Skip to main content
Log in

Volatility in the stock market: ANN versus parametric models

  • S.I.: Recent Developments in Financial Modeling and Risk Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Forecasting and adequately measuring equity returns volatility is crucial for portfolio selection and trading strategies. Implied volatility is often considered to be informationally superior to the realized volatility. When available, implied volatility is largely used by practitioners and investors to forecast future volatility. To this extent we want to identify the best approach to track equity returns implied volatility using parametric and ANN approaches. Using daily equity prices and stock market indices traded on major international Exchanges we estimate time varying volatility using the E-GARCH approach, the Heston model and a novel ANN framework to replicate the corresponding implied volatility. Overall the ANN approach results the most accurate to track the equity returns implied volatility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Sources: Bloomberg

Fig. 3

Sources: Bloomberg

Fig. 4

Sources: Bloomberg

Fig. 5

Sources: Bloomberg

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Countless researches provide evidence of non stationarity in volatility of stock returns, just the cite few, Hsu (1984), Nelson (1991), Stărică and Granger (2005).

References

  • Alexander, C. (2009). Practical financial econometrics. Hoboken: Wiley.

    Google Scholar 

  • Alexander, C., & Lazar, E. (2006). Normal mixture GARCH (1,1): Applications to exchange rate modelling. Journal of Applied Econometrics, 21(3), 307–336.

    Article  Google Scholar 

  • Andersen, L. B. G. (2008). Simple and efficient simulation of the Heston stochastic volatility model. Journal of Computational Finance, 11(3), 1–42.

    Article  Google Scholar 

  • Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47–78.

    Article  Google Scholar 

  • Bhattacharya, A. K. (1987). Option expirations and treasury bond futures prices. The Journal of Future Markets, 7(1), 49–64.

    Article  Google Scholar 

  • Black F. (1976) Studies of stock market volatility changes. In Proceedings of the American Statistical Association, business and economic statistics section (pp. 177–181).

  • Blair, B., Poon, S. H., & Taylor S. J. (2000). Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high frequency index returns. Lancaster University Management School, Accounting and Finance Working Paper No. 99/014.

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.

    Article  Google Scholar 

  • Bollerslev, T. (1987). A conditionally Heteroskedastic time series model for speculative prices and rate of returns. The Review of Economics and Statistics, 69(3), 542–547.

    Article  Google Scholar 

  • Canina, L., & Figlewski, S. (1993). The informational content of implied volatility. Review of Financial Studies, 6, 659–681.

    Article  Google Scholar 

  • Capelle-Blancard, G., & Chaudhury, M. (2003). Do market and contract designs matter? Evidence from the CAC 40 index options market. McGill Finance Research Centre Working Paper & SSRN.

  • Chaudhuri, T. D., & Ghosh, I. (2015). Forecasting volatility in Indian stock market using artificial neural network with multiple inputs and outputs. International Journal of Computer Applications, 120(8), 7–15.

    Article  Google Scholar 

  • Chernov, M. (2007). On the role of risk premia in volatility forecasting. Journal of Business & Economic Statistics, 25(4), 411–426.

    Article  Google Scholar 

  • Christensen, B. J., Hansen, C. S., & Prabhala, N. R. (2001) The telescoping overlap problem in options data. Working paper, University of Aarhus and University of Maryland, AFA 2002 Atlanta Meetings.

  • Christensen, B. J., & Prabhala, N. R. (1998). The relation between implied and realized volatility. Journal of Financial Economics, 50(2), 125–150.

    Article  Google Scholar 

  • Christie, A. A. (1982). The stochastic behavior of common stock variances: Value, leverage and interest rate effects. Journal of Financial Economics, 10(4), 407–432.

    Article  Google Scholar 

  • Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174–196.

    Article  Google Scholar 

  • Day, T. E., & Lewis, C. M. (1992). Stock market volatility and the information content of stock index options. Journal of Econometrics, 52(1–2), 267–287.

    Article  Google Scholar 

  • Donaldson, R. G., & Kamstra, M. (1997). An artificial neural network-GARCH model for international stock return volatility. Journal of Empirical Finance, 4(1), 17–46.

    Article  Google Scholar 

  • Dumas, B., Fleming, J., & Whaley, R. E. (1998). Implied volatility functions: Empirical tests. The Journal of Finance, 53(6), 2059–2106.

    Article  Google Scholar 

  • Easley, D., O’Hara, M., & Srinivas, P. S. (1998). Option volume and stock prices: Evidence on where informed traders trade. The Journal of Finance, 53(2), 431–465.

    Article  Google Scholar 

  • Ederington, L. H., & Guan, W. (2002). Measuring implied volatility: Is an average better? Which average? The Journal of Futures Markets, 22(9), 811–837.

    Article  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007.

    Article  Google Scholar 

  • Engle, R. F., Ghysels, E., & Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics, 95(3), 776–797.

    Article  Google Scholar 

  • Foresee, D. F., & Hagan, M. T. (1997) Gauss–Newton approximation to Bayesian learning. In Proceedings of the international joint conference on neural networks.

  • Goyal, A., & Saretto, A. (2009). Cross-section of option returns and volatility. Journal of Financial Economics, 94(2), 310–326.

    Article  Google Scholar 

  • Heston, S. L. (1993). Closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hsu, D. A. (1984). The behavior of stock returns: Is it stationary of evolutionary? The Journal of Financial and Quantitative Analysis, 19(1), 11–28.

    Article  Google Scholar 

  • Jorion, P. (1995). Predicting volatility in the foreign exchange market. The Journal of Finance, 50(2), 507–528.

    Article  Google Scholar 

  • Kaminska, I., & Roberts-Sklar, M. (2018). Volatility in equity markets and monetary policy rate uncertainty. Journal of Empirical Finance, 45, 68–83.

    Article  Google Scholar 

  • Lamoureux, C. G., & Lastrapes, W. D. (1993). Forecasting stock-return variance: Toward an understanding of stochastic implied volatilities. The Review of Financial Studies, 6(2), 293–326.

    Article  Google Scholar 

  • Manaster, S., & Rendleman, R. J. (1982). Option prices as predictors of equilibrium stock prices. The Journal of Finance, 37(4), 1043–1057.

    Article  Google Scholar 

  • Miranda, F., & Burgess, N. (1997). Modelling market volatilities: The neural network perspective. The European Journal of Finance, 3(2), 137–157.

    Article  Google Scholar 

  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370.

    Article  Google Scholar 

  • Pong, S., Shackleton, M. B., Taylor, S. J., & Xu, X. (2004). Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models. Journal of Banking & Finance, 28(10), 2541–2563.

    Article  Google Scholar 

  • Poteshman, A. M. (2001). Underreaction, overreaction, and increasing misreaction to information in the options market. The Journal of Finance, 56(3), 851–876.

    Article  Google Scholar 

  • Stărică, C., & Granger, C. (2005). Nonstationarities in stock returns. Review of Economics and Statistics, 87(3), 503–522.

    Article  Google Scholar 

  • Stein, J. C. (1989). Efficient capital markets, inefficient firms: A model of myopic corporate behavior. The Quarterly Journal of Economics, 104(4), 655–669.

    Article  Google Scholar 

  • Szakmary, A., Ors, E., Kyoung, J. K., & Davidson, W. N. (2003). The predictive power of implied volatility: Evidence from 35 futures markets. Journal of Banking & Finance, 27(11), 2151–2175.

    Article  Google Scholar 

  • Vejendla, A., & Enke, D. (2013). Evaluation of GARCH, RNN and FNN models for forecasting volatility in the financial markets. The IUP Journal of Financial Risk Management, 10(1), 41–49.

    Google Scholar 

  • White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns. ‎Oakland: Department of Economics, University of California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rita Laura D’Ecclesia or Daniele Clementi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 10.

Table 10 Heston Variance and E-GARCH conditional variances for Market Indices

In Tables 11, 12, 13 and 14 the 350 stocks selected are shown.

Table 11 List of stocks chosen on the LSE
Table 12 List of stocks chosen on the Tokyo Exchange
Table 13 List of stocks chosen on the Australian Exchange
Table 14 List of stocks chosen on the US Exchanges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ecclesia, R.L., Clementi, D. Volatility in the stock market: ANN versus parametric models. Ann Oper Res 299, 1101–1127 (2021). https://doi.org/10.1007/s10479-019-03374-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03374-0

Keywords

JEL

Navigation