Skip to main content
Log in

Robust mean-variance portfolio through the weighted \(L^{p}\) depth function

  • Original - Survey or Exposition
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Portfolios constructed by the classical mean-variance model are very sensitive to outliers. We propose the use of a non-parametric estimation method based on statistical data depth functions. Specifically, we exploit the notion of the weighted \(L^{p}\) depth function to obtain robust estimates of the mean and covariance matrix of the asset returns. This approach has the advantage to be independent of parametric assumptions, and less sensitive to changes in the asset return distribution than traditional techniques. The proposed procedure is evaluated and compared with standard and other robust techniques through simulated and real data. Results indicate effective improvements of the proposed method in terms of out-of-sample performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfolio selection: Robust portfolio construction. Journal of Asset Management, 7(2), 109–127.

    Google Scholar 

  • Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances on optimal portfolio choice. The Journal of Portfolio Management, 19(2), 6–11.

    Google Scholar 

  • DeMiguel, V., & Nogales, F. J. (2009). Portfolio selection with robust estimation. Operations Research, 57(3), 560–577.

    Google Scholar 

  • Donoho, D. L., & Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics, 20, 1803–1827.

    Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Boca Raton: CRC Press.

    Google Scholar 

  • Gervini, D. (2010). Outlier detection and trimmed estimation for general functional data. Statistica Sinica, 22, 1639–1660.

    Google Scholar 

  • Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of operations research, 28(1), 1–38.

    Google Scholar 

  • Hampel, F. (1968). Contributions to the theory of robust estimation. Berkeley: University of California.

    Google Scholar 

  • Kaszuba, B. (2012). Empirical comparison of robust portfolios’ investment effects. The Review of Finance and Banking, 5(2013), 47–61.

    Google Scholar 

  • Kim, J. H., Kim, W. C., Kwon, D.-G., & Fabozzi, F. J. (2018). Robust equity portfolio performance. Annals of Operations Research, 266(1), 293–312.

    Google Scholar 

  • Kosiorowski, D., & Zawadzki, Z. (2015). Locality, robustness and interactions in simple cooperative dynamic game. In Proceedings from 15th International Conference on Group Decissions and Negotiation (pp. 185–188).

  • Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18(1), 405–414.

    Google Scholar 

  • López-Pintado, S., & Romo, J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association, 104(486), 718–734.

    Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Martin, R. D., Clark, A., & Green, C. G. (2010). Robust portfolio construction. In J. B. Guerard (Ed.), Handbook of portfolio construction (pp. 337–380). Boston: Springer.

    Google Scholar 

  • Paç, A. B., & Pınar, M. Ç. (2018). On robust portfolio and naïve diversification: Mixing ambiguous and unambiguous assets. Annals of Operations Research, 266(1), 223–253.

    Google Scholar 

  • Pandolfo, G., Paindaveine, D., & Porzio, G. C. (2018). Distance-based depths for directional data. Canadian Journal of Statistics, 46(4), 593–609.

    Google Scholar 

  • Perret-Gentil, C., & Victoria-Feser, M.-P. (2005). Robust mean-variance portfolio selection. Available at SSRN 721509.

  • Rocke, D. M. (1996). Robustness properties of S-estimators of multivariate location and shape in high dimension. The Annals of statistics, 24, 1327–1345.

    Google Scholar 

  • Scutellà, M. G., & Recchia, R. (2013). Robust portfolio asset allocation and risk measures. Annals of Operations Research, 204(1), 145–169.

    Google Scholar 

  • Serfling, R. (2006). Depth functions in nonparametric multivariate inference. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 72, 1–16.

    Google Scholar 

  • Supandi, E. D., Rosadi, D., et al. (2017). An empirical comparison between robust estimation and robust optimization to mean-variance portfolio. Journal of Modern Applied Statistical Methods, 16(1), 32.

    Google Scholar 

  • Toma, A., & Leoni-Aubin, S. (2015). Robust portfolio optimization using pseudodistances. PLoS ONE, 10(10), 1–26.

    Google Scholar 

  • Tsay, R. S. (2005). Analysis of financial time series. Hoboken: Wiley.

    Google Scholar 

  • Tukey, J. (1975). Mathematics and the picturing of data. Proceedings of the International Congress of Mathematicians, 2, 523–531.

    Google Scholar 

  • Van Aelst, S., & Rousseeuw, P. (2009). Minimum volume ellipsoid. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 71–82.

    Google Scholar 

  • Victoria-Feser, M.-P. (2000). Robust portfolio selection. Available at SSRN 1763322.

  • Welsch, R. E., & Zhou, X. (2007). Application of robust statistics to asset allocation models. REVSTAT-Statistical Journal, 5(1), 97–114.

    Google Scholar 

  • Zuo, Y., Cui, H., et al. (2005). Depth weighted scatter estimators. The Annals of Statistics, 33(1), 381–413.

    Google Scholar 

  • Zuo, Y., Cui, H., He, X., et al. (2004). On the Stahel-Donoho estimator and depth-weighted means of multivariate data. The Annals of Statistics, 32(1), 167–188.

    Google Scholar 

  • Zuo, Y., Cui, H., & Young, D. (2004). Influence function and maximum bias of projection depth based estimators. The Annals of Statistics, 32, 189–218.

    Google Scholar 

  • Zuo, Y., & Serfling, R. (2000). General notions of statistical depth function. The Annals of Statistics, 28(2), 461–482.

    Google Scholar 

  • Zuo, Y., & Serfling, R. (2004). Robustness of weighted \(L^{p}\)-depth and \(L^{p}\)-median. Allgemeines Statistisches Archiv, 88(2), 215–234.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledges Valerio Sullo, senior quantitative portfolio manager at Amundi, for gently providing the DAX30 data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pandolfo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandolfo, G., Iorio, C., Siciliano, R. et al. Robust mean-variance portfolio through the weighted \(L^{p}\) depth function. Ann Oper Res 292, 519–531 (2020). https://doi.org/10.1007/s10479-019-03474-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03474-x

Keywords

Navigation