Universiteit Antwerpen

This item is the archived peer-reviewed author-version of:

On the impact of job size variability on heterogeneity-aware load balancing

Reference:
Van Spilbeeck lgnace, Van Houdt Benny.- On the impact of job size variability on heterogeneity-aw are load balancing Lecture notes in computer science - ISBN 978-3-319-93735-9 - Cham, Springer, 10932(2018), p. 193-215 Full text (Publisher's DOI): https://doi.org/10.1007/978-3-319-93736-6_15

On the Impact of Job Size Variability on Heterogeneity-aware Load Balancing

Ignace Van Spilbeeck and Benny Van Houdt
Department of Mathematics and Computer Science
University of Antwerp - imec
Middelheimlaan 1, B-2020 Antwerp, Belgium
\{ignace.vanspilbeeck, benny.vanhoudt\}@uantwerpen.be

Abstract

Load balancing is one of the key components in many distributed systems as it heavily impacts performance and resource utilization. We consider a heterogeneous system where each server belongs to one of K classes and the speed of the server depends on its class. Arriving jobs are immediately dispatched to a server class in a randomized manner, i.e., with probability p_{k} a job is assigned to class k. Within each class a power of d choices rule is used to select the server that executes the job. For large systems and exponential job size durations the optimal probabilities p_{k} to minimize the mean response time can be determined easily via convex optimization. In this paper we develop a mean field model (validated by simulation) to investigate how these optimal probabilities p_{k} are affected by the higher moments and in particular by the variability of the job size distribution when the service discipline at each server is first-come-first-served. The main insight provided is that optimizing the probabilities p_{k} based on the higher moments is much more involved and provides only a non negligible gain for very specific system load regions.

1 Introduction

Consider a large distributed system consisting of N servers and a (number of) centralized dispatchers. Incoming jobs are assigned by the dispatcher(s) to the servers using a load balancing (LB) scheme. A very efficient manner to distribute the incoming jobs among the servers is to rely on a pure randomized assignment scheme or some form of round robin. While this allows very fast load balancing decisions, the resulting performance is known to be inferior to LB schemes that exploit information concerning the current system state, such as the queue lengths or server speeds. Examples of the latter include join-the-shortest-queue (JSQ) LB [13] or the power-of-d-choices (POD) LB [22, 19]. Under JSQ incoming jobs are assigned to the server containing the least number of jobs, while under POD d servers are selected uniformly at random and the job is assigned to the server with the shortest queue length among the d selected servers.

When the system is heterogeneous, for instance when not all the servers have the same speed, the choice of the LB scheme becomes even more critical as LB schemes based on joining the server with the least number of jobs among a set
of randomly selected servers may lead to system instability even if the total offered load is (well) below the total service rate of the system [6]. A manner to avoid instability when the servers have different speeds (and the overall load is below 1), exists in assigning jobs to servers based on the server speeds [10]. While such an assignment becomes necessary as the overall load tends to one, it is clearly suboptimal under low and medium loads as the mean response time can be reduced by assigning a larger fraction of the jobs to the faster servers. In case of Poisson arrivals, processor sharing (PS) servers and random job routing (that is, server i is selected with a fixed probability p_{i}) explicit expressions can be derived for the routing probabilities that minimize the mean response time $[3$, 10]. Under first-come-first-served (FCFS) service and more complex LB schemes determining the optimal fraction of the incoming jobs that needs to be assigned to each of the servers is much harder.

In this paper we consider a system consisting of N servers where jobs arrive according to a Poisson process with rate λN with $\lambda<1$. The servers are partitioned into K classes of homogeneous servers, process their jobs in FCFS order and have an infinite waiting room. By considering FCFS service, we are considering a setting where jobs are very expensive to preempt and are therefore typically run-to-completion without interruption (such as in supercomputing centers, see [14]). Servers belonging to class k serve jobs at rate μ_{k} and incoming jobs are assigned to a class k server with probability p_{k}. The server that executes the job within class k is selected using POD LB. In other words, with probability p_{k} a set of d servers is selected among the class k servers and the jobs is assigned to the server holding the least number of jobs among the d selected class k servers.

Note that the above setting is identical to Scheme 3 presented in [20], except that our servers operate under FCFS instead of PS. For exponential job durations the queue length distribution under FCFS and PS is the same and under PS the system is believed to become insensitive to the job size distribution as the system size N tends to infinity [7, 8]. Under FCFS the mean response time remains sensitive to the job size distribution as N tends to infinity. The main objective of this paper is to see how the probabilities p_{k} that minimize the mean response time in a large system, are effected by the variability of the job size distribution and more importantly whether these optimized values reduce the mean response time significantly compared to the optimal probabilities obtained by assuming exponential job sizes. To answer these questions we develop a mean field model, the accuracy of which is validated using simulation. Our main insights is that neglecting the variability of the job size distribution when optimizing the probabilities p_{k} does not result in a substantial loss in performance, except under very specific loads combined with highly variable job sizes.

2 The model

Consider a system of N servers belonging to K classes operating under FCFS. There are N_{k} servers of class k and let $\gamma_{k}=N_{k} / N$ such that $\sum_{k=1}^{K} \gamma_{k}=1$. All servers have an infinite waiting room and the speed of a class k server is
denoted as μ_{k}. The server speeds are such that $\sum_{k=1}^{K} \gamma_{k} \mu_{k}=1$, meaning the average speed of a server is equal to 1 . Incoming jobs arrive at one or multiple dispatchers as a Poisson process with an overall rate λN and are immediately forwarded to one of the N servers. To select a server the dispatcher selects d servers uniformly at random among the class k servers with a given probability p_{k}. In other words, the server class is determined via randomization and the server within the class is selected using a POD LB. The job size distribution is assumed to follow a phase-type distribution [17] with mean 1 characterized by (α, S), where α is a stochastic vector and S a subgenerator matrix such that $\alpha e^{S x} e$ is the probability that the job size exceeds x, where e is a column vector of ones. The time to execute a job on a class k server is therefore phase-type distributed with parameters $\left(\alpha, \mu_{k} S\right)$.

We note that the class of phase-type distributions is dense in the field of all positive-valued distributions. As such any positive-valued distribution can be approximated arbitrarily close by a phase-type distribution. Various fitting tools for phase-type distributions are also available online (e.g., jPhase [21], ProFiDo [5] or BuTools).

Note that due to the Poisson arrivals and randomization, the system under consideration behaves as a set of K independent homogeneous LB systems where the k-th system has load $\rho_{k}=\lambda p_{k} /\left(\gamma_{k} \mu_{k}\right)$ (as the total arrival rate is λN and with probability p_{k} the job is assigned to one of the γ_{k} class k servers). For exponential job sizes the probabilities p_{k} for large N can be optimized by relying on the explicit formula for the mean response time in a homogeneous system derived in $[22,19]$, that is, the probability that a server contains i or more jobs converges to $\rho_{k}^{\frac{d^{i}-1}{d-1}}$ as N tends to infinity under POD LB with exponential job sizes and load ρ_{k}. This results (by Little's law) in the following convex optimization problem that can be solved numerically without much effort:

$$
\begin{array}{ll}
\underset{p_{k}}{\operatorname{minimize}} & f\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{\lambda} \sum_{k} \gamma_{k} \sum_{i \geq 1} \rho_{k}^{\frac{d^{i}-1}{d-1}} . \\
\text { subject to } & 0 \leq \rho_{k}<1 ; k=1, \ldots, K, \tag{1}\\
& \sum_{k} \gamma_{k} \rho_{k}=\lambda .
\end{array}
$$

Note that the first set of constraints demands that each of the K subsystems is stable, while the second constraint demands that the total assigned workload matches the incoming workload. For $K=2$ the first set of constraints can be restated as $1-\frac{\gamma_{2} \mu_{2}}{\lambda}<p_{1}<\frac{\gamma_{1} \mu_{1}}{\lambda}$ (as $p_{2}=1-p_{1}$). The main objective of this paper is to study the equivalent optimization problem for phase-type distributed job lengths.

3 Related work

A closely related paper is [20] which proposes mean field models for three LB schemes: the optimal randomized, $S Q(d)$ and hybrid $S Q(d)$ LB. The hybrid

Fig. 1: Mean response time (for exponential job sizes) as a function of λ for Scheme 2 of [1] with $d_{1}=d_{2}=2$ and for the hybrid $S Q(4)$ scheme when $\gamma_{1}=\gamma_{2}=1 / 2$ and $\mu_{1}=9 \mu_{2}$.
$S Q(d)$ LB scheme, which was shown to outperform the other two, is identical to the LB scheme considered in this paper except that [20] considers PS servers and exponential job sizes. Evidence that the $S Q(d)$ scheme becomes insensitive to the job size distribution was provided using simulation experiments, while evidence ${ }^{1}$ for the asymptotic insensitivity for the hybrid $S Q(d)$ LB under PS was presented in $[7,8]$.

Two other LB schemes for heterogeneous networks were proposed in [1]. In both LB schemes a server is chosen by first selecting d_{k} servers of type k at random for all k and then by selecting one of the servers among the selected $\sum_{k} d_{k}$ servers based on the queue length information only (scheme 1) or on the queue length and server speeds (scheme 2). While Figures 3 and 4 in [1] suggest that these schemes may outperform the hybrid $S Q(d)$ scheme in some cases, the hybrid $S Q(2)$ scheme uses the queue length information of 2 servers per incoming job, while the other two LB schemes use the queue length information of 4 queues per job. Figure 1 indicates that if we also allow 4 choices for the hybrid $S Q(d)$ scheme, the optimal hybrid $S Q(d)$ scheme outperforms scheme 2 of [1] for all arrival rates λ. Another LB scheme, called HALO_POD, that uses a POD rule in a heterogeneous PS network was proposed in [10]. In this scheme a job is assigned to the shortest of d selected servers, where a class k server is selected based on the optimal routing probabilities of a pure randomized LB scheme (first derived in [3]).

In this paper we propose a mean field model to assess the mean response time in a heterogeneous FCFS LB network with phase-type distributed job sizes. Another approach to analyze such a network exists in numerically determining a fixed point of a so-called hydrodynamical PDE presented in [2] as our network is equivalent to a set of K independent homogeneous FCFS networks. In fact, this

[^0]is the approach that we initially used, but finding the optimal probabilities p_{k} by repeatedly solving a hydrodynamical PDE turns out to be much more time and memory consuming than the approach taken in this paper (due to the required size of the mesh used by the numerical scheme). Load balancing systems that rely on POD LB with phase-type service were also analyzed in [18], however the set of ODEs presented in [18] is incorrect (as a new job is only assigned to a server if all the d selected servers are in the same service phase).

In this paper we assume that the job sizes are not known in advance. Considerable work has also been performed in case the job sizes are considered to be known when assigning a job to a server. Effective policies in such case include various Size Interval Task Assignment (SITA) and Least Work Left (LWL) policies (e.g., $[15,16,4]$).

4 The mean field model

Let $X_{k, j, i}^{(N)}(t)$ be the number of type $k \in\{1, \ldots, K\}$ servers with $i>0$ or more jobs that are in service phase $j \in\{1, \ldots, J\}$ at time t. Define $Z_{k, j, i}^{(N)}(t)=X_{k, j, i}^{(N)}(t) / N_{k}$ as its scaled version. We would like to study $\lim _{t \rightarrow \infty} Z_{k, j, i}^{(N)}(t)$ for large N. For this purpose we introduce a mean field model in Section 4.1 for which we provide theoretical and numerical support in Sections 4.2 and 4.3

4.1 System dynamics

Assume (α, S) is an order J phase-type distribution. The mean field model uses the variables $s_{k, j, i}(t)$ with $i>0,1 \leq j \leq J$ and $1 \leq k \leq K$, that represent the fraction of servers that are of type k, contain i or more jobs and are in service phase j at time t. Let $z_{k, j, i}(t)=s_{k, j, i}(t) / \gamma_{k}$, denote $\sigma_{i, j}$ as the (i, j)-th entry of the matrix S and let $\nu_{j}=(-S e)_{j}$. The evolution of $z_{k, j, i}(t)$ is described by the following set of ODEs, the intuition behind this set of ODEs is presented below:

$$
\begin{align*}
& \frac{d z_{k, j, 1}(t)}{d t}=\frac{\lambda p_{k}}{\gamma_{k}}\left(1-z_{k, 1}^{d}(t)\right) \alpha_{j}-\mu_{k} \nu_{j}\left(z_{k, j, 1}(t)-z_{k, j, 2}(t)\right) \\
& \quad-\mu_{k} \nu_{j}\left(1-\alpha_{j}\right) z_{k, j, 2}(t)+\sum_{j^{\prime} \neq j} \mu_{k} \nu_{j^{\prime}} z_{k, j^{\prime}, 2}(t) \alpha_{j} \\
& \quad+\sum_{j^{\prime} \neq j} z_{k, j^{\prime}, 1}(t) \mu_{k} \sigma_{j^{\prime}, j}-z_{k, j, 1}(t) \sum_{j^{\prime} \neq j} \mu_{k} \sigma_{j, j^{\prime}} \\
& \quad=\frac{\lambda p_{k}}{\gamma_{k}}\left(1-z_{k, 1}^{d}(t)\right) \alpha_{j}-\mu_{k} z_{k, j, 1}(t) \nu_{j}+\mu_{k} \sum_{j^{\prime}=1}^{J} z_{k, j^{\prime}, 2}(t) \nu_{j^{\prime}} \alpha_{j} \\
& \quad+\mu_{k} \sum_{j^{\prime}=1}^{J} z_{k, j^{\prime}, 1}(t) \sigma_{j^{\prime}, j}-\mu_{k} z_{k, j, 1}(t) \sum_{j^{\prime}=1}^{J} \sigma_{j, j^{\prime}} \\
& =\frac{\lambda p_{k}}{\gamma_{k}}\left(1-z_{k, 1}^{d}(t)\right) \alpha_{j}+\mu_{k} \sum_{j^{\prime}=1}^{J}\left(z_{k, j^{\prime}, 1}(t) \sigma_{j^{\prime}, j}+z_{k, j^{\prime}, 2}(t) \nu_{j^{\prime}} \alpha_{j}\right) \tag{2}
\end{align*}
$$

where $z_{k, i}(t)=\sum_{j=1}^{J} z_{k, j, i}(t)$ and

$$
\begin{align*}
& \frac{d z_{k, j, i}(t)}{d t}=\frac{\lambda p_{k}}{\gamma_{k}} \frac{z_{k, j, i-1}(t)-z_{k, j, i}(t)}{z_{k, i-1}(t)-z_{k, i}(t)}\left(z_{k, i-1}^{d}(t)-z_{k, i}^{d}(t)\right) \\
& \quad-\mu_{k} \nu_{j}\left(z_{k, j, i}(t)-z_{k, j, i+1}(t)\right)-\mu_{k} \nu_{j}\left(1-\alpha_{j}\right) z_{k, j, i+1}(t) \\
& \quad+\sum_{j^{\prime} \neq j} \mu_{k} \nu_{j^{\prime}} z_{k, j^{\prime}, i+1}(t) \alpha_{j}+\sum_{j^{\prime} \neq j} z_{k, j^{\prime}, i}(t) \mu_{k} \sigma_{j^{\prime}, j}-z_{k, j, i}(t) \sum_{j^{\prime} \neq j} \mu_{k} \sigma_{j, j^{\prime}} \\
& \quad=\frac{\lambda p_{k}}{\gamma_{k}} \frac{z_{k, j, i-1}(t)-z_{k, j, i}(t)}{z_{k, i-1}(t)-z_{k, i}(t)}\left(z_{k, i-1}^{d}(t)-z_{k, i}^{d}(t)\right) \\
& \quad+\mu_{k} \sum_{j^{\prime}=1}^{J}\left(z_{k, j^{\prime}, i}(t) \sigma_{j^{\prime}, j}+z_{k, j^{\prime}, i+1}(t) \nu_{j^{\prime}} \alpha_{j}\right) \tag{3}
\end{align*}
$$

for $i>1$. For $i=1$ the intuition is as follows. The arrival rate in a class k server is $\lambda p_{k} / \gamma_{k}$ and $z_{k, j, 1}(t)$ increases when not all of the d selected servers are busy (probability $\left(1-z_{k, 1}^{d}(t)\right)$) and service starts in phase j (probability α_{j}). For $i>1$, $z_{k, j, i}(t)$ increases when all d selected servers have at least $i-1$ jobs and not all have i jobs or more, this is represented by the probability $\left(z_{k, i-1}^{d}(t)-z_{k, i}^{d}(t)\right)$. The server that gets the job has to be in phase j, which is represented by the probability $\frac{z_{k, j, i-1}(t)-z_{k, j, i}(t)}{z_{k, i-1}(t)-z_{k, i}(t)}$.

For $i \geq 1, z_{k, j, i}(t)$ decreases when a job completion occurs in a class k server with exactly i jobs that is in phase j (with rate $\mu_{k} \nu_{j}$). It also decreases when a server in phase j with at least $i+1$ jobs has a job completion and starts processing the next job in phase $j^{\prime} \neq j$ (with rate $\mu_{k} \nu_{j}\left(1-\alpha_{j}\right)$) or a server with at least i jobs changes its phase from j to $j^{\prime} \neq j$ (with rate $\mu_{k} \sigma_{j, j^{\prime}}$). Finally, $z_{k, j, i}(t)$ increases when a server in phase $j^{\prime} \neq j$ with $i+1$ or more jobs completes
a job and start processing the next job in phase j (with rate $\mu_{k} \nu_{j^{\prime}} \alpha_{j}$) or a server with at least i jobs changes its phase from $j^{\prime} \neq j$ to j (with rate $\mu_{k} \sigma_{j^{\prime}, j}$).

Numerical evaluation: The queue length distribution of the mean field model, characterized by (2-3), is determined via a forward Euler iteration. More specifically, we start with an empty system at time $t=0$, i.e., set $z_{k, j, i}(0)=0$ for all k, j and $i>0$, and compute

$$
z_{k, j, i}(t+\delta t)=z_{k, j, i}(t)+\delta t \frac{d z_{k, j, i}(t)}{d t}
$$

with a step size δt that is sufficiently small. This iteration is repeated until a fixed point π is found, i.e., until $d z_{k, j, i}(t) / d t \leq \epsilon$ for ϵ small (e.g., $\epsilon=10^{-9}$). The mean response time is subsequently determined via Little's law.

Asymptotic sensitivity: We end this subsection by showing that any fixed point π of the set of ODEs is sensitive to the higher moments of the job size distribution (as opposed to the system with PS service). Summing (2-3) over i and j yields

$$
\sum_{i \geq 1} d z_{k, i}(t) / d t=\mu_{k}\left(\rho_{k}-\sum_{j^{\prime}} z_{k, j^{\prime}, 1} \nu_{j^{\prime}}\right)
$$

Let ν be the column vector with its j-th entry equal to ν_{j} and denote β_{j} as the j-th entry of the unique row vector β for which $\beta(S+\nu \alpha)=0$ and $\sum_{j} \beta_{j}=1$ holds. It is easy to check that $\beta=\alpha(-S)^{-1}$ and therefore $1 /(\beta \nu)$ is the mean job duration. If we now assume asymptotic insensitivity, that is, $\pi_{k, j, i}$ can be written as $\pi_{k, i} \beta_{j}$, where $\pi_{k, i}$ is the fixed point of the set of ODEs in case of exponential job sizes with load ρ_{k}, then (3) implies

$$
\begin{align*}
0 & =\frac{\lambda p_{k}}{\gamma_{k}} \beta_{j}\left(\pi_{k, i-1}^{d}-\pi_{k, i}^{d}\right)+\mu_{k}\left(\pi_{k, i}(\beta S)_{j}+\pi_{k, i+1}(\beta \nu) \alpha_{j}\right) \\
& =\frac{\lambda p_{k}}{\gamma_{k}} \beta_{j}\left(\pi_{k, i-1}^{d}-\pi_{k, i}^{d}\right)-\mu_{k}\left(\pi_{k, i}-\pi_{k, i+1}\right)(\beta \nu) \alpha_{j} \tag{4}
\end{align*}
$$

with $\beta \nu=1$. As $\pi_{k, i}$ is the fixed point of the set of ODEs in case of exponential job sizes with load ρ_{k}, we have

$$
\begin{equation*}
0=\frac{\lambda p_{k}}{\gamma_{k}}\left(\pi_{k, i-1}^{d}-\pi_{k, i}^{d}\right)-\mu_{k}\left(\pi_{k, i}-\pi_{k, i+1}\right) . \tag{5}
\end{equation*}
$$

Hence, (4) holds if and only if $\beta_{j}=\alpha_{j}$ for all $j \in\{1, \ldots, J\}$. However, when $\beta=\alpha$ one finds that the probability $\alpha e^{S x} e$ that the job size exceeds x can be written as

$$
\alpha e^{S x} e=\sum_{s=0}^{\infty} \alpha S^{s} e x^{s} / s!=\sum_{s=0}^{\infty}(-\beta \nu)^{s} x^{s} / s!=e^{-\beta \nu x}
$$

meaning the job sizes are exponential with mean $1 /(\beta \nu)$. Thus for any phasetype distribution that is not a redundant ${ }^{2}$ representation of the exponential distribution $\pi_{k, i} \beta_{j}$ is not a fixed point (which would be the case if the system was asymptotically insensitive as in the PS service case).

4.2 Theoretical support

Let $\mathcal{J}=\{1, \ldots, J\}$ and denote the set of ODEs given by (2-3) as $d z_{k, j, i}(t) / d t=F_{k, j, i}\left(\boldsymbol{z}_{k}(t)\right)$, where $\boldsymbol{z}_{k}(t)=\left(\boldsymbol{z}_{k, 1}(t), \boldsymbol{z}_{k, 2}(t), \ldots\right)$ and $\boldsymbol{z}_{k, i}(t)=$ $\left(z_{k, 1, i}(t), \ldots, z_{k, J, i}(t)\right)$. Define the space $E^{J}=\left\{\left(x_{j, i}\right)_{j \in \mathcal{J}, i \geq 1} \mid 1 \geq x_{j, 1} \geq x_{j, 2} \geq\right.$ $\left.\ldots \geq 0 ; 1 \geq \sum_{j \in \mathcal{J}} x_{j, 1}\right\}$. Let w be the metric defined on $E^{\bar{J}}$ by setting

$$
w(\boldsymbol{x}, \boldsymbol{y})=\sup _{j \in \mathcal{J}} \sup _{i \geq 1} \frac{\left|x_{j, i}-y_{j, i}\right|}{(i+1)^{2}}
$$

Proposition $1\left(E^{J}, w\right)$ is a compact metric space.
Proof. By Tychonoff's theorem any sequence $\left(\boldsymbol{x}_{n}\right)_{n}$ in E^{J} has a subsequence $\left(\boldsymbol{x}_{n_{m}}\right)_{m}$ that converges pointwise to some limit $\boldsymbol{x}^{*} \in E^{J}$. We argue that this subsequence also converges to \boldsymbol{x}^{*} under the metric w which proves compactness. For any i we can pick m^{\prime} large enough such that for $m \geq m^{\prime}$ we have

$$
\sup _{j \in \mathcal{J}} \frac{\left|\left(x_{n_{m}}\right)_{j, i^{\prime}}-x_{j, i^{\prime}}^{*}\right|}{\left(i^{\prime}+1\right)^{2}} \leq 1 /(i+1)^{2}
$$

for $1 \leq i^{\prime} \leq i$ due to the pointwise convergence. Further

$$
\sup _{j \in \mathcal{J}} \frac{\left|\left(x_{n_{m}}\right)_{j, i^{\prime}}-x_{j, i^{\prime}}^{*}\right|}{\left(i^{\prime}+1\right)^{2}} \leq 1 /\left(i^{\prime}+1\right)^{2}<1 /(i+1)^{2}
$$

for any m when $i<i^{\prime}$ as $\left|\left(x_{n_{m}}\right)_{j, i^{\prime}}-x_{j, i^{\prime}}^{*}\right| \leq 1$.
The next proposition shows that $\boldsymbol{F}_{k}(\boldsymbol{x}): E^{J} \rightarrow E^{J}$ is Lipschitz, that is, there exists a constant L_{k} such that $w\left(\boldsymbol{F}_{k}(\boldsymbol{x}), \boldsymbol{F}_{k}(\boldsymbol{y})\right) \leq L_{k} w(\boldsymbol{x}, \boldsymbol{y})$. As $\left(E^{J}, w\right)$ is compact it is a Banach space and the Lipschitz property implies that the set of ODEs (2-3) has a unique solution $z_{k, j, i}(t)$ for any given initial state $\left(z_{k, j, i}(0)\right)_{j \in \mathcal{J}, i \geq 1} \in E^{J}$ and this solution is continuous in t and the initial state.

Proposition $2 F_{k}(\boldsymbol{x})$ is Lipschitz with constant $L_{k}=3 J \mu_{k} \max _{j}\left(-\sigma_{j, j}\right)+$ $\lambda p_{k}\left(2+d J+2 J d^{2}\right) / \gamma_{k}$ on $\left(E^{J}, w\right)$.

[^1]Proof. We make repeated use of the inequality $\left|a_{1}^{m_{1}} a_{2}^{m_{2}}-b_{1}^{m_{1}} b_{2}^{m_{2}}\right| \leq m_{1} \mid a_{1}-$ $b_{1}\left|+m_{2}\right| a_{2}-b_{2} \mid$ for $0 \leq a_{1}, a_{2}, b_{1}, b_{2} \leq 1$ and $m_{1}, m_{2} \in\{1,2, \ldots\}$. Due to (2-3) one finds

$$
\begin{gathered}
w\left(\boldsymbol{F}_{k}(\boldsymbol{x}), \boldsymbol{F}_{k}(\boldsymbol{y})\right) \leq 3 J \mu_{k} \max _{j}\left(-\sigma_{j, j}\right) w(\boldsymbol{x}, \boldsymbol{y})+\frac{\lambda p_{k}}{\gamma_{k}} d J w(\boldsymbol{x}, \boldsymbol{y})+\frac{\lambda p_{k}}{\gamma_{k}} 2 w(\boldsymbol{x}, \boldsymbol{y}) \\
+\frac{\lambda p_{k}}{\gamma_{k}} \sup _{i>1} \frac{1}{i+1}\left|\frac{x_{k, i-1}^{d}-x_{k, i}^{d}}{x_{k, i-1}-x_{k, i}}-\frac{y_{k, i-1}^{d}-y_{k, i}^{d}}{y_{k, i-1}-y_{k, i}}\right|
\end{gathered}
$$

As $\left(x_{k, i-1}^{d}-x_{k, i}^{d}\right) /\left(x_{k, i-1}-x_{k, i}\right)=\sum_{m=0}^{d-1} x_{k, i-1}^{m} x_{k, i}^{d-1-m}$ we get

$$
\begin{aligned}
\sup _{i>1} \frac{1}{i+1} & \left|\frac{x_{k, i-1}^{d}-x_{k, i}^{d}}{x_{k, i-1}-x_{k, i}}-\frac{y_{k, i-1}^{d}-y_{k, i}^{d}}{y_{k, i-1}-y_{k, i}}\right| \\
& \leq \sup _{i>1} \sum_{m=0}^{d-1} \frac{\left|x_{k, i-1}^{m} x_{k, i}^{d-1-m}-y_{k, i-1}^{m} y_{k, i}^{d-1-m}\right|}{(i+1)^{2}} \\
& \leq 2 d^{2} \sup _{i>1} \frac{\left|x_{k, i}-y_{k, i}\right|}{i+1} \leq 2 J d^{2} w(\boldsymbol{x}, \boldsymbol{y}) .
\end{aligned}
$$

Let $\bar{E}^{J}=\left\{\left(x_{j, i}\right)_{j \in \mathcal{J}, i \geq 1} \in E^{J} \mid \sum_{i>0} \sum_{j=1}^{J} x_{j, i}<\infty\right\}$, then we have the following result:

Theorem 1. Let $\boldsymbol{x}(0) \in \bar{E}^{J}$ and assume $\lim _{N \rightarrow \infty} Z_{k, j, i}^{(N)}(0)=x_{j, i}(0)$, then

$$
\lim _{N \rightarrow \infty} \sup _{u \leq t} \sup _{j \in \mathcal{J}} \sup _{i \geq 1} \frac{\left|Z_{k, j, i}^{(N)}(u)-z_{k, j, i}(u)\right|}{(i+1)^{2}}=0 \quad \text { a.s., }
$$

for any fixed t, where $\boldsymbol{z}(u)$ is the unique solution of the set of ODEs given by (2-3) with $z_{k, j, i}(0)=x_{j, i}(0)$.

Proof. The Markov chain $Z_{k, j, i}^{(N)}(t)$, for $N \geq 1$, is a density dependent population process as defined in [9, Chapter 11]. Theorem 2.1 in [9, Chapter 11] establishes our result provided that two conditions (being (2.6) and (2.7) in [9, Chapter 11]) apply for any $K \subset \bar{E}^{J}$ compact. We will argue that both conditions are valid on E^{J} which implies that they apply to any compact subset of \bar{E}^{J}.

The first condition demands that

$$
\sum_{\ell \in L} w(\boldsymbol{\ell}, 0) \sup _{\boldsymbol{x} \in E^{J}} \beta_{\boldsymbol{\ell}}(\boldsymbol{x})<\infty
$$

where L is the set of all transitions and $\beta_{\boldsymbol{\ell}}(\boldsymbol{x})$ is the scaled transition rate of transition $\boldsymbol{\ell}$ in state \boldsymbol{x}. In our system there are three types of transitions (in a queue of length $i>0$): arrivals, changes in the service phase and service completions. Arrivals in a queue of length i (in service phase j) increase the
queue length by one and the vector ℓ corresponding to an arrival therefore has two non-zero entries: being $\ell_{j, i}$ which equals -1 and $\ell_{j, i+1}$ which equals +1 . Hence, $w(\ell, 0)=1 /(i+1)^{2}$. Similarly for a change of service phase and a service completion in a queue of length i we find $w(\ell, 0)=1 /(i+1)^{2}$.

The scaled rate of any of these transitions for any $\boldsymbol{x} \in E^{J}$ is bounded by $\lambda p_{k} / \gamma_{k}$ (for arrivals) and $\mu_{k} \max _{j}\left(-\sigma_{j, j}\right)$ (for phase changes or service completions). Thus,

$$
\begin{aligned}
& \sum_{\ell \in L} w(\boldsymbol{\ell}, 0) \sup _{\boldsymbol{x} \in E^{J}} \beta_{\boldsymbol{\ell}}(\boldsymbol{x}) \leq \\
& \left(J \lambda p_{k} / \gamma_{k}+J^{2} \mu_{k} \max _{j}\left(-\sigma_{j, j}\right)\right) \sum_{i \geq 0} 1 /(i+1)^{2}<\infty
\end{aligned}
$$

The second condition demands that $F_{k}(\boldsymbol{x})$ is Lipschitz, which was shown in Proposition 2.

The above theorem indicates that the sample paths of the Markov chains converge to the unique solution of the set of ODEs given by (2-3) as the number of queues N tends to infinity over any finite time scale. One may wonder whether this convergence extends to the stationary regime, meaning whether the steady state measures of the Markov chains weakly converge to the Dirac measure of a fixed point of the set of ODEs. While we believe this to be the case (as indicated in next section that numerically validates this convergence), proving such a result is hard and considered to be out of scope of the current paper.

4.3 Validation

For the model validation we present only results for $K=2$ types of servers, similar results were obtained for $K>2$. Let $\mu_{r}=\frac{\mu_{1}}{\mu_{2}}$ and recall that that $\gamma_{1} \mu_{1}+\gamma_{2} \mu_{2}=1$. Further assume that $\mu_{1}>\mu_{2}$, meaning class 1 servers are the fast servers and class 2 the slow servers. As stated before the mean job size is assumed to be 1. Let C_{X}^{2} be the squared coefficient of variation of the job size distribution. Whenever $C_{X}^{2}=1 / k$ for some $k \in\{2,3, \ldots\}$, we model the job size distribution as an Erlang distribution with k phases. For $C_{X}^{2} \geq 1$, we used a hyperexponential (HEXP) distribution with parameters ($\alpha_{1}, \nu_{1}, \nu_{2}$), thus with probability α_{i} a job is a type- i job and has an exponential duration with mean $1 / \nu_{i}$, for $i=1,2$ (where $\alpha_{2}=1-\alpha_{1}$). When $C_{X}^{2} \geq 1$ we additionally match the fraction f of the workload that is contributed by the type-1 jobs (i.e., $f=\alpha_{1} / \nu_{1}$). If we assume that $\nu_{1} \gg \nu_{2}$ this can be interpreted as stating that a fraction f of the workload is contributed by the short jobs. The mean (equal to 1), C_{X}^{2} and fraction f can be matched as follows:

$$
\begin{align*}
& \nu_{1}=\frac{C_{X}^{2}+(4 f-1)+\sqrt{\left(C_{X}^{2}-1\right)\left(C_{X}^{2}-1+8 f \bar{f}\right)}}{2 f\left(C_{X}^{2}+1\right)} \tag{6}\\
& \nu_{2}=\frac{C_{X}^{2}+(4 \bar{f}-1)-\sqrt{\left(C_{X}^{2}-1\right)\left(C_{X}^{2}-1+8 f \bar{f}\right)}}{2 \bar{f}\left(C_{X}^{2}+1\right)} \tag{7}
\end{align*}
$$

Case	λ	μ_{r}	γ_{1}	d	p_{1}	C_{X}^{2}
1	0.26754	1.34	0.6	2	0.1692	0.25
2	0.4116	2.8116	0.4	3	0.79378	0.25
3	0.29374	1.3922	0.7	4	0.47121	0.5
4	0.57975	1.9541	0.5	5	0.53563	0.125
5	0.18995	1.3764	0.3	3	0.43491	0.125
6	0.66992	2.2192	0.6	3	0.71812	0.5
7	0.65294	2.0177	0.4	5	0.57074	4
8	0.24765	1.7567	0.6	2	0.63567	2
9	0.75905	1.6631	0.3	3	0.38569	8
10	0.13251	2.2569	0.5	4	0.22224	4
11	0.78211	2.9592	0.6	5	0.95466	2
12	0.25638	2.8824	0.3	5	0.24434	8

Table 1: Parameter settings used to validate the accuracy of the mean field model.
with $\bar{f}=1-f$ and $\alpha_{1}=\nu_{1} f$.
To validate the mean field model, the ODE based mean response times are compared to a discrete event simulation of the system for various parameter settings listed in Table 1. The discrete event simulation has an additional parameter N which is the size of the system. We let $N \in\{40,80,160,320,640,1280\}$ and expect that the mean field model becomes more accurate as N increases. In fact due to the results in [11], the expected response time predicted by the mean field model is $1 / N$-accurate, which means that multiplying N by 2 should approximately reduce the relative error by a factor 2 . The first six scenarios considered have Erlang distributed job sizes, the last six scenarios have hyperexponentially distributed job sizes where the fraction $f=1 / 2$ (for $f \neq 1 / 2$ similar results were obtained). Table 2 shows the relative error of the mean field model and the associated 95% confidence interval of the simulation runs. In all cases the accuracy improves with N and the relative error is below or close to 10^{-2} for $N \geq 160$. We note that for small N the relative error can be further reduced by relying on the refined mean field approximation introduced in [12].

5 Numerical results

We mainly focus on the case with $K=2$ types of servers and discuss settings with more than two types of servers in subsection 5.4.

5.1 Optimal p_{1}

In case of exponential job sizes we know that the mean response time is a convex function of p_{1} as stated in Section 2. Various numerical experiments (see Figure 1 for one specific example) suggest that the mean response time is still convex in p_{1} in case of non-exponential service times. Note that as λ approaches 1,

Case	$N=40(95 \%$ conf. $)$	$N=80(95 \%$ conf. $)$	$N=160(95 \%$ conf. $)$
1	$1.321 \mathrm{e}-2(\pm 5.901 \mathrm{e}-5) 6.439 \mathrm{e}-3(\pm 3.939 \mathrm{e}-5) 3.225 \mathrm{e}-3(\pm 3.013 \mathrm{e}-5)$		
2	$5.484 \mathrm{e}-3(\pm 3.682 \mathrm{e}-5) 2.646 \mathrm{e}-3(\pm 2.505 \mathrm{e}-5) 1.285 \mathrm{e}-3(\pm 1.546 \mathrm{e}-5)$		
3	$2.229 \mathrm{e}-2(\pm 5.484 \mathrm{e}-5) 1.060 \mathrm{e}-2(\pm 3.433 \mathrm{e}-5) 5.277 \mathrm{e}-3(\pm 2.656 \mathrm{e}-5)$		
4	$2.290 \mathrm{e}-2(\pm 4.309 \mathrm{e}-5) 1.078 \mathrm{e}-2(\pm 3.063 \mathrm{e}-5) 5.239 \mathrm{e}-3(\pm 2.331 \mathrm{e}-5)$		
5	$7.873 \mathrm{e}-4(\pm 3.726 \mathrm{e}-5) 3.566 \mathrm{e}-4(\pm 2.547 \mathrm{e}-5) 1.819 \mathrm{e}-4(\pm 1.989 \mathrm{e}-5)$		
6	$3.038 \mathrm{e}-2(\pm 6.501 \mathrm{e}-5) 1.415 \mathrm{e}-2(\pm 4.541 \mathrm{e}-5) 6.720 \mathrm{e}-3(\pm 2.900 \mathrm{e}-5)$		
7	$5.163 \mathrm{e}-2(\pm 7.688 \mathrm{e}-4) 2.260 \mathrm{e}-2(\pm 7.466 \mathrm{e}-4) 1.114 \mathrm{e}-2(\pm 3.122 \mathrm{e}-4)$		
8	$3.935 \mathrm{e}-3(\pm 4.969 \mathrm{e}-4) 1.535 \mathrm{e}-3(\pm 3.217 \mathrm{e}-4) 9.654 \mathrm{e}-4(\pm 3.264 \mathrm{e}-4)$		
9	$9.580 \mathrm{e}-2(\pm 2.509 \mathrm{e}-3) 4.394 \mathrm{e}-2(\pm 1.804 \mathrm{e}-3) 1.937 \mathrm{e}-2(\pm 1.028 \mathrm{e}-3)$		
10	$8.466 \mathrm{e}-3(\pm 1.027 \mathrm{e}-3) 3.486 \mathrm{e}-3(\pm 7.692 \mathrm{e}-4) 2.000 \mathrm{e}-3(\pm 4.353 \mathrm{e}-4)$		
11	$1.631 \mathrm{e}-1(\pm 2.260 \mathrm{e}-3) 7.475 \mathrm{e}-2(\pm 1.102 \mathrm{e}-3) 3.594 \mathrm{e}-2(\pm 5.970 \mathrm{e}-4)$		
12	$1.630 \mathrm{e}-2(\pm 1.228 \mathrm{e}-3) 8.366 \mathrm{e}-3(\pm 7.925 \mathrm{e}-4) 3.983 \mathrm{e}-3(\pm 6.873 \mathrm{e}-4)$		
Case	$N=320(95 \%$ conf. $)$	$N=640(95 \% \mathrm{conf})$.	$N=1280(95 \% \mathrm{conf})$
1	$1.601 \mathrm{e}-3(\pm 1.742 \mathrm{e}-5) 8.157 \mathrm{e}-4(\pm 1.547 \mathrm{e}-5) 4.197 \mathrm{e}-4(\pm 1.081 \mathrm{e}-5)$		
2	$6.338 \mathrm{e}-4(\pm 1.225 \mathrm{e}-5) 3.003 \mathrm{e}-4(\pm 9.128 \mathrm{e}-6) 1.477 \mathrm{e}-4(\pm 7.971 \mathrm{e}-6)$		
3	$2.709 \mathrm{e}-3(\pm 1.710 \mathrm{e}-5) 1.429 \mathrm{e}-3(\pm 1.191 \mathrm{e}-5) 8.141 \mathrm{e}-4(\pm 1.066 \mathrm{e}-5)$		
4	$2.587 \mathrm{e}-3(\pm 1.304 \mathrm{e}-5) 1.290 \mathrm{e}-3(\pm 9.276 \mathrm{e}-6) 6.288 \mathrm{e}-4(\pm 1.115 \mathrm{e}-5)$		
5	$9.046 \mathrm{e}-5(\pm 1.415 \mathrm{e}-5) 3.764 \mathrm{e}-5(\pm 1.043 \mathrm{e}-5) 1.935 \mathrm{e}-5(\pm 5.237 \mathrm{e}-6)$		
6	$3.109 \mathrm{e}-3(\pm 1.994 \mathrm{e}-5) 1.387 \mathrm{e}-3(\pm 1.329 \mathrm{e}-5) 5.081 \mathrm{e}-4(\pm 1.880 \mathrm{e}-5)$		
7	$5.248 \mathrm{e}-3(\pm 2.872 \mathrm{e}-4) 2.691 \mathrm{e}-3(\pm 1.914 \mathrm{e}-4) 1.332 \mathrm{e}-3(\pm 1.746 \mathrm{e}-4)$		
8	$3.784 \mathrm{e}-4(\pm 2.446 \mathrm{e}-4) 2.082 \mathrm{e}-4(\pm 1.665 \mathrm{e}-4) 1.151 \mathrm{e}-4(\pm 1.212 \mathrm{e}-4)$		
9	$9.372 \mathrm{e}-3(\pm 6.956 \mathrm{e}-4) 5.681 \mathrm{e}-3(\pm 3.789 \mathrm{e}-4) 2.372 \mathrm{e}-3(\pm 3.195 \mathrm{e}-4)$		
10	$9.152 \mathrm{e}-4(\pm 4.019 \mathrm{e}-4) 5.060 \mathrm{e}-4(\pm 2.877 \mathrm{e}-4) 2.400 \mathrm{e}-4(\pm 1.696 \mathrm{e}-4)$		
11	$1.807 \mathrm{e}-2(\pm 4.032 \mathrm{e}-4) 1.012 \mathrm{e}-2(\pm 2.764 \mathrm{e}-4) 6.137 \mathrm{e}-3(\pm 2.767 \mathrm{e}-4)$		
12	$2.280 \mathrm{e}-3(\pm 3.967 \mathrm{e}-4) 1.166 \mathrm{e}-3(\pm 2.814 \mathrm{e}-4) 4.118 \mathrm{e}-4(\pm 1.546 \mathrm{e}-4)$		

Table 2: Relative error of the mean field model wrt simulation.
the system is only stable in a very narrow region around $p=\gamma_{1} \mu_{1}$ (which corresponds to a simple proportional assignment). Let $p_{\text {opt }}$ be the value of p_{1} for which the resulting mean response time is minimized. We now study the impact of the various system parameters on $p_{\text {opt }}$. In Section 5.2 we look at the relative increase in the mean response time when a suboptimal p_{1} is used.

Arrival rate λ : As illustrated in Figure $2 p_{\text {opt }}$ typically decreases as a function of λ (the squares mark the λ value for which the mean response time equals $1)$. This is expected as fewer jobs in the system implies that one can benefit from sending a larger fraction of the jobs to the fast servers. There are however exceptions, when the job sizes are highly variable and the number of choices is large (e.g., $C_{X}^{2}=8$ and $d=20$) the optimal p_{1} value may increase as a function of λ at high loads. For λ sufficiently small only the fast servers receive jobs and as $\lambda \rightarrow 1$ the load on both server types must be balanced to guarantee stability, i.e., p_{1} and p_{2} are such that $\frac{\lambda p_{1}}{\gamma_{1} \mu_{1}}=\frac{\lambda p_{2}}{\gamma_{2} \mu_{2}}$.

Job size variability C_{X}^{2} : When looking at the impact of the job size variability C_{X}^{2} in Figure 2, we note that $p_{\text {opt }}$ drops below 1 at lower rates λ when C_{X}^{2} increases.

Fig. 1: Mean response time as a function of p for $\gamma_{1}=\gamma_{2}=1 / 2, \mu_{r}=2, f=1 / 2$ and $C_{X}^{2}=4$.

This can be understood by noting that if all the jobs go to the fast servers and λ becomes large enough, some of the jobs start to experience queueing delays. When the job sizes are highly variable, there is a bigger risk of experiencing a long delay, thus it is advisable to start making use of the slow servers at smaller λ values.

For some parameter settings we see that more variable job sizes result in a lower $p_{o p t}$ for any arrival rate λ. This means that when job sizes become more variable, it is beneficial to reduce the fraction of the jobs assigned to the faster servers when minimizing mean response times. This rule is however not valid in all cases: in Figure 2b, where $d=5$ and $\mu_{r}=2$, we see that $p_{o p t}$ for $C_{X}^{2}=8$ is larger than the corresponding value for $C_{X}^{2}=4$ for some λ ranges. The cause lies in the fact that the curves of $p_{\text {opt }}$ start to oscillate notably for larger d values. These oscillations (that are also visible in Figure 1b) are probably caused by the fact that for larger d the tail probabilities of the queue length distribution decay very rapidly and depending on the precise value of λ a minor change in λ may cause a more significant change in the tail probabilities of either the fast or slow servers.

Number of choices d : Another observation from Figure 2 is that higher choices for d tend to increase the optimal value of p_{1}. When d increases the rate λ at which p_{1} drops below 1 always seems to increase. This can be understood by noting that increasing d implies that the likeliness of finding an idle fast server when all the jobs are assigned to the fast servers increases. Thus the risk of experiencing a queueing delay decreases with d and therefore assigning all the jobs to the fast servers remains optimal for larger λ values. The fact that $p_{\text {opt }}$ increases for increasing d is generally valid for small to medium loads, but does not remain valid for higher loads. For instance it is easily verified that when $\lambda=0.8$ the $p_{\text {opt }}$ for $d=2$ equals 0.7024 , while for $d=10$ it equals 0.6982 when the job sizes are exponentially distributed.

Fig. 2: Optimal choice of p_{1} as a function of λ for $\gamma_{1}=0.5, \mu_{r}=2, f=1 / 2$ and different values of C_{X}^{2}

Higher moments f : Figure 3 illustrates that the first two moments of the job size distribution do not suffice to determine the optimal split probability $p_{o p t}$, meaning there is no insensitivity with respect to the moments beyond the second moment and optimizing $p_{\text {opt }}$ in practice is therefore hard to achieve. The figure also indicates that the optimal fraction of jobs assigned to the fast servers is lower when a larger fraction of the workload consists of long jobs. This is intuitively clear: if a larger fraction $1-f$ of the load is contributed by the long jobs, there is a bigger risk for short jobs to be stuck behind a long job and therefore it is better to make more use of the slow servers.

System heterogeneity μ_{r} : We expect that $p_{\text {opt }}$ tends to increase as the system heterogeneity $\mu_{r}=\mu_{1} / \mu_{2}$ increases. Figure 4 confirms this intuition for the case with $d=10$ and 20 choices when $\gamma=f=1 / 2$ and $C_{X}^{2}=1$.

5.2 Accuracy of simple suboptimal policies

We start by depicting the mean response time for various settings of d, μ_{r} and C_{X}^{2} in Figure 5 when using the optimal splitting probability $p_{o p t}$. As expected

Fig. 3: Optimal $p_{\text {opt }}$ as a function of λ for $\gamma_{1}=\gamma_{2}=1 / 2$.

Fig. 4: Optimal choice of p_{1} as a function of λ for $\gamma_{1}=0.5, f=1 / 2, C_{X}^{2}=1$ and different values of $\mu_{r}=\mu_{1} / \mu_{2}$.
the mean response time increases with the job size variability, decreases as a function of d and μ_{r}, and drops below 1 for sufficiently low loads as the mean service time of the fast servers is less than one.

More importantly, one may wonder how much gain in the mean response time one achieves by optimizing p_{1}. For this purpose we now study the relative gain in the mean response time of the optimal p_{1} with the following three less complex assignment policies:

- Proportional: in this case a job is assigned to class k with probability

$$
p_{k}=\frac{\gamma_{k} \mu_{k}}{\sum_{j=1}^{K} \gamma_{j} \mu_{j}}
$$

such that each of the K classes experiences the same load.

- Random within a class: in this case we use the optimized probability p_{k} by assuming that a random server is selected within a class and job lengths are

(c) $d=2$ and $\mu_{r}=3$

Fig. 5: Optimal mean response times as a function of λ for $\gamma_{1}=0.5$ and $f=1 / 2$ for different values of C_{X}^{2}.
exponential. Hence, p_{k} is given by the explicit formula in [3,10], which can be written as

$$
\begin{equation*}
p_{k}=\frac{1}{\lambda} \frac{\gamma_{k} \mu_{k}}{\sum_{j=1}^{K} \gamma_{j} \mu_{j}}+\left(1-\frac{1}{\lambda}\right) \frac{\gamma_{k} \sqrt{\mu_{k}}}{\sum_{j=1}^{K} \gamma_{j} \sqrt{\mu_{j}}}, \tag{8}
\end{equation*}
$$

where p_{k} is set to one (zero) when the above formula results in a p_{k} larger than one (less than zero). Note as λ approaches one, these probabilities converge to the proportional scheme.

- Exponential job size: in this case we optimze p_{1} by solving the convex optimization problem of (1). Hence we optimize assuming that the job lengths are exponential.
Note that for all three policies the probabilities p_{1}, \ldots, p_{K} only depend on the server speeds and the mean job size (which equals one), either by means of an explicit formula or via a simple convex optimization problem. When $K=2$ we denote p_{1} for the above three policies as $p_{\text {prop }}, p_{\text {rand }}$ and $p_{\text {exp }}$. Their corresponding mean response times are denoted as $\mathrm{mrt}_{\text {prop }}, \mathrm{mrt}_{\text {rand }}$ and $\mathrm{mrt}_{\text {exp }}$, respectively.

Fig. 6: Ratio $\mathrm{mrt}_{\text {prop }} / \mathrm{mrt}_{\mathrm{opt}}$ as a function of λ with $\mu_{r}=2$.
$p_{\text {prop }}$ versus $p_{\text {opt }}$: Figure 6 depicts the relative increase in the mean response time if we replace the optimal policy (i.e., p_{1} value) with a simple proportional assignment for $\mu_{r}=2$. Similar results were obtained for other choices of μ_{r}. While the proportional scheme is very simple, it results in poor performance for low to medium loads and this loss in performance compared to the optimal policy grows as the number of choices d increases (see Figure 6 b versus 6 c). This is as expected as the optimal strategy under low load exists in sending all the jobs to the fast servers, while the proportional scheme balances the load among the servers.
$p_{\text {rand }}$ versus $p_{\text {opt }}$: Figure 7 depicts the relative increase in the mean response time when relying on (8) instead of using the optimal value for p_{k}. For small λ both policies (that is, the optimal and the random within a class policy) assign all the jobs to the fast servers. For somewhat higher arrival rates (at about 0.2 in Figure 7) the random within a class policy starts utilizing the slower servers as well, while the optimal strategy continues to assign all the jobs to the fast servers. Indeed, when all the jobs are assigned to the fast servers, the risk of assigning a job to a busy server increases as d decreases, thus the smaller d the sooner one needs to utilize the slow servers. Figure 7 illustrates that assuming a

Fig. 7: Ratio $\mathrm{mrt}_{\mathrm{rand}} / \mathrm{mrt}_{\mathrm{opt}}$ as a function of λ with $\mu_{r}=2$.
random assignment (i.e., $d=1$) results in a performance loss of up to 15% that tends to increase with the number of choices d and that decreases when the job sizes become more variable. The latter can be understood by looking at Figure 2 which indicates that under low to medium loads, $p_{\text {opt }}$ increases as a function of d and decreases as a function of C_{X}^{2}. Therefore $p_{\text {opt }}$ and $p_{\text {rand }}$ are more alike for small d and large C_{X}^{2}. We note that in the limit as λ goes to one, both policies use proportional assignment and thus perform alike.

When comparing the relative errors of the proportional scheme with the random within a class policy (compare Figures 6 and 7), we see that the latter results in lower relative errors. We should however note that the proportional scheme is easier to implement as it does require an estimation of the arrival rate λ.
$p_{\text {exp }}$ versus $p_{\text {opt }}$: Figure 8 studies the relative increase in the mean response time when we only neglect the higher moments of the job size distribution when optimizing p_{1}. When $d=5$ this results in errors below 5% and the error is only significant in a fairly small load region. Thus for large enough d, taking the job size variability into account is not paramount (this was confirmed for other μ_{r} values). When $d=2$ the relative increase does surge up to 12% in case of highly

Fig. 8: Ratio mrt ${ }_{\exp } / \mathrm{mrt}_{\mathrm{opt}}$ as a function of λ with $\mu_{r}=2$.
variable job sizes when λ is close to 0.35 . The load at which the relative error is the highest corresponds to the largest arrival rate λ for which $p_{\text {exp }}$ still equals 1. Thus, for highly variable job sizes the region where the relative error surges up corresponds to the settings where $p_{o p t}$ drops below 1 , but $p_{\text {exp }}$ remains 1 .

Note that solving the convex optimization problem (1) or computing (8) both requires one to estimate the arrival rate λ. When comparing Figures 7 and 8, it is clear that solving the convex optimization problem (which can be done in a fraction of a second) is far more effective than relying on (8) for $d=5$, i.e., larger d values. Indeed, the convex optimization problem takes the value of d into account and therefore causes smaller errors for d large. A somewhat unexpected result is that (8) does result in smaller relative error when $d=2$, in case of medium loads and highly variable job sizes. The explanation is that when computing $p_{\text {rand }}$ we make two errors that mostly cancel each other in this case: we assume that $d=1$ and that jobs have exponential sizes. For $p_{\text {exp }}$ only the latter error is present.

Fig. 9: Ratio $\mathrm{mrt}_{\mathrm{f}} / \mathrm{mrt}_{\mathrm{opt}}$ as a function of λ.

5.3 Impact of the 3 rd and higher moments of the job size variability

In the previous section we studied the impact of neglecting the job size variability when optimizing p by comparing the performance gain obtained by using $p_{o p t}$ instead of $p_{\text {exp }}$. In this section we look at the impact of the higher moments (3rd and beyond). To investigate their impact we consider a hyperexponential distribution as defined in Section 4.3, where we matched the mean $E X=1$, the squared coefficient of variation C_{X}^{2} and the fraction f of the workload contributed by the short jobs. Note that changing f influences the higher moments of the job size distribution, but not the mean or variance.

To assess the impact of the higher moments we therefore consider job size distributions with $f \neq 1 / 2$ and compare the mean response time in a system with p_{1} optimized for $f=1 / 2$, denoted as p_{f}, with the optimal p_{1}. Figure 9 depicts the relative gain obtained by using the optimal p_{1} instead of p_{f} when $C_{X}^{2}=8$ (smaller C_{X}^{2} values result in even smaller relative gains) for $f=0.1$ to 0.4 . While the shape of these curves is very unpredictable and irregular, it is also clear that the relative gain is very minor and less than 2.5% in all cases considered. This indicates that there is little use in taking these higher moments

Fig. 10: Relative increase in mean response time when a suboptimal policy is used as a function of the number K of server types for $\lambda=0.75, d=2$ and $\mu_{1} / \mu_{K}=2$.
into account when optimizing p_{1} (which is good as they are harder to estimate in practice compared to the mean or variance).

5.4 Beyond 2 server types

In the previous subsections we assumed that the system consists of two types of servers only. In this section we illustrate that as the number of server types K increases, the differences between the mean response time of the simple policies considered in subsection 5.2 and the optimal choice of p_{1}, \ldots, p_{K} decreases. In other words, the scenario with $K=2$ in a way provides an upper bound on how much one gains by optimizing the p_{k} probabilities

In Figure 10 we set $d=2, \lambda=0.75, \gamma_{k}=1 / K$ and ordered the server types such that $\mu_{1}>\mu_{2}>\ldots \mu_{K}$ with $\mu_{1} / \mu_{K}=2$ and $\mu_{k+1}-\mu_{k}=\mu_{k}-\mu_{k-1}$ for $k=2, \ldots, K-1$. We depict the increase in the mean job response time when the proportional and exponential job size policies are used instead of the optimal p_{k} values with both low and high job size variability (with $f=1 / 2$). The results confirm our intuition that this increase tends to diminish as more server types K are introduced.

6 Conclusion

A class of load balancing schemes for a heterogeneous set of FCFS servers is analyzed. The servers are partitioned in K classes of servers: within each class all servers are identical, while servers belonging to different classes only differ in their server speed. Jobs are assigned to a server class via randomization and a power-of-d choices rule is used to select a server within a class. We developed a mean field model to estimate the mean job response time in a system with many
servers. The model was supported by some theoretical results and validated using simulation.

While the impact of the different system parameters (like the job size variability or number of choices d) on the optimal randomization probabilities is not always easy to predict (due to oscillations in some of the curves), the main insight provided is that only taking the mean job sizes into account when determining the randomization probabilities (via convex optimization) often results in a very limited loss in performance compared to the optimal probabilities.

The load balancing schemes considered in this paper assume that the job lengths are not known during the job assignment (by the job dispatcher). Further work may exist in studying load balancing schemes that are size aware in combination with a power-of-d choices rule.

References

1. A. K. A. Mukhopadhyay and R. R. Mazumdar. Randomized assignment of jobs to servers in heterogeneous clusters of shared servers for low delay. Stochastic Systems, 6(1):90-131, 2016.
2. R. Aghajani, X. Li, and K. Ramanan. The pde method for the analysis of randomized load balancing networks. Proc. ACM Meas. Anal. Comput. Syst., 1(2):38:138:28, Dec. 2017.
3. E. Altman, U. Ayesta, and B. Prabhu. Load balancing in processor sharing systems. In Proceedings of the 3rd International Conference on Performance Evaluation Methodologies and Tools, ValueTools '08, pages 12:1-12:10, 2008.
4. E. Bachmat and H. Sarfati. Analysis of SITA policies. Performance Evaluation, 67(2):102-120, 2010.
5. F. Bause, P. Buchholz, and J. Kriege. Profido - the processes fitting toolkit dortmund. In 2010 Seventh International Conference on the Quantitative Evaluation of Systems, pages 87-96, Sept 2010.
6. M. Bramson. Stability of join the shortest queue networks. Ann. Appl. Probab., 21(4):1568-1625, 2011.
7. M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing with general service time distributions. In ACM SIGMETRICS 2010, pages 275-286, 2010.
8. M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic independence of queues under randomized load balancing. Queueing Syst., 71(3):247-292, 2012.
9. S. Ethier and T. Kurtz. Markov processes: characterization and convergence. Wiley, 1986.
10. A. Gandhi, X. Zhang, and N. Mittal. HALO: heterogeneity-aware load balancing. In 23rd IEEE MASCOTS 2015, Atlanta, GA, USA, October 5-7, 2015, pages 242251, 2015.
11. N. Gast. Expected values estimated via mean-field approximation are $1 / \mathrm{n}$-accurate. Proc. ACM Meas. Anal. Comput. Syst., 1(1):17:1-17:26, June 2017.
12. N. Gast and B. Van Houdt. A refined mean field approximation. Proc. ACM Meas. Anal. Comput. Syst., 1(2):33:1-33:28, Dec. 2017.
13. V. Gupta, M. Harchol Balter, K. Sigman, and W. Whitt. Analysis of join-the-shortest-queue routing for web server farms. Performance Evaluation, 64:10621081, 2007.
14. M. Harchol-Balter. Task assignment with unknown duration. J. ACM, 49(2):260288, Mar. 2002.
15. M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task assignment policy for a distributed server system. Journal of Parallel and Distributed Computing, 59(2):204-228, 1999.
16. M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young. Surprising results on task assignment in server farms with high-variability workloads. SIGMETRICS Perform. Eval. Rev., 37(1):287-298, June 2009.
17. G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods and stochastic modeling. SIAM, Philadelphia, 1999.
18. Q. Li, J. C. S. Lui, and Y. Wang. A matrix-analytic solution for randomized load balancing models with PH service times. In IFIP Performance, pages 240-253, 2011.
19. M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst., 12:1094-1104, October 2001.
20. A. Mukhopadhyay and R. R. Mazumdar. Rate-based randomized routing in large heterogeneous processor sharing systems. In 26th International Teletraffic Congress (ITC), Karlskrona, Sweden, pages 1-9, 2014.
21. J. F. Pérez and G. Riaño. jphase: An object-oriented tool for modeling phasetype distributions. In Proceeding from the 2006 Workshop on Tools for Solving Structured Markov Chains, SMCtools '06, New York, NY, USA, 2006. ACM.
22. N. Vvedenskaya, R. Dobrushin, and F. Karpelevich. Queueing system with selection of the shortest of two queues: an asymptotic approach. Problemy Peredachi Informatsii, 32:15-27, 1996.

[^0]: ${ }^{1}$ The asymptotic insensitivity under PS was proven given the ansatz of asymptotic independence of the queue length for any finite subset of queues.

[^1]: ${ }^{2}$ Redundant representations are order J phase-type distributions (α, S) that can be represented by a phase-type distribution of a smaller order. For instance, any order $J>1$ phase type distribution with S equal to minus the identity matrix is a redundant representation of the exponential distribution with mean one.

