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Abstract

The performance of service units may depend on various randomly changing environmental
effects. It is quite often the case that these effects vary on different timescales. In this paper,
we consider small and large scale (short and long term) service variability, where the short
term variability affects the instantaneous service speed of the service unit and a modulating
background Markov chain characterizes the long term effect. The main modelling challenge
in this work is that the considered small and long term variation results in randomness along
different axes: short term variability along the time axis and long term variability along the
work axis. We present a simulation approach and an explicit analytic formula for the service
time distribution in the double transform domain that allows for the efficient computation of
service time moments. Finally, we compare the simulation results with analytic ones.
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1 Introduction

Service speed variability is a problem that has been observed in many practical application
scenarios. For example, in Kimber and Daly (1986), it has been observed for vehicular traffic.
More recently this problem has been recognized in data centers (Guo et al. 2014). The effect of
variability was also studied in Anjum and Perros (2015) with application to video-streaming.
Most of the previous literature, however, focused only on large-timescale variability, where
Markov-modulating models represent the random fluctuations of the environment. These set
of models are commonly referred to as reward models and have been studied for a long time
(Howard 1971).

The variation in the service speed can be modelled by dividing the jobs into “infinitesimal
quantities of work to be done” and considering the “speed at which this infinitesimal work
is performed”, i.e., the random amount of time needed to execute the infinitesimal amount
of work. Then, once a model defines how speed changes over time, the complete system can
be modelled in a straight-forward way where the amount of work increases gradually along
the analysis and the time required to execute the given amount of work is a random process.

If the service process depends on a time-dependent random process, e.g., on a modulating
background continuous time Markov chain (CTMC) representing the environmental state,
whose “clock” evolves according to the time, then the natural performance analysis is based
on the gradually increasing time and the randomly varying time dependent environment state.

However, in many real applications, variability is not easily predictable and works at
different timescales. Modulating CTMCs (whose “clock” evolves according to the time)
works very well to model variability where the parameters of the job execution remain
constant for a longer random period of time, and there are few jumps during the execution
of one job. Apart from this large scale variability, in this work, we also focus on variability
that occurs at much smaller timescales, where the execution speed changes thousands, if not
millions, of times during the execution of the main job, and combine it with the more classical
modulation that works on a larger timescale.

The remainder of this paper is structured as follows. In Sect. 2 we start by considering only
the small timescale variability. In Sect. 3 we additionally introduce also the large timescale
variability. Section4 is devoted to the mathematical analysis of the obtained small and large
timescale system. The effects of the considered variability is studied in Sect. 5 through
numerical examples, and Sect. 6 concludes the paper.

2 Small timescale variability

In this section, we omit the large timescale variability and instead focus only on small
timescale variability. So we assume that the environmental state is unchanged for now.

We introduce a second order fluid model for the short timescale variability: assuming that
a job is composed of quantums of size Ax, each such quantum is served in a random amount
of time with distribution N (uAx, o2 Ax) (with u > 0). Assuming that the service times of
the different quantums are independent, the progress of service is modeled by a Brownian
motion X (w) with parameters y and o2. We emphasize that in this model, the Brownian
motion corresponds to the time required to service a job as a function of the size of the job
(see Fig. 1). A job of size x thus requires a random time 7 with distribution N (ux, o2x),
whose probability density function is
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Fig.1 The time T required to time
serve a job as a function of the
job size W

work
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fN(ux,ozx)(t) = m, t e R.

The assumption that 7 may take negative values does not make sense physically. However,
dueto . > 0, for macroscopic job sizes, the probability of T < 0is negligible, so the proposed
mathematical model is a close approximation of the physical system. In the mathematical
analysis, T < 0 does not cause any issues, and the performance measures of interest can be
calculated accurately.

The moments of N (x, o2x) are xp, (xf0)2 + (Vx0)2, (x )3 +3(x ) (Vxo )2, (xp)* +
(xu)z(ﬁo)2+3(ﬁ0)4, ....Ingeneral, E[N (xpu, xo2)*] canbe expressed as a polynomial
in x and xo?

k
E[N (e, xo®) 1= " ug j(xp) (Vo) 7, ey

J=0

where the coefficients uy, ; are such that uy ; = 0if k + j is odd.

Note that a Brownian motion may take negative values as well, which does not make sense
physically, but, since ;> 0, for macroscopic values of w, the probability that 7' is negative
is negligible.

We focus on the service of a job in a queue whose work requirement, W, is generally
distributed according to probability density function fi (x).

Using the second order fluid model assumption, the probability density function of the
service time of a job, denoted by f7(¢), can be computed as:

(t—px)?

o0 6’_ 2x02
= - ——dx. 2
Sr(@®) /0 Jw(x) Noreoe x (2

2.1 Moments of the scaled distribution

There are also some interesting relations between the moments of W, the moments of 7 and
the parameters u and o2. In particular, the k-th moment of 7' can be expressed as:
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(f /u)2
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2x02
———dt-d
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Since E[N (xu, xo2)¥] can be expressed as a polynomial in xs and xo? with coefficients
uy, j according to (1), we can compute the moments of 7" as:

1= /0 fw @) Y uij(xp) (Vo) dx
j=0
k oo
= Y uulat T [ o (VT
j=0 0

K 4
=Y w o  E[W L, 3)

ni
Since uy j # 0 only when k + j is even, E [W%] is always an integer moment of W. For
example, for the first and second moment of 7' we have:

E[T] = pE[W], E[T*] = p*E[W?]+c2E[W].

3 Combining large and small timescale variability

Large scale variability can be considered using a discrete state continuous time Markov
modulating process (MMP), denoted by M (r). We assume the MMP is a continuous time
Markov chain (CTMC) on a finite state space with infinitesimal generator matrix Q. In state
i, the service is characterised by rate u; and variance aiz.

Only considering large scale variability (that is, assuming o; = 0, Vi) would lead to a
standard Markov reward model. However, including small-scale variability makes for an
interesting and complex model.

Assume that a job of size W = u starts service at time ¢t = 0, with the MMP M (¢) in state
i. Then the evolution of the service time X(w), 0 < w < u as a function of the job size is
the following:

— Let a; denote the time of the first transition of M (¢). As long as X (w) is smaller than a1,
X (w) evolves according to a Brownian motion with parameters u; and ol.z [denoted by
BM(ui, 0)1.

— Attime aj, M(t) changes to some state j. Accordingly, assuming that the first passage
of X(w) to aj occurs at work amount wy, for w > wjy, X(w) evolves according to a
BM(u , o) (starting from the point w; and from level ay).

— This is repeated for further possible transitions of M (¢) at times aa, a3, ..., up to the
point u.

Note that in visualization, the horizontal axis denotes the job size, and the vertical axis
denotes time, see Fig. 2. Thus for X (w), the behaviour can be described as a type of level-
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Fig.2 A possible realization of X (w) for job size W = 1.2

dependent Brownian motion: the parameters 1 and o of the Brownian motion change upon
first passage to levels ay, az, . ...

This model is essentially different from second order Markov-modulated fluid models
(also referred to as Markov modulated Brownian motion) (Breuer 2012; Karandikar and
Kulkarni 1995). The main difference between the two approaches is that in second order
fluid models, it is the amount of work performed per unit of time that is assumed to have
normal distribution; in the present paper, it is the amount of time required to perform a unit
of work that is assumed to have normal distribution.

Keeping in mind that M (¢) is a CTMC, the entire distribution of X (w) is determined by
the initial points + = 0 and w = 0 and the initial state of the modulating process M (0) = i.
The process X (w) can be simulated as follows:

— If W is random, generate the value of W, denoted by u.

— X(w) starts from ¢t = 0, w = 0, with M (0) = i.

— Generate the first transition time a; of M(r).

— X(w) runs as a BM(u;, Ui2) until either the value of X (w) reaches a; or w reaches u,
whichever occurs first.

— If u occurred first, then the simulation is finished.

— If X(w1) = aj for some w; < W, then we generate the next state j and also the next
transition time a; according to the MMP M (), then continue X (w) as a Brownian motion
with parameters (i, sz) starting from the point (wy, a1) until either the value of X (w)
reaches a; or reaches u, whichever occurs first.

— We keep generating new transitions and new Brownian motion sections until we reach
u. The service time of the jobis T = X (u) = X(W).

The main question, similar to Sect. 2, is the distribution of 7" and performance measures
derived from 7. The main contribution of this paper is the analytical evaluation of the dis-
tribution of 7 in the double transform domain. Several related performance measures can be
obtained based on this transform domain description numerically.

The analytical problem can be formulated as the cumulative distribution type functions
of the service time (for fixed w)

Gij(x,w) =Pr(X(w) <x, M(X(w)) = jIM©O0) =i, W =w) (w>0,xeR), 4
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which include information about the initial and final background state of M (#) along with
the distribution of the service time. In accordance with the mathematical model, G;; (x, w)
is defined for both positive and negative values of x, but G;; (0, w) is typically negligible.

Based on G;; (x, w), the corresponding cumulative distribution function in case of a ran-
dom W with probability density function fy (w) is

Gij(x) =Pr(X(W) = x, M(X(W)) = jIM(0) = i)

-/ Gyt w) . (x € ). ®)

w=

The next section provides the mathematical analysis of G;; (x, w).

4 Job completion in small and large timescale variable environment

Let X (w) denote the time needed to service a job of fixed size w. We aim to analyse the
entire process {X (w), w > 0}, and, based on that, derive performance measures for X (w)
(for a fixed job size w), and also for X (W), where W is possibly random.

The system operates in a random environment characterized by the MMP M (t),t > O,
which is a Markov chain with generator Q (and the variable 7 denotes the time of the MMP).
The process X (w) starts from 0 at w = 0. When the MMP is in state i, the main process,
X (w), is a Brownian motion with parameters u; > 0 and o; > 0 (given for each state 7).
Whenever the MMP makes a transition at time ¢t = a, i.e., when X (w) reaches level a, the
MMP switches to a new state k and the main process continues as a Brownian motion with
parameters px > 0 and oy starting at level a. Then the same procedure continues until the
job of size u gets completed.

The main process X (w) starts from level 0 at w = 0, i.e., X (0) = 0. We are interested in
the distribution of X (1), where u is the size of the workload, and introduce the notation

Gij(x,w) =Pr(X(w) < x,M(x) = jIM©0) =i, X0)=0) (w>0,x €R),
gij(x,w) = %Gij(x, w) (w>0,x eR). (6)

We aim to compute

oo o0
gi*;‘(v, 5) = / e_”x/ e *"gij(x, w)dwdx, @)
X=—00 w=0
where * refers to the double sided Laplace transform and s refers to single sided Laplace
transform. (7) is convergent when Re(s) > 0 and |v| is small enough (depending on Re(s),
that is, |[v] < &(Re(s)) for some positive function £(.). Convergence of the inner integral
for Re(s) > 0O follows directly from the fact that g;; (x, w) is a probability density function.
Convergence in v will be addressed during the proof of Theorem 1, and the function &(.)
is made explicit in (16). We remark that calculating glfj*(v, s) in a region where Re(s) > 0
and |v| is small enough is sufficient for the further calculation of performance measures of
interest.

Theorem 1 Matrix G** (v, s) = {g;‘Jf“(v, s)} is given by

G (v, 5) = (Z(s) + vI — Q)" (Z(s) — QP + VDA™ (v, 5), ®)
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where Q is the generator of the MMP, 1 is the identity matrix and A** (v, s) = diag(a’*(v, s)),
Z(s) = diag(z;(s)), QP = diag{g;;) are diagonal matrices, where q;; are the diagonal
elements of Q, and

zi(s) +v _
a*(v,5) = ———— (v, 5, Wi, 07) + STV — qiiy 5, Wiy 01),
zi(s) — gii +v
2s
7i(§) = ——, ©
Wi + ,//Liz + 2sai2
where furthermore
_ o?
¢ (v, s, 0) = .
V2 +2s0? (,u —vol 4+ ur+ 2s02)

2

6T (s o) = z (10)

V2 +2s0? (—//, +vol 4+ ur+ 2s02) -
(Re(s) > 0 and |v| is sufficiently small in all formulas.)

Proof Let W, be the first passage point along the horizontal axis, where the BM(u;, 0;)
starting from level O reaches level a (a > 0). The CDF and PDF of W, are denoted by

Fi(a,w) =Pr(W, <w|M@0) =i, X(0)=0), fila,w)= %Fi(a, w).

fi(a, w)is given explicitly [using Girsanov’s theorem and mirror principle, see e.g. Theorem
6.9 in Schilling and Partzsch (2012)] as

a ( (@ — piw)?
L exp -
V2mwio; 2wo?

When the process starts in state i, two things may happen (c.f. Fig. 3): the main process will
either reach level a (along the vertical axis) before w (on the horizontal axis), i.e. W, < w,
or not. If the main process reaches level a before w, then the MMP switches from state i to
another state k at W,, and the main process continues similarly with parameters (u, ox),
albeit starting from level a.

If the main process does not reach level a before completing w amount of work, i.e.,
W, > w, then we need the conditional distribution of the level at w assuming that X (w) < a
for Vu < w. To obtain it, we introduce the notation

fila, w) = ) 0<a, 0<uw. (11)

Bi(x,a,w) =Pr(X(w) <x,X(u) <a, Yue0,w)M©O) =i, X©0)=0),

a
bi(x,a,w) = a—B,-(x,a, w), x<a,0<a, 0<w.
X
Bi(x, a, w) is a CDF type function, and it describes an incomplete distribution concentrated
on (—00, a), and it satisfies

Fi(a, w) + Bi(x,a, w)|;=, =1, 12)

where the first term corresponds to the probability that the BM(u;, o;) hits level a before w
(W, < w), while the second term corresponds to the probability that the BM(u;, 0;) hits the
vertical line at w without reaching level a (W, > w).
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time

a fi(a,u) A//

i Bj(x,a,w)

» work
W, w

a

Fig.3 A trajectory reaching level a before w (W, < w)

To calculate the density b; (x, a, w), we first note that the position of a BM(u;, o;) at point
w has normal distribution with parameters (u; w, 0;1/w), so its probability density function
at w is ¢ (x, Hiw, oj ﬁ), where ¢ (x, u, o) denotes the PDF of normal distribution with
parameters 4 and 02, i.e.,

1 (x — )2
o) = ew(-ULEE). xe

To compute b; (x, a, w), we need to subtract the density that the BM hits level a first. We
calculate it using total probability according to the first passage time atlevel a, W,. Altogether,
b; (x, a, w) can be calculated as

bi(x,a,w) =¢ (x, Hiw, 0,-\/5) — /wf,-(a, u)o (x —a, wi(w—u),oivw—u)du. (13)
u=0

The level at which the MMP changes its state, a, is exponentially distributed with parameter
—qii. Using that and the probability of moving from state i to state k at a state transition of
the MMP, —q;«/qii, we have

o0

gij(x, w) = 5ij/

bi(x, a, w)(—gii)e?“da
a=xTt

w o0
+ Z / / qike? fi(a, u)grj(x —a, w — u)dadu, (14)
kik£i u=0 Ja=0

where xT = max(0, x) and §; ; denotes the Kronecker delta.
Remarks:

— The first term in (14) is the probability that the main process reaches # = w before hitting
level a averaged out according to the distribution of a.

— In the second term, the MMP switches to state k at u < w, with the main process at level
X(w) =a.

— Even though the general idea is that the main process is increasing, using a second order
approach means that in the short term, the main process may decrease as well. Hence we
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should care about negative values of x if possible. The formula (14) is consistent with
the possibility that the process X (w) may decrease and the formula is valid for negative
values of x as well.

The second integral in (14) is essentially convolution in both variables x and w; to simplify
it, we will take Laplace-transform in the variable w, and double-sided Laplace transform in
the variable x.

We look to take the Laplace-transform of the variable w in all of the important functions
in (14). Denoting the transform variable by s, the Laplace-transform of f;(a, w) in (11) is
explicit:

o0
-2
fif(a,s) = / e " fi(a, w)dw = exp L B
w=0 wi + 4/ ,uiz =+ 2S0'l~2

=e %4 4 50, Re(s) > 0,

where z; (s) is given in (9).
Similarly, we have an explicit formula for the Laplace-transform of ¢ (x, Hw, oﬁ) with
respect to w

*(x,s,n,0) = / q)(x,,u,w,crﬂ) e ¥dw
w=0

1 xp — |x|/u? + 2502
exp )
Vit +2s0? o?

Then from (13), we have

o0
bi(x,a,s) =/ e b (x, a, w)dw

w=0

=¢*(x, s, pi,01) — P (x —a,s, ui, 01) fi(a, s),

and from (14), we have

oo
g (x, 5) =/ e " gij(x, wydw

w=0

o0 o0
= &ij /H_X+b;‘(x, a, s)(—q;)e’ida + Z qik /azoeq““f,-*(a, $)gi;(x—a, s)da. (15)

= kik£i

af(x,s)

h;}(x,s)

To transform the level variable x as well using two-sided Laplace transform, we will use
the functions ¢ ~*(v, s, i, o) and ¢*(v, s, i, o) as defined in (10):
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0
¢_*(v,s,u,0)=/ e ¥ (x, s, pw, 0)dx
X=—0Q
N (u —vo? + /U + 2sa2)
o0
¢+*(v,s,u,0)=/ e "o (x, s, u, 0)dx
x=0
0.2

V2 +2s0? <—M +vo2+/u?+ 2s02> !

where convergence in either integral holds when the real part of the associated denominators
are positive. For Re(s) > 0, we have © < Re (\/ u?+ 2s02>, from which the denominators
are positive when

Re (\/m) —n

v < 7 ;

o

from this, we have that (7) and (8) are valid when Re(s) > 0 and

Re <,/ul.2 + 2sc7i2> — Wi

2
0;

(16)

[v] < e(Re(s)) := min

To compute g,»*j“(v, s) =/ xoi_oo e ¥ glf“j (x, s)dx, we start by investigating the transform

of first term al?" (x, s) on the right hand side in (15):

o0 o0 o0
ar*(v,s) = / e af(x, s)dx = / efvx/ bf(x,a,s)(—qi)e?“dadx
x a=xt

X=—00 =—00

o0 o0
_ f e f 6% (x. 5. i 07)(—gip) i dadx
X a=xTt

=—00 =
% 0
- / e " (x —a, s, wi,0i) fi* (@, 5)(—qi)e?“dadx.  (17)
x

=—00 a=xt

The first term on the right hand side of (17) is

o0 o0
/ e T (x, s, i, Ui)/ (—qii)e?“dadx
X=—00 a=x+

0 00
= (—Qii)/ e T (x, s, 1, 07) / eii“dadx
xX=—00 a=0

o0 o0
+ (—qz‘i)f e T (x, s, i, Ui)/ edit“dadx
x=0 a=x
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1
— (- q,,>f UG (x5, iy 01) ——dx

411

qll
+(_Qii)/ et (x, s, i, 01) ——dx
x=0

—dii

0 [e'e)
= f e (x, 5, i, 07)dx + f e Va5, ;i 07)dx
X=—00

x=0
=¢ (v, s, wi,01) + ¢V — giiy 5, i, 01). (18)

The second term on the right hand side of (17) is

o0 o0
/ efvx/ ¢ (x —a,s, pi, o) f*(a, s)(—qi)et“dadx
xX=—00 a=xt
o0 o0
—Can [ e[ e s e O 0 dad
X=—00 a=xt
o0 a
= (—qii) / e~ G / e " ¢*(x —a. s, pi. 0;)dxda
a=0 x=—00

o0 a
= (—‘]ii)/ e*(z"(”*""")“e*”"/ e "I (x —a, 5, i, 0)dxda
=0 X=—0Q0

0
(- qu)/ —@)= q”+”)“da/ e " (x, 5, i, 07)dx

=—00

—dii —ux
= (x,s, u;, o;)dx
zi(s) —qii +v /x:—oo ¢ i
- iqf*(v,s, i, 01). (19)
zi () — qii +

Altogether, expressing (17) as the total of (18) and (19), we get

al*(v,s) = ¢ (v, s, Wi, 00) + ¢ — qis, s, iy 07)

zi(s) — qii +
zi(s) +v _
= ~¢ *(v, s, win07) + 0TV — gii, s, i, 07). (20)
zi(s) — qii +

Now we focus on the second term on the right hand side of (15).

o
h**(v s) _f _”h* (x, s)dx
e

Z/ e QZkf et f(a, s)gf; (x — a, s)dadx

kik£i

Z sz/ / ~Gi©)=gi)a g i (x — a, s)dadx
=0

kik£i

@ Springer



134 Annals of Operations Research (2020) 293:123-140

[0.¢]
Z sz/ (z,'(S)—qii+v)a/ e V= “) - (x—a s)dxda
xX=—00

kik#i
Z g k/ —G@i)—gqitvay, g,:;‘(v, s)
kik#i
qik
B 7g (0, 5). (21)
Z - 2i(s) — qii + Y

from which we get

ik

g (v, s) =8a* (. )+ Y 7&:7(1“)
ki zi(8) — qii + ’
(zi(s) —qii + U)g F(v,5) = Slj(zl(s) —qii + U)a**(v s) + Z qukJ (v, s)
k,k#i
(zi(s) + v)g**(v §) = 8;j(zi(s) — qii +v)a;* (v, s) + qujg,:;‘(v, s). (22)
k
Introducing matrix G**(v,s) = {gl**(v s)}, and diagonal matrices A**(v,s) =

diag(a;* (v, 5)), Z(s) = diag(z; (s)), QP = diag(gi;), (22) can be written as
(Z(s) + vDG** (v, 5) = (Z(s) — QP + vDA** (v, 5) + QG** (v, s),

whose solution is (8). ]

Theorem 1 provides an explicit expression (involving a matrix inversion) for the double
transform domain description of the service time distribution. For the s — w one-sided
inverse Laplace transformation, we applied different approaches depending on the distri-
bution of the work requirement W. To simplify calculations, we decided to avoid doing a
v — x two-sided inverse Laplace transformation, instead calculating the moments of X (w)
explicitly, which can be obtained from

(9
EXw)") = (-D*ct, (Wg,-*fw, sm:o) , (23)
where lls__)w denotes inverse Laplace transformation from parameter s to parameter w. To
compute these moments it is important to note that the eigenvalues of Z(s) — Q are all

positive, which provides a symbolic derivative according to v also for the matrix inverse,
e.g., to compute the mean of X (w) we have

= —(Z(s) — Q) X(Z(s) — Q®)A*(0, )

ad
—G™™ (v, s)
dv v=0

+ (Z(s) — Q) 'A*(0, 5)

+ (Z(s) — Q) (Z(s) - QD) AT, 5)

v=0

The explicit formulas for A**(v s) with higher k values are omitted here, but sym-

v=0
bolic mathematical packages can compute them easily.
For deterministic work requirement (W = w) we applied the numerical inverse Laplace
transformation method from Horvath et al. (2018) with order 24. This numerical inverse
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Laplace transform procedure evaluates the Laplace transform function only in points with a
positive real part.

For exponentially distributed work requirement (W is exponentially distributed with rate
¥) we use an explicit inversion formula based on

gij(x) = / Ogi_/(x, w) fw (w)dw = 77/ gij(x, we "dw = vgii(x,s)

w=l w=0

s=v

Consequently, the kth moment of the service time for an exponentially distributed work
requirement (W) with rate ¢ can be computed explicitly as

ak
EXWYIM©) = i) = (=D D 3 el (v,5) (24)
7

v=0,s=1

5 Numerical examples
5.1 Simulation results

To study the effects of variability, we have applied the procedure outlined in Sect. 3 to
simulate the behaviour of the queue with short and long scale variability. In particular, to find
the intersection between the Brownian motion and the level determined by the time at which
the modulating process changes state, we have discretised the work with a quantum Ax, and
during the period when the MMP stays in state i, for each quantum we have set the evolution
of the time according to a normal distribution N (u; Ax, al.z Ax) (following the procedure
outlined at the beginning of Sect.2). The MMP leaves state i at the first time instant in which
the discretised BM crosses the level T,,, where T}, is the time of the nth state transition of the
MMP. When the nth state transition occurs in state i, then 7,, = T,,_| + t;, where T,,_ is the
time of the previous state transition and t; is exponentially distributed with parameter —g;;
(the ith diagonal element of the generator matrix Q of the MMP). This simulation approach
is indeed an approximation, but it can be made arbitrarily precise by choosing appropriately
small values of Ax (at the cost of simulation time). Simulations were run for several choices
of Ax to examine the error of this approximation.

In our numerical experiment, we have considered a two-state modulating process with
jump rates g2 and g1, and studied the effects of different service speed and variability
parameters p; and o; (i = 1,2). Apart from computing performance measures related to
the service time distribution, we also included simulation results for the response time in an
M/G/1 queue, where jobs arrive according to a Poisson process of rate A and are served by a
single server subject to short and long term variability according to a first-come-first-served
discipline. Job sizes may be either deterministic or random. A is set so that the queue is stable.

For the first batch of simulations, we examine the effect of short and long term variability
of the server by changing n and o while leaving the other parameters fixed:

1000
A=

1 1
jobls, W =E[W]=100ms, — =1.25s, — =0.8s.
350 q12 q21

We compare the following cases:

— Base no variability, 1 = up =2.4848 and o1 = 0o = 0.
— Small (fixed) small term variability with u; = ur = 2.4848 and o1 = o, = 0.98773.
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Fig. 4 Considering different small scale and large scale variability configurations for a fixed job length: a
service time distribution, b response time distribution

— Small (variable) small term variability with 1 = po = 2.4848 and o1 = 0.4 and
op, = 1.5.

— Large Long term variability is present, but no short term variability: u; = 2, up = 4,
o =09 =0.

— Small + Large both effects are combined: u; =2, uo = 4,01 =0.4,00 = 1.5.

(For this set of simulation results, the discretization interval Ax is set to 0.05 ms so that on
average, the BM for each job requires 2000 samples. Each simulation considers the execution
of N = 10,000 jobs.)

Figure 4a shows the service time distribution for the different server variability config-
urations. For the Base case, as it is expected, all the probability mass is centered along
W1 EIW] = u E[W] = 248.48. For the Small (fixed) case, the introduction of small term
variability destroys the deterministic behaviour, resulting in a smooth distribution still concen-
trated near 1 E[W] = ur E[W] = 248.48. For the Small (variable) case, the distribution
is similar, with larger tails due to the long term variability in o. For the Large case, in
state 1, service time is exactly p1 E[W] = 200ms, and in state 2, service time is exactly
2 E[W] = 400 ms. The probability masses in Fig.4a at 200 ms and 400 ms are associated
with the cases when the MMP stays in state 1 (2, respectively) for the whole period of the
service. The cases when the MMP experiences state transition during the service are repre-
sented by the continuously increasing part of the Large curve. The case that combines both
small and large scale variability (Small + Large) further smooths the curves, and the effect
is more evident near the two probability masses at 200 ms, and 400 ms.

Figure 4b shows the response time distribution of the corresponding queuing models. It
is interesting to see that in the cases where small variability is considered there are no jumps
due to its perturbation effect.

The second batch of simulations focuses on the MMP by changing the speed of the
background MMP. We set

1000
A=
350

as before, along with

job/s, W =E[W]=100ms, Ax =0.05ms

m =2, up=4, 0o1=04, o =15,
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Fig.5 Considering different durations in the modulating process for a fixed job length: a service time distri-
bution, b response time distribution

but the values of the average sojourn times 1/¢g12 and 1/¢2; change from

1 1
— =12.5s, — =8s
q12 q21

all the way through to

1 1
— =125ms, — =0.8s
q12 q21
with each step corresponding to a factor of 10.

Figure 5 shows simulation results for the second batch of simulations. When the sojourn
times are very large, the service time distribution tends to concentrate the probability mass
near the times required in either state (200 ms and 400 ms). On the other hand, when the MMP
changes rapidly, the distribution tends to concentrate on the average case, producing results
very similar to the one seen in Fig. 4 for the cases with small variability only: in this case,
there is almost no difference between large scale and small scale variability, because the quick
alternation of the modulating process eliminates the large scale effect. As a final remark, to
consider the case with sojourn times 1.25ms and 0.8 ms, the sampling time was reduced to
Ax = 0.01 to allow a sufficient number of samples during the sojourn in a modulating state.
As for the response time (Fig. 5c), longer sojourn times create bursts when the MMP remains
in a single state, considerably decreasing the performance of the system.

The third batch of simulations focuses on the effect of variability on different job length
distributions. In particular,

1000

A= 350 job/s, E[W]=100ms, Ax = 0.05ms

wi =2, up=4, 0o1=04, op =15,

1 1
— =125ms, — =0.8s (25)
q12 q21

and we examine the following job size distributions for W:

— Deterministic W = 100 ms,
— Exponential with mean 100 ms,
— Erlang with 4 stages with mean 100 ms,
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— Hyper-exponential with probability density function
1 —A1x 1 —A2X
fw(x)zikle ! +5l2€ x>0

with parameters A; = 1/(100(1 + +/0.6)), A> = 1/100((1 — +/0.6))
— Pareto with probability density function

5203

7
fe =43 7%

0 x <20

(To make the results easily comparable, E[W] = 100ms is identical in each case.)

In particular, Fig. 6a shows the service time distribution for each job size distribution. The
effect of service variability is more evident on job length distributions with a lower coefficient
of variation. Figure 6b shows the effect on response time: indeed, combining the effect of
service variability with a heavy tailed distribution, as for the Pareto case, can create very long
queues which can lead to extremely long response times.

5.2 Comparison of analytical and simulation results

For the last batch of simulations, we compare empirical moments from the simulation to
moments calculated using the double transform method of Sect. 4.

The system parameters are the same as in (25). Two different job size distributions are
examined: deterministic and exponential. To test the inaccuracy of the simulation with finite
discretization steps, we run each simulation with two different choices of Ax: Ax = 0.05ms
and Ax = 0.005 ms.

Table 1 presents the moments of the service time distribution obtained from the simulator
and the transform domain description. Ax = 0.05ms corresponds to sim. 1 and Ax =
0.005 ms corresponds to sim. 2.

From Table 1, we observe increasing relative error for higher moments.

For the mean, the relative error is around or smaller than 2%. The relative error of the
mean decreases as Ax is refined from Ax = 0.05ms (sim. 1) to Ax = 0.005ms (sim. 2).
We note that for the exponential case, the service time moments were calculated using an
analytic formula, while for deterministic job size, some inaccuracy might also come from
the numerical inverse Laplace transformation method.

6 Conclusions

In this work, we have introduced a queue with a service model where a modulating background
Markov process models the large timescale variability, and a second-order fluid process
models the service capacity on small timescale. The resulting service model can be interpreted
as a certain type of level-dependent Brownian motion.

We have presented both a simulation approach for the service time and response time of a
job for various job size distributions and a double Laplace transform domain analysis of the
service time distribution. A numerical example illustrates the effect of small and large scales
of service variability. Using that example, we compared the results obtained from simulation
and the Laplace transform domain analytical description.
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Fig.6 Considering small scale and large scale variability for different job length distributions: a service time
distribution, b response time distribution

Table 1 Comparison of the numerical analysis and the simulation results

Deterministic job size

sim. 1 sim. 2 Transform
EX(W)|M(©) = 1) 2155 215.8 213.0
E(X(W)|M(0) = 2) 367.1 364.9 359.3
EX(W)2M(©0) =1) 4.689 x 10* 4.835 x 10* 4818 x 10*
E(X(W)2|M(0) = 2) 1.383 x 10° 1.368 x 10° 1.332 x 10°
E(X(W)3|M©)=1) 1.133 x 107 1.140 x 107 1.082 x 107
E(X(W)3|M(0) =2) 5.303 x 107 5.23 x 107 5.054 x 107
EX(W)*M©0) =1) 2.846 x 107 2.87 x 10° 2.656 x 109
EXW)*M(©) =2) 2.060 x 1010 2.03 x 1010 1.950 x 1010

Exponential job size

sim. 1 sim. 2 Transform
EX(W)|M(©) = 1) 226.1 2249 219.3
E(X(W)|M(0) = 2) 3225 330.0 339.7
EX(W)2M(©0) =1) 1.081 x 103 1.108 x 10° 1.055 x 10°
E(X(W)21M(0) = 2) 2.030 x 10° 2.089 x 10° 2.165 x 103
E(X(W)3M(©0) =1) 8.171 x 107 8.820 x 107 8.226 x 107
E(X(W)3|M(0) =2) 1.892 x 108 1.981 x 108 2.007 x 108
EX(W)*M(©) = 1) 8.680 x 1010 9.810 x 1010 9.044 x 100
EX(W)*M(©0) =2) 2.352 x 101! 2.580 x 101! 2.443 x 101!
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