Skip to main content

Advertisement

Log in

HNCcorr: combinatorial optimization for neuron identification

  • S.I. : OR in Neuroscience II
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We present a combinatorial algorithm for cell detection in two-photon calcium imaging. Calcium imaging is a modern technique used by neuroscientists for recording movies of in-vivo neuronal activity at cellular resolution. The proposed algorithm, named HNCcorr, builds on the combinatorial clustering problem Hochbaum’s Normalized Cut (HNC). HNC is a model that trades off two goals: One goal is that the cluster has low similarity to the remaining objects. The second goal is that the cluster is highly similar to itself. The HNC model is closely related to the Normalized Cut problem of Shi and Malik, a well-known problem in image segmentation. However, whereas Normalized Cut is an NP-hard problem, HNC is solvable in polynomial time. The neuronal cell detection in calcium imaging movies is viewed here as a clustering problem. HNCcorr utilizes HNC to detect cells in these movies as coherent clusters of pixels that are highly distinct from the remaining pixels. HNCcorr guarantees, unlike existing methodologies for cell identification, a globally optimal solution to the underlying optimization problem. Of independent interest is a novel method, named similarity-squared, that is devised here for measuring similarity. In an experimental study on data from the Neurofinder cell identification benchmark, HNCcorr is a top performer. In particular, it achieves a higher average score than two frequently used matrix factorization algorithms. The Python and Matlab implementations of HNCcorr used here are publicly available. The use of HNCcorr demonstrates that combinatorial optimization is a valuable tool for neuroscience and other biomedical disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. See e.g. issues 16 and 24 on https://github.com/codeneuro/neurofinder.

References

  • Apthorpe, N., Riordan, A., Aguilar, R., Homann, J., Gu, Y., Tank, D., & Seung, H.S. (2016). Automatic neuron detection in calcium imaging data using convolutional networks. In Advances in neural information processing systems (pp. 3270–3278)

  • Baumann, P., Hochbaum, D.S., & Spaen, Q. (2016). Sparse-reduced computation: Enabling mining of massively-large data sets. In Proceedings of the 5th international conference on pattern recognition applications and methods, SCITEPRESS, Rome, Italy (pp. 224–231)

  • Baumann, P., Hochbaum, D.S., & Spaen, Q. (2017). High-performance geometric algorithms for sparse computation in big data analytics. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 546–555)

  • Baumann, P., Hochbaum, D., & Yang, Y. (2019). A comparative study of the leading machine learning techniques and two new optimization algorithms. European Journal of Operational Research, 272(3), 1041–1057.

    Article  Google Scholar 

  • Berens, P., Freeman, J., Deneux, T., Chenkov, N., McColgan, T., Speiser, A., et al. (2018). Community-based benchmarking improves spike rate inference from two-photon calcium imaging data. PLoS Computational Biology, 14(5), e1006157.

    Article  Google Scholar 

  • CodeNeuro (2016). The neurofinder challenge. http://neurofinder.codeneuro.org/. Accessed June 01, 2018

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Dembczyński, K., Kotłowski, W., & Słowiński, R. (2009). Learning rule ensembles for ordinal classification with monotonicity constraints. Fundamenta Informaticae, 94(2), 163–178.

    Article  Google Scholar 

  • Diego-Andilla, F., & Hamprecht, F.A. (2014). Sparse space-time deconvolution for calcium image analysis. In Advances in neural information processing systems (pp. 64–72)

  • Drineas, P., Kannan, R., & Mahoney, M. W. (2006). Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1), 158–183.

    Article  Google Scholar 

  • Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N., & Harvey, C. D. (2017). Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell, 170(5), 986–999.

    Article  Google Scholar 

  • Fishbain, B., Hochbaum, D.S., & Yang, Y.T. (2013). Real-time robust target tracking in videos via graph-cuts. In Real-time image and video processing 2013, international society for optics and photonics, (Vol. 8656, p. 865602)

  • Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style adaptive classifiers. Machine Learning, 6(2), 161–182.

    Google Scholar 

  • Gallo, G., Grigoriadis, M. D., & Tarjan, R. E. (1989). A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1), 30–55.

    Article  Google Scholar 

  • Gao, S. (2016). Conv2d: Convolutional neural network. https://github.com/iamshang1/Projects/tree/master/Advanced_ML/Neuron_Detection. Accessed June 01, 2018

  • Giovannucci, A., Friedrich, J., Kaufman, M., Churchland, A., Chklovskii, D., Paninski, L., & Pnevmatikakis, E.A. (2017) Onacid: Online analysis of calcium imaging data in real time. In Advances in neural information processing systems (pp. 2381–2391)

  • Goldberg, A. V., & Tarjan, R. E. (1988). A new approach to the maximum-flow problem. J ACM, 35(4), 921–940.

    Article  Google Scholar 

  • Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M., & Helmchen, F. (2010). High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature Methods, 7(5), 399–405.

    Article  Google Scholar 

  • Hochbaum, D. S. (2002). Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations. European Journal of Operational Research, 140(2), 291–321.

    Article  Google Scholar 

  • Hochbaum, D. S. (2008). The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations Research, 56(4), 992–1009.

    Article  Google Scholar 

  • Hochbaum, D. S. (2010). Polynomial Time Algorithms for Ratio Regions and a Variant of Normalized Cut. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 889–898.

    Article  Google Scholar 

  • Hochbaum, D. S. (2013). A polynomial time algorithm for rayleigh ratio on discrete variables: Replacing spectral techniques for expander ratio, normalized cut, and cheeger constant. Operations Research, 61(1), 184–198.

    Article  Google Scholar 

  • Hochbaum, D. S., & Baumann, P. (2016). Sparse computation for large-scale data mining. IEEE Transactions on Big Data, 2(2), 151–174.

    Article  Google Scholar 

  • Hochbaum, D. S., & Fishbain, B. (2011). Nuclear threat detection with mobile distributed sensor networks. Annals of Operations Research, 187(1), 45–63.

    Article  Google Scholar 

  • Hochbaum, D. S., Hsu, C. N., & Yang, Y. T. (2012). Ranking of multidimensional drug profiling data by fractional-adjusted bi-partitional scores. Bioinformatics, 28(12), i106–i114.

    Article  Google Scholar 

  • Hochbaum, D. S., Lyu, C., & Bertelli, E. (2013). Evaluating performance of image segmentation criteria and techniques. EURO Journal on Computational Optimization, 1(1), 155–180.

    Article  Google Scholar 

  • Jewell, S., & Witten, D. (2018). Exact spike train inference via \$\(\backslash \)ell\_{0}\$ optimization. The Annals of Applied Statistics, 12(4), 2457–2482.

  • Jia, H., Rochefort, N. L., Chen, X., & Konnerth, A. (2011). In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nature Protocols, 6(1), 28.

    Article  Google Scholar 

  • Kaifosh, P., Zaremba, J. D., Danielson, N. B., & Losonczy, A. (2014). SIMA: Python software for analysis of dynamic fluorescence imaging data. Frontiers in Neuroinformatics, 8, 40.

    Article  Google Scholar 

  • Klibisz, A., Rose, D., Eicholtz, M., Blundon, J., & Zakharenko, S. (2017). Fast, simple calcium imaging segmentation with fully convolutional networks. In M. J. Cardoso, T. Arbel, G. Carneiro, T. Syeda-Mahmood, J. M. R. Tavares, M. Moradi, A. Bradley, H. Greenspan, J. P. Papa, A. Madabhushi, J. C. Nascimento, J. S. Cardoso, V. Belagiannis, & Z. Lu (Eds.), Deep learning in medical image analysis and multimodal learning for clinical decision support. lecture notes in computer science (pp. 285–293). Berlin: Springer.

    Chapter  Google Scholar 

  • Levin-Schwartz, Y., Sparta, D. R., Cheer, J. F., & Adalı, T. (2017). Parameter-free automated extraction of neuronal signals from calcium imaging data. IEEE international conference on acoustics. Speech and signal processing (pp. 1033–1037). IEEE

  • Maruyama, R., Maeda, K., Moroda, H., Kato, I., Inoue, M., Miyakawa, H., et al. (2014). Detecting cells using non-negative matrix factorization on calcium imaging data. Neural Networks, 55, 11–19.

    Article  Google Scholar 

  • Mukamel, E. A., Nimmerjahn, A., & Schnitzer, M. J. (2009). Automated analysis of cellular signals from large-scale calcium imaging data. Neuron, 63(6), 747–760.

    Article  Google Scholar 

  • Pachitariu, M., Packer, A.M., Pettit, N., Dalgleish, H., Hausser, M., & Sahani, M. (2013). Extracting regions of interest from biological images with convolutional sparse block coding. In Advances in neural information processing systems (pp 1745–1753)

  • Pachitariu, M., Stringer, C., Dipoppa, M., Schröder, S., Rossi, L.F., Dalgleish, H., Carandini, M., & Harris, K.D. (2017). Suite2p: beyond 10,000 neurons with standard two-photon microscopy. bioRxiv p 061507

  • Pnevmatikaki, E.A., & Paninski, L. (2013). Sparse nonnegative deconvolution for compressive calcium imaging: Algorithms and phase transitions. In Advances in neural information processing systems (pp. 1250–1258)

  • Pnevmatikakis, E.A., Merel, J., Pakman, A., & Paninski, L. (2013). Bayesian spike inference from calcium imaging data. In Asilomar conference on signals, systems and computers (pp. 349–353)

  • Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J., Pfau, D., et al. (2016). Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron, 89(2), 285–299.

    Article  Google Scholar 

  • Resendez, S. L., Jennings, J. H., Ung, R. L., Namboodiri, V. M. K., Zhou, Z. C., Otis, J. M., et al. (2016). Visualization of cortical, subcortical, and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nature Protocols, 11(3), 566.

    Article  Google Scholar 

  • Ryu, Y. U., Chandrasekaran, R., & Jacob, V. (2004). Prognosis using an isotonic prediction technique. Management Science, 50(6), 777–785.

    Article  Google Scholar 

  • Sharon, E., Galun, M., Sharon, D., Basri, R., & Brandt, A. (2006). Hierarchy and adaptivity in segmenting visual scenes. Nature, 442(7104), 810–813.

    Article  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Stosiek, C., Garaschuk, O., Holthoff, K., & Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences, 100(12), 7319–7324.

    Article  Google Scholar 

  • Theis, L., Berens, P., Froudarakis, E., Reimer, J., Rosón, M. R., Baden, T., et al. (2016). Benchmarking spike rate inference in population calcium imaging. Neuron, 90(3), 471–482.

    Article  Google Scholar 

  • Vogelstein, J. T., Packer, A. M., Machado, T. A., Sippy, T., Babadi, B., Yuste, R., et al. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104(6), 3691–3704.

    Article  Google Scholar 

  • Yang, Y. T., Fishbain, B., Hochbaum, D. S., Norman, E. B., & Swanberg, E. (2013). The supervised normalized cut method for detecting, classifying, and identifying special nuclear materials. INFORMS Journal on Computing, 26(1), 45–58.

    Article  Google Scholar 

  • Zhu, X. R., Yoo, S., Jursinic, P. A., Grimm, D. F., Lopez, F., Rownd, J. J., et al. (2003). Characteristics of sensitometric curves of radiographic films. Medical Physics, 30(5), 912–919.

    Article  Google Scholar 

Download references

Acknowledgements

The fund was supported by Division of Civil, Mechanical and Manufacturing Innovation (Grant No. 1760102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit S. Hochbaum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asín Achá, R., Hochbaum, D.S. & Spaen, Q. HNCcorr: combinatorial optimization for neuron identification. Ann Oper Res 289, 5–32 (2020). https://doi.org/10.1007/s10479-019-03464-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03464-z

Navigation