≥ FT  . 
Case 2.1 defines the situation where the remaining amount of the purchasing cost is 
settled between the times that �Q units and Q units are depleted to zero as delayed pay-
ment. Case 2.2 defines the situation where the remaining amount of the purchasing cost 
is settled before the time that �Q units are depleted to zero as trade credit. Case 2.3 
defines the situation where the remaining purchasing cost is settled after the inventory 
on-hand reaches to zero. It is assumed that the interest paid in stocks is greater than the 
interest earned in investment.

Supplier Retailer Consumers

In
sp

ec
tio

n

Multiple prepayments and trade
credit linked to order quantity

A portion of serviceable products and a portion of 
deteriorating products are sold together to consumers

The products which are deteriorated since 
beginning are screened out

(Mixed sales)

Fig. 1   A schematic illustration of the problem
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3 � The mathematical model

The inventory model with partial prepayment and trade credit (i.e. delayed payment) 
schemes linked to order quantity under inspection policy for mixed sale of products 
are formulated under two situations, viz. (1) without inventory shortage and (2) with 
inventory shortage and full backorder. To formulate the mathematical model, the fol-
lowing assumptions are made:

1.	 A supply chain with a single deteriorating product and a single serviceable product is 
considered,

2.	 A linked to order trade credit is assumed for the upstream side of the supply chain,
3.	 A prepayment in the downstream of the supply chain is considered,
4.	 The prepayments are in multiple equal sizes,
5.	 A shortage is permitted,
6.	 The shortage products are fully backordered,
7.	 The deterioration and demand rates are assumed to be deterministic and constant, and
8.	 All inputs are deterministic.

The following Sects. 3.1 and 3.2 elucidate the model with the disparate inventory 
ordering policies.

3.1 � The model without inventory shortage

Inventory level decreases with demand rate ( 𝜆 > 0 ) and deterioration rate ( 𝜃 > 0 ) of an 
inventory system. Let I(t) and J(t) are levels of serviceable and deteriorating products 
at any time t  (0 ≤ t ≤ T) in the inventory system respectively. I(t) and J(t) are derived as 
follows (Tai et al. 2016):

The serviceable products which are sold to consumers during time T  are obtained as 
follows (Tai et al. 2016):

A hybrid payment scheme is considered with an assumption that if the order quan-
tity is lower than a specific threshold value (i.e. W > Q ), full purchasing cost must be 
prepaid beforehand. Alternatively, when Q > W  or T > Tw , a fraction of the purchasing 
cost must be prepaid before delivery of the order. For the rest amount of the purchas-
ing cost a partial trade credit is offered. It is to be noted that, by substituting the Taylor 
series expansion ( ex ≈ 1 + x +

x2

2
 ) into Eq. (2), the serviceable products become equiv-

alent to �(Ti −
�T2

i

2
) (where i refers to Cases 1, 2.1, 2.2 and 2.3).

(1)
{

I(t) = (Q − �t) × e−�t,

J(t) = (Q − �t) ×
(

1 − e−�t
) → I(t) + J(t) = (Q − �t)

(2)�

T

∫
0

I(t)

I(t) + J(t)
dt =�

T

∫
0

e−�tdt =
�

�
(1 − e−�T )
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3.1.1 � Inventory scenarios

Two scenarios of inventory can arise, viz. (1) T < Tw and (2) Tw ≤ T  . Some components 
of the total profit function per year are identical in these two possible cases. The identi-
cal components of objective functions are the holding cost, fixed ordering cost, purchas-
ing cost, and sales revenue which are equal to Ch�T

2
 , A
T
 , Cp� , and P

[

�

�

(1−e−�T )

T

]

 respectively. 
Three feasible situations arise based on the values of T  and Tw . Non-identical terms of 
the inventory system in each of these cases are described below.

Case 1	� T < Tw

As illustrated in Fig. 2, full purchasing cost is paid as a prepayment in n equal instal-
ments before receiving an order. Further, no delayed payment is offered. Therefore, no 
annual interest is earned. The cyclic capital costs of prepayments are equal to:

Therefore, the annual total profit per unit, ATP1(T) , is:

Case 2	� T ≥ Tw

(3)

IC1 =

(

ik

Cp�T

n
× n ×

L

n

)

+

(

ik

Cp�T

n
× (n − 1) ×

L

n

)

+⋯ +

(

ik

Cp�T

n
× 1 ×

L

n

)

= ikCp�T
(n + 1)

2n
L

(4)ATP1(T) = P

[

�

�

(1 − e−�T )

T

]

−

[

A

T
+

Ch�T

2
+ Cp� + ikCp�

(n + 1)

2n
L

]

Fig. 2   The interest earned and paid for the model without inventory shortage (Case 1)
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In this scenario, � percent of the purchasing cost is paid as a prepayment in n equal instal-
ments before receiving an order. The rest is paid as a delayed payment. Based on the values of 
T, T0 = �T and M, the following three possible sub-cases are identified:

Case 2.1	� �T ≤ M ≤ T → M ≤ T ≤ M

�

This means that the remaining amount of the purchasing cost is settled between time T0 and T. 
A combination of this possibility and Tw < T give rise to the following two sub-cases:

Case 2.1.1	� Tw < M ≤ T ≤ M

𝛽
 , and

Case 2.1.2	� M < Tw ≤ T <
M

𝛽

As illustrated in Fig. 3, both of these sub-cases have same cost of interest charged (IC21), inter-
est earning (IE21) and annual total profit [ATP21(T)], and these are depicted in Eqs. (5), (6) and 
(7) respectively.

(5)IC2.1 = �ikCp�
(n + 1)

2n
L + ikCp�

(T −M)2

2T

(6)IE2.1 = (1 − �)ieP
�

�

(1 − e−�M)

T

(7)
ATP2.1(T) = P

[

�

�

(1 − e−�T )

T

]

+

[

(1 − �)ieP
�

�

(1 − e−�M)

T

]

−

[

A

T
+ Cp� + Ch

�T

2
+ �ikCp�

(n + 1)

2n
L + ikCp�

(T −M)2

2T

]

Fig. 3   The interest earned and paid for the model without inventory shortage (Case 2.1)
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Case 2.2	� �T ≥ M →
M

�
≤ T

The remaining portion of the purchasing cost is settled before time T0 . A combination of 
this possibility and Tw < T  give rise to the following two situations:

Case 2.2.1	� Tw <
M

𝛽
≤ T  , and

Case 2.2.2	� M
𝛽
< Tw ≤ T

These two sub-cases have the same cost of interest charged (IC22), interest earning (IE22) 
and total profit [ATP22(T)] as illustrated in Fig. 4, and these are depicted in Eqs. (8), (9) 
and (10) respectively.

(8)IC2.2 = �ikCp�
(n + 1)

2n
L

(9)IE2.2 = (1 − �)ieP
�

�

(1 − e−�M)

T

(10)
ATP2.2(T) = P

[

�

�

(1 − e−�T )

T

]

+

[

(1 − �)ieP
�

�

(1 − e−�M)

T

]

−

[

A

T
+ Ch

�T

2
+ Cp� + �ikCp�T

(n + 1)

2n
L

]

Fig. 4   The interest earned and paid for the model without inventory shortage (Case 2.2)
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Case 2.3	� M ≥ T

The remaining portion of the purchasing cost is settled after a replenishment cycle ends 
in this sub-case. A combination of this possibility and Tw < T  give rise to the situation of 
Case 2.3.1:

Case 2.3.1	� Tw ≤ T < M

For this situation, the interest charged (IC23), interest earning (IE23) and annual total profit 
[ATP23(T)] are depicted in Eqs. (11), (12) and (13) respectively (Fig. 5).

3.2 � The model with backordering (i.e. with inventory shortage)

Considering the situations stated in the earlier assumptions along with shortage of the 
products, let us assume that the inventory level reaches zero and the shortage products 
are completely backordered. In this model with backordering, some elements of the total 
profit function per year are identical to that of the model without inventory shortage. 

(11)IC2.3 = �ikCp�
(n + 1)

2n
L

(12)IE2.3 = ie
P�

�

(1 − e−�T )

T
+ (1 − �)ieP�F(M − T)

(13)

ATP2.3(T) = P

[

�

�

(1 − e−�T )

T

]

+

[

(1 − �)ie
P�

�

(1 − e−�T )

T
+ (1 − �)ieP�(M − T)

]

−

[

A

T
+ Ch

�T

2
+ Cp� + �ikCp�

(n + 1)

2n
L

]

Fig. 5   The interest earned and paid for the model without inventory shortage (Case 2.3)
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The identical components of the objective function are fixed ordering cost ( A
T
 ), holding 

cost ( Ch�F
2T

2
 ), purchasing cost ( Cp� ), backordering cost ( Cb

�(1−F)2T

2
 ) and sales revenue 

P
[

�

�

(1−e−�FT )

T
+ �(1 − F)

]

 . Based on the values of T0(obtained as T0 = �FT  ), Tw and T, 
three possible cases are identified. The components that differ between the cases are 
computed in the following paragraphs.
Case 1 T < Tw

In this case, as illustrated in Fig. 6, no interest is earned and the cyclic capital costs of 
prepayment are computed similar to the model without inventory shortage. The cyclic 
capital costs are given by:

Therefore, the annual total profit per unit, ATP1(T ,F) , is:

Case 2 T ≥ Tw

The payment strategy used in this case is: � percent of the purchasing cost is paid as a pre-
payment in n equal instalments before receiving an order, and the rest is paid as a delayed 
payment. Based on the values of T0 = �FT , M, F and T, the following three sub-cases 
evolve:

Case 2.1	� �FT ≤ M ≤ FT →
M

F
≤ T ≤ M

�F

(14)CC1 = ikCp�T
(n + 1)

2n
L

(15)
ATP1(T ,F) = P

[

�

�

(1 − e−�FT )

T
+ �(1 − F)

]

−

[

A

T
+ Ch

�F2T

2
+ Cp� + Cb

�(1 − F)2T

2
+ ikCp�

(n + 1)

2n
L

]

Fig. 6   The interest earned and paid for the model with inventory shortage (Case 1)
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In this sub-case, the remaining portion of the purchasing cost is settled between the time 
T0 and T. A combination of the mentioned condition and Tw < T  , give rise to the following 
two situations:

Case 2.1.1	� Tw <
M

F
≤ T <

M

𝛽F
 , and

Case 2.1.2	� M
F
< Tw ≤ T <

M

𝛽F

The sub-cases have the same cost of interest charged (IC21), interest earning (IE21) and 
annual total profit [ATP21 (T, F)] as depicted in Eqs. (16), (17) and (18) respectively. The 
situations have been elucidated in Fig. 7.

Case 2.2	� M ≤ �FT →
M

�F
≤ T

In this sub-case, the remaining amount of the purchasing cost is settled before time T0 . A 
combination of the stated condition and Tw < T  give rise to the following two possible 
situations:

(16)IC2.1 = �ikCp�
(n + 1)

2n
L + ikCp�

(FT −M)2

2T

(17)IE2.1 = (1 − �)ieP
�

�

(1 − e−�M)

T
+ (1 − �)ieP�M(1 − F)

(18)

ATP2.1(T ,F) = P

[

�

�

(1 − e−�FT )

T
+ �(1 − F)

]

+

[

(1 − �)ieP
�

�

(1 − e−�M)

T
+ (1 − �)ieP�M(1 − F)

]

−

[

A

T
+ Ch

�F2T

2
+ Cb

�(1 − F)2T

2
+ Cp� + �ikCp�

(n + 1)

2n
L + ikCp�

(FT −M)2

2T

]

Fig. 7   The interest earned and paid for the model with inventory shortage (Case 2.1)
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Case 2.2.1: Tw <
M

𝛽F
≤ T  , 2.2.2: M

𝛽F
< Tw ≤ T .

These sub-cases have the same cost of interest charged (IC22), interest earning (IE22) 
and annual total profit [ATP22 (T, F)] as depicted in Eqs.  (19), (20) and (21) respec-
tively. This has been elucidated in Fig. 8.

Case 2.3	� FT ≤ M → T ≤ M

F

In this sub-case, the remaining purchasing cost is settled after the inventory on-hand 
reaches zero. A combination of Tw < T  and the stated condition results in the following 
possible situation:

Case 2.3.1	� Tw ≤ T <
M

F

(19)IC2.2 = �ikCp�
(n + 1)

2n
L − (1 − �)ikCp�FM

(20)IE2.2 = (1 − �)ieP
�

�

(1 − e−�M)

T
+ (1 − �)ieP�M(1 − F)

(21)

ATP2.2(T ,F) = P

[

�

�

(1 − e−�FT )

T
+ �(1 − F)

]

+

[

(1 − �)ieP
�

�

(1 − e−�M)

T
+ (1 − �)ieP�M(1 − F)

]

−

[

A

T
+ Ch

�F2T

2
+ Cb

�(1 − F)2T

2
+ Cp� + �ikCp�T

(n + 1)

2n
L − (1 − �)ikCp�FM

]

Fig. 8   The interest earned and paid for the model with inventory shortage (Case 2.2)
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The cost of interest charged (IC23), interest earning (IE23) and annual total profit [ATP23 (T, 
F)] are obtained as depicted in Eqs. (22), (23) and (24) respectively. These are elucidated 
in Fig. 9.

4 � The solution method

This section elucidates a closed form solution for the optimal variables of each case of the 
two formulated models in order to maximise the annual total profit. Section 4.3 delineates 
the integration of the inspection policy with the proposed model, which reduces the chance 
of delivering deteriorating products to the customers maximising the annual total profit.

(22)IC2.3 = �ikCp�
(n + 1)

2n
L

(23)IE2.3 = (1 − �)

[

ie
P�

�

(1 − e−�FT )

T
+ ieP�M(1 − F) + ieP�F(M − FT)

]

(24)

ATP2.3(T ,F) = P

[

�

�

(1 − e−�FT )

T
+ �(1 − F)

]

+

[

(1 − �) ×

[

ie
P�

�

(1 − e−�FT )

T
+ ieP�M(1 − F) + ieP�F(M − FT)

]]

−

[

A

T
+ Ch

�F2T

2
+ Cb

�(1 − F)2T

2
+ Cp� + �ikCp�

(n + 1)

2n
L

]

Fig. 9   The interest earned and paid for the model with inventory shortage (Case 2.3)
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4.1 � The model without inventory shortage

In this sub-section, the optimal solution T is determined in each case so that the annual total 
profit of the model without inventory shortage is optimised.

Case 1: We apply the Taylor series expansion for the exponential term (i.e. ex ≈ 1 + x +
x2

2
 ) 

for small value of the deterioration rate to obtain an approximation in a closed form. After 
substituting the term in Eq. (4) and simplifying the expression we obtain:

Maximising ATP1(T) is equivalent to minimising ATC1(T) , where

and 𝜑1 = P
𝜃𝜆

2
+ Ch

𝜆

2
> 0 , and 𝜑2 = A > 0.

Therefore, by setting the first partial derivative of ATC1(T) with reference to T equal to 
0 yields to:

The value provided in Eq. (27) is the unique global optimum solution of the inventory 
problem. This is demonstrated in “Appendix B” using the approach of Pentico et al. (2009).

Case 2.1: By substituting ex ≈ 1 + x +
x2

2
 in Eq. (10) and simplifying the expression we 

obtain:

Maximising ATP2.1(T) is equivalent to minimising ATC2.1(T) , where:

and 𝜙1 = P
𝜃𝜆

2
+ Ch

𝜆

2
+

ikCp𝜆

2
> 0 , and

Therefore, by setting the first partial derivative of ATC2.1(T) with reference to T equal to 
0 yields to:

(25)
ATP1(T) =

[

P − Cp − ikCp

(n + 1)

2n
L

]

� −
[

T
(

P�
�

2
+ Ch

�

2

)

+
A

T

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ATC1(T)

(26)ATC1(T) = T�1 +
�2

T

(27)T(1) =

√

�2

�1

(28)

ATP2.1(T) =

[

P − Cp − �ikCp

(n + 1)

2n
L + ikCpM

]

�

−

[

T

(

P
��

2
+ Ch

�

2
+

ikCp�

2

)

+
1

T

(

A + (1 − �)ieP�

(

�M2

2
−M

)

+
ikCp�M

2

2

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ATC2.1(T)

(29)ATC2.1(T) =
1

T
�2 + T�1

𝜙2 = A +
ikCp𝜆M

2

2
+ (1 − 𝛽)ieP𝜆

(

𝜃M2

2
−M

)

> 0
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The value obtained in Eq.  (30) is the unique global optimum solution of the inventory 
problem. This is demonstrated in “Appendix B” using the approach of Pentico et al. (2009).

Case 2.2: By using ex ≈ 1 + x +
x2

2
 term, substituting it into Eq.  (13) and simplifying the 

expression we obtain:

Maximising ATP2.2(T) is equivalent to minimising ATC2.2(T) . For notational convenience 
we consider:

where 𝜈1 = P
𝜆𝜃

2
+ Ch

𝜆

2
> 0 , and 𝜈2 = A + ie(1 − 𝛽)P𝜆

(

𝜃M2

2
−M

)

> 0

Therefore, by setting the first partial derivative of ATC2.1(T) with reference to T equal to 0 
yields to:

Again, the value provided in Eq. (33) is the unique global optimum solution of the inven-
tory problem. This has been demonstrated in “Appendix B” using the approach of Pentico 
et al. (2009).

Case 2.3: By using ex ≈ 1 + x +
x2

2
 , substituting it into Eq. (13), and simplifying the expres-

sion we obtain:

Maximising ATC2.3(T) is equivalent to minimising ATC2.3(T) . For notational convenience 
we consider:

(30)T(2.1) =

√

�2

�1

(31)

ATP2.2(T) =

[

P − Cp − �ikCp�
(n + 1)

2n
L

]

−

[

T
(

P
��

2
+ Ch

�

2

)

+
1

T

(

A + (1 − �)ieP�

(

M −
�M2

2

))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ATC2.2(T)

(32)ATC2.2(T) = T�1 +
1

T
v2

(33)T(2.2) =

√

�2

�1

(34)

ATP2.3(T) =

[

P − Cp − �ikCp

(n + 1)

2n
L + (1 − �)iePM + (1 − �)ieP

]

�

−
[

T
(

P
��

2
+ Ch

�

2
+ (1 − �)

(

ieP�
�

2
+ ieP�

))

+
1

T
(A)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ATC2.3(T)

(35)ATC2.3(T) = T�1 +
1

T
�2
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where �1 = P
��

2
+ Ch

�

2
+ (1 − �)ieP�

(

�

2
+ 1

)

 and 𝜌2 = A > 0

The first partial derivative of ATC2.3(T) with reference to T yields to:

After setting this equation to 0, we obtain:

Again, the value provided in Eq. (37) is the unique global optimum solution of the inven-
tory problem. This has been established in “Appendix B” using the approach of Pentico et al. 
(2009).

4.2 � The model with backordering

The optimal solutions for T and F are determined in such a way that the annual total profit of 
the inventory model with backordering is optimised.

Case 1: By using ( ex ≈ 1 + x +
x2

2
 ) term, substituting it into Eq.  (15), and simplifying the 

expression we obtain:

Maximising the term ATP1(T ,F) is equivalent to minimising the term ATC1(T ,F) . For 
notational convenience we consider:

where 𝜑1 = P
𝜃𝜆

2
+

(Ch+Cb)𝜆
2

> 0 , 𝜑2 = A > 0 , and 𝜑3 = Cb𝜆 > 0

The first partial derivatives of ATP1(T ,F) with reference to T and F yield:

After setting these equations to 0, we obtain:

and

(36)
�ATC2.3(T)

�T
= −

1

T2
�2 + �1

(37)T(2.3) =

√

�2

�1

(38)

ATP1(T ,F) =

[

P − Cp − ikCp

(n + 1)

2n
L

]

�

−

[

F2T

(

P
��

2
+

(

Ch + Cb

)

�

2

)

+
A

T
+ T

(

Cb

�

2

)

− FT
(

Cb�
)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ATC1(T ,F)

(39)ATC1(T ,F) = F2T�1 +
�2

T
+ T

(�3

2

)

− FT
(

�3

)

(40)
�ATC1(T ,F)

�T
= F2�1 −

�2

T2
+

�3

2
− F�3

(41)
�ATC1(T ,F)

�F
= 2FT�1 − T�3

(42)F(1) =
�3

2�1

,
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The expressions obtained in Eqs. (42) and (43) are the unique global optimum solutions 
to the inventory problem. This has been demonstrated in “Appendix C” using the approach 
of Pentico et al. (2009).

Case 2.1: By using ex ≈ 1 + x +
x2

2
 term, substituting it into Eq. (21), and simplifying the 

expression we obtain:

Maximising the term ATP2.1(T ,F) is equivalent to minimising the term ATC2.1(T ,F) . 
For notational convenience we consider:

where 𝜙1 = P
𝜃𝜆

2
+

(Ch+Cb)𝜆
2

+
ikCp𝜆

2
> 0 , 𝜙2 = A +

ikCp𝜆M
2

2
+ ie(1 − 𝛽)P𝜆

(

𝜃M2

2
−M

)

> 0 , 
𝜙3 =

(

ikCp − ie(1 − 𝛽)P
)

𝜆M > 0 , and 𝜙4 = Cb𝜆 > 0.
The first partial derivatives of ATC2.1(T ,F) with reference to T  and F yield:

After setting these equations to 0, we obtain:

and

(43)T(1) =

√

4�1�2

2�1�3 − �2
3

(44)

ATP2.1(T ,F) =

�

P − Cp − �ikCp

(n + 1)

2n
L + ie(1 − �)PM

�

�

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F2T

�

P
��

2
+ Ch

�

2
+ Cb

�

2
+

ikCp�

2

�

+
1

T

�

A − ie(1 − �)P�

�

�M2

2
−M

�

+
ikCp�M

2

2

�

−F
�

ikCp�M − ie(1 − �)P�M
�

+ T
�

Cb

�

2

�

− FT
�

Cb�
�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ATC2.1(T ,F)

(45)ATC2.1(T ,F) = F2T�1 +
1

T
�2 − F�3 + T

�4

2
− FT�4

(46)
�ATC2.1(T ,F)

�T
= F2�1 −

1

T2
�2 +

�4

2
− F�4

(47)
�ATC1(T ,F)

�F
= 2FT�1 − �3 − T�4

(48)F(2.1) =
�4

2�1

+
�3

2�1

√

√

√

√

2�1�4 − �2
4

4�1�2 − �2
3

(49)T(2.1) =

√

√

√

√

4�1�2 − �2
3

2�1�4 − �2
4
.
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The expressions obtained in Eqs. (48) and (49) are the unique global optimum solutions 
to the inventory problem. The proof can be found in “Appendix C” using Pentico et al.’s 
(2009) approach.

Case 2.2: Substituting ex ≈ 1 + x +
x2

2
 into Eq. (21) and simplifying it we obtain:

Maximising the expression ATP2.2(T ,F) is equivalent to minimising the expression 
ATC2.2(T ,F) . For notational convenience we consider:

where 𝜈1 = P
𝜆𝜃

2
+

(Ch+Cb)𝜆
2

> 0 , 𝜈2 = A + ie(1 − 𝛽)P𝜆
(

M −
𝜃M2

2

)

> 0 , 
𝜈3 = (1 − 𝛽)𝜆M ×

(

ikCp − ieP
)

> 0 , and v4 = Cb𝜆 > 0.
The first partial derivatives of ATC2.1(T ,F) with reference to T and F yield:

After setting these equations to 0, we obtain:

and

The expressions obtained in Eqs. (54) and (55) are the unique global optimum solutions 
to the inventory problem. This is illustrated in “Appendix C” using the approach of Pentico 
et al. (2009).

Case 2.3: Substituting ex ≈ 1 + x +
x2

2
 into Eq. (24), and simplifying it we obtain:

(50)

ATP2.2(T ,F) =

�

P − Cp + (1 − �)ieP�M − �ikCp�
(n + 1)

2n
L

�

−

⎡

⎢

⎢

⎢

⎣

F2T
�

P
��

2
+ Ch

�

2
+ Cb

�

2

�

+
1

T

�

A + (1 − �)ieP�

�

M −
�M2

2

��

+T
�

Cb

�

2

�

− F
�

−(1 − �)ieP�M + (1 − �)ikCp�M
�

− FT
�

Cb�
�

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ATC2.2(T ,F)

(51)ATC2.2(T ,F) = F2T�1 +
1

T
v2 − Fv3 + T

v4

2
− FTv4

(52)
�ATC2.2(T ,F)

�T
= F2�1 −

1

T2
v2 +

v4

2
− Fv4

(53)
�ATC2.2(T ,F)

�F
= 2FT�1 − v3 − Tv4

(54)F(2.2) =
�4

2�1
+

�3

2�1

√

√

√

√

2�1�4 − �2
4

4�1�2 − �2
3

(55)T(2.2) =

√

√

√

√

4�1�2 − �2
3

2�1�4 − �2
4
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Maximising the expression ATC2.3(T ,F) is equivalent to minimising the expression 
ATC2.3(T ,F) . For notational convenience we consider:

where 𝜌1 = P
𝜃𝜆

2
+

(Ch+Cb)𝜆
2

+ (1 − 𝛽)ieP𝜆
𝜃

2
+ (1 − 𝛽)ieP𝜆 > 0 , 𝜌2 = A > 0

,𝜌3 = (1 − 𝛽)ieP𝜆 > 0 , and 𝜌4 = Cb𝜆 > 0.
The first partial derivatives of ATC2.3(T ,F) with reference to T and F are obtained as 

follows:

Further, setting these equations to 0 we obtain:

and

The expressions obtained in Eqs. (60) and (61) are the unique global optimum solutions 
of the problem. This is illustrated in “Appendix C” using the approach of Pentico et  al. 
(2009).

4.3 � Inspection policy

Let us assume that an inspection is performed in the inventory system, which is decreasing 
with the rate of deterioration θ during the replenishment cycle time [0, T] . At the begin-
ning of each period, Q units of product are available for selling to customers. At time 

(56)

ATP2.3(T ,F) =

�

P − Cp − �ikCp

(n + 1)

2n
L + (1 − �)ieP�M

�
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⎣
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P
��
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�
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�

2
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�

2
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�

+
A
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�
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�
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�
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�

− FT
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�

⎤

⎥

⎥

⎥

⎥

⎦
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ATC2.3(T ,F)

(57)ATC2.3(T ,F) = F2T�1 +
1

T
�2 − F�3 + T

�4

2
− FT�4

(58)
�ATC2.3(T ,F)

�T
= F2�1 −

1

T2
�2 +

�4

2
− F�4

(59)
�ATC2.3(T ,F)

�F
= 2FT�1 − �3 − T�4

(60)F(2.3) =
�4

2�1
+

�3

2�1

√

√

√

√

2�1�4 − �2
4

4�1�2 − �2
3

(61)T(2.3) =

√

√

√

√

4�1�2 − �2
3

2�1�4 − �2
4
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𝜏(0 < 𝜏 < T) an inspection is performed, and the deteriorated products are screened out 
since the beginning of period until � . Figure  10 illustrates the inventory level along the 
replenishment cycle. A similar assumption considering inspection policy for both service-
able and deteriorating items is found in Tai et al. (2016). In this article, it is assumed that 
the inspection process is performed in the inventory system without any error during detec-
tion of deteriorated products aiming to formulate a model for defining the optimal inspec-
tion time.

Based on the values of T and Q it is required to consider the following two possible 
states:

State 1	� Q < 𝜆T  : In this state, there isn’t a surplus product because of inventory shortage
State 2	� Q ≥ �T  : In this state, there are surplus products at time T. The value of Q can 

be reduced to �T  or less than �T  to reduce the holding cost. Here the value of 
� is defined in such a way that minimises the length of the inventory cycle. The 
optimal inspection time, �∗ , is determined by solving the following equation (see 
“Appendix D”);

The annual total profits are presented for the following four possible cases:
(62)

[(

��2
)

�∗3 −
(

Q�2 + 3��
)

�∗2 + (2Q� + 4�)�∗ − 2Q
]

= 0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ATP1 if T < Tw
ATP2.1 if M ≤ T <

M

𝛽

ATP2.2 if
M

𝛽
≤ T

ATP2.3 if T < M

Fig. 10   The inventory level when one inspection is performed during the replenishment cycle
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where

(63)

ATP1 = P

(

�

�

(1 − e−�� )

T

)

− (
A

T
+ Ch

(2Q − ��)�

2T
+ Cp� + ikCp�

(n + 1)

2n
L)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
over[0,�]

+
(

v
(

(Q − ��)e−�� , T − �
)

− (D + d(Q − ��))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
over[�,T]

(64)

ATP2.1 = P

(

�

�

(1 − e−�� )

T
+ (1 − �)ie

�

�

(

1 − e−�M
)

T

)

−

(

A

T
+ Ch

(2Q − ��)�

2T
+ Cp� + �ikCp�

(n + 1)

2n
L + ikCp�

(T −M)2

2T

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
over[0,�]

+
(

v
(

(Q − ��)e−�� , T − �
)

− (D + d(Q − ��))
)
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over[�,T]
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A

T
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(Q − ��)e−�� , T − �
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)
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over[�,T]
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For notational convenience, we define the inventory level of serviceable products at the 
time of inspection as q in the above expressions (where q = (Q − ��)e−�� ). Based on the value 
of q the following three sub-states are possible:

Sub-state 1: 𝜆(T − 𝜏) < q : In this sub-state, product replacement service is offered by the 
supplier for the unsold serviceable products at a price of Cp . Therefore, we obtain:

Sub-state 2: �(T − �) = q : In this sub-state, there isn’t any unsold serviceable product 
since the inventory level reaches to zero when a replenishment cycle ends. Therefore, we 
have:

Sub-state 3: 𝜆(T − 𝜏) > q : In this sub-state, shortage of the products occurs, and 
�(T − �) − q of products are backordered. Therefore, we have:

(67)

v(q, T − �) = P

(

�

�

(1 − e−�(T−�))

T

)

− Ch

(2q − �(T − �)) × (T − �)

2
+ Cp

(

q − �(T − �)e−�(T−�)
)

T

(68)v(q, T − �) = P

(

�

�

(1 − e−�(T−�))

T

)

− Ch

q(T − �)

2T

(69)

v(q, T − �) = P

(

�

�

(1 − e
−

�q

� )

T
+

�(T − �) − q

T

)

−

[

Ch

q2

2�T
+ Cp

[

�(T − �) − q
]

T
+ Cb

[

�(T − �) − q
]2

2�T

]

Table 2   Optimal solutions to the models with and without inventory shortage

Shortage Cases Optimal solution in each case

F(i) T(i) ATP(i)

Without shortage Case 1 T < Tw – T(1) = 0.9325 Undefined
Case 2.1 Tw < T  and 
�T ≤ M ≤ T

– T(2.1) = 0.7510 ATP(2.1) = 715.4255

Case 2.2 Tw < T  and 
M ≤ �T

– T(2.2) = 0.9997 ATP(2.2) = 660.15

Case 2.3 Tw < T  and 
T ≤ M

– T(2.3) = 0.8088 Undefined

ATP∗ = Max
{

ATPi

}

→ ATP∗ = ATP2.1 = 715.4255

T∗ = T(2.1) = 0.7510

With full backordering Case 1 T < Tw F(1) = 0.6849 T(1) = 1.1267 Undefined
Case 2.1 Tw < T  and 
�FT ≤ M ≤ FT

F(2.1) = 0.6336 T(2.1) = 0.9656 ATP(2.1) = 843.7413

Case 2.2 Tw < T  and 
M ≤ �FT

F(2.2) = 0.6906 T(2.2) = 1.2079 ATP(2.2) = 745.3479

Case 2.3 Tw < T  and 
FT ≤ M

F(2.3) = 0.6655 T(2.3) = 1.0214 Undefined

ATP∗ = Max
{

ATPi

}

→ ATP∗ = ATP2.1 = 843.7413 (T∗,F∗) =
(

T(2.1),F(2.1)

)

= (0.9656, 0.6336)

Undefined solution when the value of T(i) doesn’t fit to the range specified in column 1
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Table 3   Sensitivity analysis

Parameters T∗ ATP

(a) For the model without inventory shortage
θ
 � = 0.01 T∗

2.1
= 0.7685 ATP2.1 = 729.7681

 θ = 0.02 T∗
2.1

= 0.7510 ATP2.1 = 715.4255

 θ = 0.03 T∗
2.1

= 0.7346 ATP2.1 = 701.3987

 θ = 0.04 T∗
2.1

= 0.7193 ATP2.1 = 687.6670

 θ = 0.05 T∗
2.1

= 0.7048 ATP2.1 = 674.2121

β
 β  = 0.01 T∗

2.1
= 0.6894 ATP2.1 = 780.9491

 β  = 0.2 T∗
2.1

= 0.7139 ATP2.1 = 755.0212

 β  = 0.5 T∗
2.1

= 0.7510 ATP2.1 = 715.4255

 β  = 0.8 T∗
2.1

= 0.7863 ATP2.1 = 677.2712

 β  = 1 T∗
2.2

= 0.9325 ATP2.1 = 563.8097

M

 M = 0.2 T∗
2.2

= 0.9668 ATP2.2 = 679.1049

 M  = 0.4 T∗
2.1

= 0.7510 ATP2.1 = 715.4255

 M  = 0.6 T∗
2.1

= 0.7613 ATP2.1 = 756.9121

 M  = 0.8 T∗
2.1

= 0.7872 ATP2.1 = 785.5849

 M  = 1 T∗
2.3

= 0.8088 ATP2.3 = 616.7868

W
 W = 50 T∗

2.1
= 0.7510 ATP2.1 = 715.4255

 W = 150 T∗
2.1

= 0.7510 ATP2.1 = 715.4255

 W = 250 T∗
1
= 0.9325 ATP1 = 683.8097

Parameters T∗ F∗ ATP∗

(b) For the model with inventory shortage (i.e. full backordering)
θ
 θ = 0.01 T∗

2.1
= 0.9791 F∗

2.1
= 0.6448 ATP2.1 = 837.7673

 θ = 0.02 T∗
2.1

= 0.9656 F∗
2.1

= 0.6336 ATP2.1 = 830.2413

 θ = 0.03 T∗
2.1

= 0.9530 F∗
2.1

= 0.6227 ATP2.1 = 823.0657

 θ = 0.04 T∗
2.1

= 0.9415 F∗
2.1

= 0.6123 ATP2.1 = 816.2144

 θ = 0.05 T∗
2.1

= 0.9306 F∗
2.1

= 0.6021 ATP2.1 = 809.6641

β
 β = 0.01 T∗

2.1
= 0.8879 F∗

2.1
= 0.6164 ATP2.1 = 898.2057

 β = 0.2 T∗
2.1

= 0.9190 F∗
2.1

= 0.6234 ATP2.1 = 871.3795

 β = 0.5 T∗
2.1

= 0.9656 F∗
2.1

= 0.6336 ATP2.1 = 830.2413

 β = 0.8 T∗
2.2

= 1.1599 F∗
2.2

= 0.6873 ATP2.2 = 787.6094

 β = 1 T∗
2.2

= 1.1267 F∗
2.2

= 0.6849 ATP2.2 = 776.2458

M
 M = 0.2 T∗

2.2
= 1.1681 F∗

2.2
= 0.6879 ATP2.2 = 797.9779

 M = 0.4 T∗
2.1

= 0.9656 F∗
2.1

= 0.6336 ATP2.1 = 830.2413

 M = 0.6 T∗
2.1

= 0.9765 F∗
2.1

= 0.6487 ATP2.1 = 862.3991

 M = 0.8 T∗
2.3

= 1.0214 F∗
2.3

= 0.6655 ATP2.3 = 897.8871

 M = 1 T∗
2.3

= 1.0214 F∗
2.3

= 0.6655 ATP2.3 = 916.6371
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5 � Numerical illustrations, results and discussion

This section elucidates efficacy of the proposed inventory models and its solution method 
through several examples. Examples #1 and #2 are used to demonstrate the efficacy of the 
models without inspection policy during the replenishment cycle. Sensitivity analysis of 
the optimal solution is subsequently examined. Examples #3 and #4 are used to demon-
strate the efficacy of the inventory models under inspection policy with a focus on sensitiv-
ity analysis of some key parameters.

Example #1  The following parameters are adopted from Taleizadeh et  al. (2013b): 
� = 250 , A = 250$ , P = $15∕unit , Cp = $10∕unit , Cb = $5∕unit∕year , Ch = $2∕unit∕year , 
M = 0.4year , W = 150 units , � = 0.02 , ik = $0.1∕year , ie = $0.05∕year , n = 5 , � = 0.5 and 
L = 0.2 year.

The optimal variables of each case are computed using the proposed solution method 
(Table 2). If the value of T(i) fits to the range specified for each case, the value of annual 
total profit is calculated; otherwise undefined value is obtained for each case which doesn’t 
satisfy the possibility. Afterwards, the optimal solution is obtained by comparing the 
annual total profit values from the solutions obtained and selecting the maximum value.

Example #2  Impact of some parameter values on the optimal solutions is studied. The 
same data as that of Example #1 are used in this example. Table 3 illustrates the effects of 
changing the parameters on T  and ATP for the models without (Table 3a) and with inven-
tory shortage (Table 3b) respectively.

The following observations are drawn from the results:

•	 The ATP and T∗ values decrease in both the models while there is an increase in the 
values of � . This indicates that the less is the deterioration rate, the more will be the 
annual total profit. The values of F∗ decrease while the values of � increase.

•	 When there is an increase in the values of � , the ATP values decrease and T  values 
increase in both the models. This indicates that the more payment is made before 
the delivery time, the less annual profit will be achieved. Moreover, the value of F∗ 
increases with increase in the values of �.

•	 No specific change is found by increasing the value of M . However, in both the models, 
with the low value of M , Case 2.2 results in the optimal solution. Again, the optimal 

Table 3   (continued)

Parameters T∗ F∗ ATP∗

W
 W = 50 T∗

2.1
= 0.9656 F∗

2.1
= 0.6336 ATP2.1 = 830.2413

 W = 150 T∗
2.1

= 0.9656 F∗
2.1

= 0.6336 ATP2.1 = 830.2413

 W = 250 T∗
2.1

= 0.9656 F∗
2.1

= 0.6336 ATP2.1 = 830.2413

 W = 350 T∗
1
= 1.1267 F∗

1
= 0.6849 ATP1 = 776.2457
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solution is obtained in Case 2.1 by increasing the value of M . With a high value of M 
Case 2.3 results in optimal solution.

•	 In both the models the optimal solutions do not change with an increase of the thresh-
old value W . It is observed that just after the threshold value of W , the value of ATP 
decreases and optimal solution is obtained when all the purchasing costs are paid as 
prepayments. This indicates that a lower value of ordering threshold causes higher 
value of ATP . Additionally, W remains unchanged up to a larger value in the model 
with product shortage than that of the model without shortage. This means that the 
retailer earns more profit with a smaller value of W when inventory shortage is not 
allowed.

Example #3  The data used in this example are the same as that of Example #1, except 
that the cases include an inspection policy during the replenishment cycle. Let 
D = 2∕cycle , and d = 0.05∕unit . It is assumed that the inventory level is at a value of 
Q = Q∗ = 187.7498 , 200, 205, 210, 215, 220 and 225 as seven cases. Since there is no 
inspection when inventory shortage occurs, we investigate the situation when there is no 
inventory shortage. In Example 1, we demonstrate that optimal solution happens in Case 
2.1. (i.e. M ≤ T <

M

𝛽
 ). The optimal inspection time ( �∗ ) is calculated through Eq. (62). The 

optimal profit per unit is computed with respect to Q and �∗ in each. This follows computa-
tion of the annual profit per unit with no inspection policy. The results are compared with 
the net profit per unit in a situation with inspection policy. The results are illustrated in 
Table 4.

Table 4   Optimal results of the 
model with respect to Q

Q �∗ ATP(Q,T) ATP∗(Q,T , �∗)

187.7498 0.3748 636.60 720.1343
200 0.3992 460.248 690.9591
205 0.4092 388.2714 678.9255
210 0.4191 316.2940 666.8325
215 0.4291 244.3166 654.6581
220 0.4390 172.3391 642.4247
225 0.4490 100.3617 630.1093

Table 5   Impact of some 
parameters on the optimal 
decisions

Parameters �∗ T∗ ATP∗(T , �∗)

θ
 � = 0.01 0.3839 0.7685 736.6043
 � = 0.02 0.3748 0.7510 720.1343
 � = 0.03 0.3663 0.7346 703.4831
d

 d = 0 0.3748 0.7510 708.1855
 d = 0.05 0.3748 0.7510 720.1343
 d = 0.1 0.3748 0.7510 698.7806
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The results in Table  4 indicate that inclusion of the inspection policy is better when 
compared with no inspection policy. This is because that the net profit significantly 
increases under inspection policy. In Table 4 the column ATP∗(Q, T , �∗) tends to decrease 
while Q increases.

Example #4  In this example the effects of some parameters, e.g. � and d , on the optimal 
solutions of the proposed model with inspection process are analysed. The same data as 
that of Example #3 are used in this example.

Table 5 illustrates that as � increases, the values of �∗ , T∗ and ATP∗(T , �∗) decrease. This 
indicates that a higher deterioration rate causes lowering the profit, lower cycle time and 
lower inspection time. The reason is that a higher value of deteriorated items may result 
in higher cost as the inspection cost, reordering cost and holding cost increase. Further, 
Table 5 illustrates that when d increases, the net profit tends to decrease, but the values of 
T∗ and �∗ remain constant. It is reasonable because d doesn’t play a role in the optimality of 
T∗ and �∗.

5.1 � Managerial implications

The proposed inventory model and its solution method presented in this study provide 
powerful tools for the retail managers. Through the use of the proposed model, the manag-
ers will have a better control of their inventory in the retail stores when a mixture of ser-
viceable and deteriorating products will be sold to the consumers under multiple prepay-
ments scheme, partial trade credits, payments linked to order quantity, inspection policy, 
no inventory shortage, with inventory shortage and full backordering, and any combination 
of these cases.

The analyses reveal that the less is the deterioration rate, the more is the annual total 
profit. Therefore, in the retail stores, the managers are required to focus on the perishability 
of the products. The analyses further reveal that when more prepayments are made less 
annual total profit is earned. Therefore, during the prepayments, the managers should try 
to keep the prepayment amount and frequency as minimum as possible. Further, a lower 
ordering threshold value results in a higher annual total profit. This means that the retailer 
earns more profit with a comparatively smaller ordering threshold value when inventory 
shortage is not allowed.

The analyses reveal that it is important for the managers to include an inspection pol-
icy in their inventory system as the inspection policy increases the net annual total profit 
significantly. Further, this study provides a support to the managers regarding number of 
deteriorated products stored in the retail inventory. A high number of deteriorating prod-
ucts results in a high inspection cost, reordering cost and holding cost. Further, a compara-
tively higher deterioration rate causes low profit, low cycle time and low inspection time. 
Thus, the managers are required to consider the deterioration rate of the stored products. 
The inventory models will assist the managers to make appropriate decisions when the 
net profit of the retail store will tend to decrease and inspection booking cost will increase 
while keeping constant the optimal length of the replenishment cycle and optimal inspec-
tion time.
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6 � Conclusions

The earlier inventory models considered monitoring of the deteriorating products instan-
taneously, which doesn’t fit to the realistic circumstances. This is because the products 
in stores may gradually deteriorate during the storage period, and these products are sold 
together with serviceable products to consumers thereby causing frequent product returns. 
To ameliorate this situation, in this study, inventory model under hybrid payment schemes 
is proposed under a situation where a portion of the deteriorating products are mixed with 
a portion of serviceable products for selling to consumers (i.e. mixed sale of products). 
A hybrid payment strategy linked to order quantity is considered that involves multiple 
prepayments and partial trade credit. Impact of an inspection policy on the mixed sale of 
products under the hybrid payment scheme is investigated. A new solution method for the 
inventory models is proposed. The solution method identifies optimal annual total profit 
with mixed sales assuming no inventory shortage and inventory shortage with full back-
order. The impact of an inspection policy is investigated on the optimality of the solution 
under hybrid payment strategies for the deteriorating products. The validation and effec-
tiveness of the proposed model and its solution method is assessed through several numeri-
cal examples. The outcomes suggest significant importance of the proposed inventory 
model and its solution method to the retail managers under real-world situations. The retail 
managers should consider inclusion of an inspection policy for mixed inventory sales as 
the policy potentially increases the net annual total profit.

A limitation of the proposed model is that it does not consider a few realistic assump-
tions. Therefore, future research should consider inclusion of these assumptions into the 
proposed inventory model. The presented model has been developed under two situations, 
viz. without shortage of products and full backordering. However, in reality, a situation 
may arise where customers may not pay for the backordered products when the stocked 
out items are available again. Therefore, future research can be directed considering partial 
backordering in the model. Another shortfall of the proposed model is that it considers 
the inventory deterioration right after their arrival. In reality, in some cases deterioration 
does not occur right after their arrival. Therefore, the proposed model can be extended for 
non-instantaneous deteriorating products such as fruits and vegetable. Future research may 
include another variant of the proposed model by inclusion of special sales or pricing poli-
cies into the inventory models.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix B

The first and second derivatives of ATC1(T) with reference to T yields to:

and

(B1)
dATC1(T)

dT
= �1 −

�2

T2

(B2)
𝜕2ATC1(T)

𝜕T2
=

𝜑2

T3
> 0

Table 6   List of notations

Parameters and indices

� Demand rate
� Deterioration rate
Cp Unit purchasing cost
Ch Unit holding cost
Cb Unit back-ordering cost
P Unit selling price
A Fixed ordering cost per order
d Booking cost per inspection
D Unit inspecting cost
ik Annual interest paid
i.e. Annual interest earned
n Number of equally spaced prepayments
L Length of prepayment
W Predetermined threshold
M Length of delayed payment
� Percentage of purchasing cost that must be prepaid
T0 Time interval in which �Q Units are depleted to zero
Tw Time interval in which W units are depleted to zero ( Tw = W∕�)

Decision variables

T Length of replenishment cycle
F Fraction of demand that will be filled from inventory
Q Order quantity
� Inspection time
(*) Indicates the optimal value

Other variables (dependent variables)

ATC​i Annual total cost for case i
ATPi Annual total profit for case i
IE Interest earned
IC Interest charged
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Since �2 is positive, the second derivative is positive for each value of �2 . Therefore, 
ATC1(T) is proved to be convex. Thus, by setting the first derivative of ATC1(T) equal to 
0, global minimum is achieved. It is to be noted that the global minimum of ATC1(T) is 
equivalent to the global maximum of ATP1(T).

Here, let us find the value obtained from Eq. (27). As �1 and �2 are positive, �2

�1

 is strictly 
positive, which means T(1) is positive.

Appendix C

As maximising ATP1(T ,F) is equivalent to minimising ATC1(T ,F) , we prove that solution 
given by setting first derivative of ATC1(T) is a global minimum.

After rewriting the above function, we have:

For notational convenience, we define �(F) = F2�1 − F�3 +
�3

2
 and we have:

The first and second derivatives of ATC1(T) with reference to T  yields to:

After setting above equation equal to 0, we obtain:

�(F) has no roots since Δ = b2 − 4ac = �2
3
− 2�1�3 = �3

[

−2A
(

P�� + Ch�
)]

 is negative, 
which means �(F) obtains either positive or negative value. As 𝜗(F = 0) =

𝜑3

2
> 0 , �(F) is 

positive for each value of F in [0, 1] . Thus, it is concluded that Eq. (C5) gives a unique optimal 
solution of T∗(F) that minimises ATC1(T ,F) for each value of F. Substituting T∗(F) from 
equation (C5) into Eq. (C2) yields to:

To obtain the global minimum of the function, we have taken the first and second deriva-
tives of ATC1(T , T(F)) with reference to F, which yields to:

(C1)ATC1(T ,F) = F2T�1 +
�2

T
+ T

(�3

2

)

− FT
(

�3

)

(C2)ATC1(T ,F) =
�2

T
+ T

(

F2�1 +
(�3

2

)

− F
(

�3

)

)

(C3)ATC1(T ,F) =
�2

T
+ T�(F)

(C4)
dATC1(T ,F)

dT
= −

�2

T2
+ �(F)

(C5)T∗(F) =

√

�2

�(F)

(C6)ATC1(F,T(F)) = 2
√

�2�(F)

(C7)
dATC1(F)

dF
=

√

�2

�(F)
∗ ��(F) =

√

�2

F2�1 − F�3 +
�3

2

∗
(

2F�1 − �3

)
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Thus, ATC1(T , T(F)) is convex. Moreover:

We conclude from Eqs. (C7), (C8) and (C9) that the obtained solution has a unique optimal 
value. Here, let us find the values obtained from Eqs. (42) and (43). Earlier it was mentioned 
that �(F) is strictly positive, which means �2

�(F)
 is strictly positive and the value of T∗(F) is posi-

tive as well. It can be proved that the value of F(1) is also positive as �1 and �3 are positive. It is 
important that F(1) should take a value on the interval [0, 1]. Therefore, after simplifying 
Eq.  (42), we obtain F(1) =

�3

2�1

=
Cb�

P��+(Ch+Cb)�
 for an interval [0, 1] since 

Cb� ≤ P�� + Ch� + Cb�.

Appendix D

As illustrated in Fig. 10, since the inventory level at � is equal to I(�) = (Q − ��) × e−�� , the 
inventory reaches to 0 at time

By differentiating t0 with respect to � , �∗ is obtained which minimises the value of t = t0 . 
When T is less than the minimum value t0 , extra products are remained at the end of the 
cycle.

(C8)

𝜕2ATC1(F)

𝜕F2
=

√

𝜑2

2

�

2𝜗��(F) × 𝜗(F) − 𝜗�(F)2

√

𝜗(F)3

�

=

√

𝜑2

2

⎡

⎢

⎢

⎢

⎣

2
�

2𝜑1

�

�

F2𝜑1 − F𝜑3 +
𝜑3

2

�

−
�

2F𝜑1 − 𝜑3

�2

√

𝜗(F)3

⎤

⎥

⎥

⎥

⎦

=

√

𝜑2

2

�

𝜑3

�

2𝜑1 − 𝜑3

�

√

𝜗(F)3

�

=
𝜑3

√

𝜑2

2
√

𝜗(F)3

�

P𝜃𝜆 + Ch𝜆
�

> 0

(C9)
dATC1(F)

dF

�

�

�

�F=0

= −
√

2𝜑2𝜑3 < 0

(C10)
dATC1(F)

dF

|

|

|

|F=1

=

√

2𝜑2

(

2𝜑1 − 𝜑3

)

=

√

2A
(

P𝜃𝜆 + Ch𝜆
)

> 0

(D1)t0 = � +

(

Q

�
− �

)

e−��

(D2)
dt0

d�
= 1 − �(

Q

�
− �)e−�� − e−��
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and

So, t0 is strictly convex function in � and, therefore, has a global minimum in the inter-
val [0, T] . By substituting ex ≈ 1 + x +

x2

2
 for the exponential term:
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