
Annals of Operations Research (2021) 302:507–531
https://doi.org/10.1007/s10479-019-03479-6

S . I . : PATAT 2018

Multivalued decision diagrams for prize-collecting job
sequencing with one common andmultiple secondary
resources

Johannes Maschler1 · Günther R. Raidl1

Published online: 21 November 2019
© The Author(s) 2019

Abstract
Multivalued decision diagrams (MDD) are a powerful tool for approaching combinatorial
optimization problems. Relatively compact relaxed and restrictedMDDs are applied to obtain
dual bounds and heuristic solutions and provide opportunities for new branching schemes.
We consider a prize-collecting sequencing problem in which a subset of given jobs has to be
found that is schedulable and yields maximum total prize. The primary aim of this work is to
study different methods for creating relaxed MDDs for this problem. To this end, we adopt
and extend the two main MDD compilation approaches found in the literature: top down
construction and incremental refinement. In a series of computational experiments these
methods are compared. The results indicate that for our problem the incremental refinement
method produces MDDs with stronger bounds. Moreover, heuristic solutions are derived by
compiling restrictedMDDs and by applying a general variable neighborhood search (GVNS).
Here we observe that the top down construction of restricted MDDs is able to yield better
solutions as the GVNS on small to medium-sized instances.

Keywords Sequencing · Multivalued decision diagrams · Incremental refinement · Particle
therapy patient scheduling

1 Introduction

Horn et al. (2017) originally described the so-called job sequencing with one common and
multiple secondary resources (JSOCMSR) problem.We consider an extended and in practice
significantly more difficult prize-collecting variant of it which we denote by PC-JSOCMSR.
Given a set of jobs, each associatedwith a prize, the task is tofind a subset of jobswithmaximal

We thank Lukas Felician Krasel for his help in the implementation and testing.

B Johannes Maschler
maschler@ac.tuwien.ac.at

Günther R. Raidl
raidl@ac.tuwien.ac.at

1 Institute of Logic and Computation, TU Wien, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03479-6&domain=pdf

508 Annals of Operations Research (2021) 302:507–531

total prize that is feasibly schedulable. Each job requires one of several secondary resources
during its whole processing time and a single common resource for a part of its execution.
Moreover, each job has to be performed within given time windows. This problem originates
from the context of particle therapy for cancer treatment (Maschler et al. 2016; Maschler
and Raidl 2018a; Riedler et al. 2017). In this scenario the common resource corresponds to a
particle beam that can be directed into one of multiple treatment rooms which are represented
by the secondary resources. Jobs describe treatments that consist of several tasks within a
treatment room fromwhich only one is the actual irradiation using the beam.While the works
concerning particle therapy deal with numerous additional characteristics stemming from the
real world application, it is apparent that the most central aspect is the sequencing of the jobs.

In a concurrently submitted work, Horn et al. (2018) focus on solving the PC-JSOCMSR
exactly by means of A* search, mixed integer programming, and constraint programming.
While excellent results are obtained in particular for the A* search, the applicability of
these methods is strongly limited to rather small or medium sized-problem instances. A
sequencing problem with similar job characteristics to ours, requiring one common and a
secondary resource, has been considered by Van der Veen et al. (1998). However, in their
case post-processing times are negligible and as a result the problem reduces to a special
variant of the traveling salesman problem that can be efficiently solved in polynomial time.
Last but not least, we point out that PC-JSOCMSR is somewhat related to variants of no-
wait flowshop problems (Allahverdi 2016) and more general resource-constrained project
scheduling problems (Hartmann and Briskorn 2010).

In this work we explore the potential of applying the concept of decision diagrams (DDs)
to PC-JSOCMSR and in particular investigate different methods for creating them. DDs
have been originally developed in the context of circuit design (Lee 1959). In the course
of the last decade DDs have shown to be also a powerful tool for tackling combinatorial
optimization problems (COPs) (Bergman et al. 2016a). Essentially, DDs are layered directed
acyclic multigraphs used to compactly represent a COP’s set of feasible solutions. To this
end, a DD has a root node and each subsequent layer of the DD is associated with one of the
decision variables of the COP. Every arc in the DD describes an assignment of the variable
represented by the corresponding layer. Thus, a path starting from the root node represents
a variable assignment. The lengths of the arcs are assigned in such a way that the length of a
path corresponds to the objective value of the corresponding variable assignment. Depending
on whether the COP’s objective is to maximize or to minimize a given objective function,
we are seeking a longest or a shortest inclusion maximal path to a valid terminal node within
the DD. The out-degrees of the DD’s nodes directly corresponds with the domain sizes of
the respective decision variables. If the COP is modeled with binary variables, then all nodes
have at most two outgoing arcs and the DD is called binary decision diagram (BDD). In
the more general case with finite variable domains, the number of arcs leaving nodes is not
restricted. In this case, DDs are called multivalued decision diagrams (MDDs).

DDs resemble in many aspects a dynamic programming’s state graph (Hooker 2013).
Likewise, the size of exact DDs grows in general exponentially with the problem size. To
overcome the resulting limitations, Andersen et al. (2007) proposed the concept of relaxed
DDs. The basic idea is to merge nodes on the same layer and to redirect the affected arcs.
This might introduce new paths in the DD that, however, do not represent feasible solutions.
Consequently, relaxedDDs encode a superset of the feasible solutions and represent a discrete
relaxation of the problem that provides dual bounds. Another way to cope with the in general
exponential number of nodes are restricted DDs (Bergman et al. 2014b). A restricted DD
is obtained from an exact DD by removing nodes and all incident arcs. Clearly, this also
removes all paths from the DD that included at least one of the removed nodes. Therefore,

123

Annals of Operations Research (2021) 302:507–531 509

a restricted DD represents only a subset of all feasible solutions, and it is used to obtain a
feasible heuristic solution and a respective primal bound.

Beside upper and lower bounds, relaxedDDs in particular also provide promising opportu-
nities for new inference techniques in constraint programming (Cire andHoeve 2013;Kinable
et al. 2017), novel branching schemes (Bergman et al. 2016b) for branch-and-bound, as well
as primal heuristics (Bergman et al. 2014b, 2016b).

The concept of DDs has been successfully applied to a variety of problems, ranging
from binary optimization problems to sequencing problems. The former include set cover-
ing (Bergman et al. 2011, 2014b), maximum independent set (Bergman et al. 2014a, 2016b),
maximum cut (Bergman et al. 2016b), and maximum 2-satisfiability (Bergman et al. 2016b)
problems and are approached using BDDs. Sequencing problems on the other hand typi-
cally suggest the use of MDDs. In the literature already considered sequencing problems
include the time dependent traveling salesman problem with and without time windows and
the time-dependent sequential ordering problem (Cire and Hoeve 2013; Kinable et al. 2017).
One fundamental difference to the DDs considered in the literature is the prize-collecting
aspect. While the so far considered problems define solutions by paths traversing all layers,
in PC-JSOCMSR every path starting at the root node corresponds to a valid solution. For a
comprehensive overview on DDs see Bergman et al. (2016a).

Twomain approaches have been proposed for compilingMDDs. The first starts at the root
node and constructs the MDD layer by layer (Bergman et al. 2011, 2014b). If the number
of nodes within a layer exceeds a given limit, then either nodes are merged or removed
to obtain a relaxed or a restricted MDD, respectively. The second approach, starts with a
simplistic relaxed MDD and applies incremental refinements by splitting nodes in order to
iteratively strengthen the relaxation (Cire and Hoeve 2013; Kinable et al. 2017). While an
application of the first approach to PC-JSOCMSR is relatively straight-forward, realizing a
successful incremental refinement method for PC-JSOCMSR requires substantial problem-
specific extensions of the basic principle. We adapt both approaches for PC-JSOCMSR
here and are, to our best knowledge, the first who directly compare the two techniques in
an experimental fashion. Moreover, we investigate the derivation of heuristic solutions by
constructing a restricted MDD and provide an independent general variable neighborhood
search (GVNS) (Hansen et al. 2010) to set the DD-based approaches into perspective. Our
computational experiments show that the incremental refinement approach provides on most
of our benchmark instances better dual bounds than the top down compilation. While the
top down compilation for restricted MDDs outperforms the GVNS on small to medium-
sized instances, the GVNS is mostly superior on larger instances. This work is a revised
and extended version of the preliminary conference paper fromMaschler and Raidl (2018b).
New is in particular a technique that detects and removes redundancies during the incremental
refinement of MDDs. This redundancy detection and removal yields to significantly smaller
DDs.

The remainder of this work is organized as follows. In the following we start by giving
a formal description of the considered problem. Section 3 provides a recursive dynamic
programming model for PC-JSOCMSR which serves as basis for deriving MDDs in Sect. 4.
Section 5 describes the top down compilation of relaxed and restricted MDDs, while the
incremental refinement algorithm for PC-JSOCMSR is given in Sect. 6. Section 7 sketches
the standalone GVNS. Results of computational experiments of all approaches are discussed
in Sect. 8. Finally, Sect. 9 concludes with an outlook on future research directions.

123

510 Annals of Operations Research (2021) 302:507–531

2 The problem

The prize-collecting job sequencing with one common and multiple secondary resources
(PC-JSOCMSR) problem is formally defined as follows. Let J = {1, . . . , n} be a set of n
jobs of which a subset shall be scheduled using renewable resources R0 = {0} ∪ R with
R = {1, . . . ,m}. To be processed, each job j ∈ J requires a resource q j ∈ R for its entire
processing time p j > 0 and additionally resource 0 for a duration of p0j after time pprej from

the job’s start; 0 < p0j ≤ p j − pprej . For convenience, we denote with ppostj the duration

after the common resource is used until the job j is completed, i.e., ppostj = p j − pprej − p0j .
Moreover, we write Jr for the subset of all jobs in J which require secondary resource r ∈ R.

We associate with each job j a set of ω j disjunct time windows Wj = {Wj,w | w =
0, . . . , ω j } with Wj,w = [W start

j,w ,W end
j,w], where W end

j,w − W start
j,w ≥ p j . Job j can only be

performed during one of these time windows and is assumed to be non-preemptive, i.e., may
not be interrupted. Moreover, we denote the whole relevant time horizon, encompassing all
time windows of all jobs, with [Tmin, Tmax].

Finally, each job j has associated a prize (utility value, priority) z j > 0. We assume
that there exists, in general, no schedule that assigns feasible starting times to all jobs in J .
Instead, we aim for a subset of jobs S ⊆ J that can be feasibly scheduled and maximizes the
total prize of these jobs, i.e.,

Z(S) =
∑

j∈S
z j . (1)

A schedule of S implies a total ordering of the scheduled jobs because all jobs require
resource 0 and this resource can be used by only one job at a time. Vice versa, such an
ordering π = (πi)i=1,...,|S| of S can be decoded into a schedule by scheduling each job from
S in the order given by π at the earliest feasible time after the preceding job. If at least one
of the jobs cannot be feasibly scheduled in this way, then ordering π does not represent a
feasible solution. We call the schedule obtained from ordering π by the above decoding a
normalized schedule. Clearly, for every feasible solution there exists a normalized schedule
with the same objective value. Hence, we write Z(π) for the total prize of the normalized
solution given by the ordering π of jobs.

Above problem variant extends the job sequencing with one common and multiple sec-
ondary resources (JSOCMSR) problem originally proposed by Horn et al. (2017) by the
considered time windows and the maximization of the scheduled jobs’ prizes. In Horn et al.’s
JSOCMSR, the objective is to minimize the makespan. Horn et al. showed that the decision
variant of JSOCMSR is NP-hard for m ≥ 2. PC-JSOCMSR is NP-hard as well, which can
be shown by a simple reduction. To this end, we construct an instance for PC-JSOCMSR by
associating each job with a single time window [0, M], where M is the given constant for
the makespan. There exists a solution for the decision variant of JSOCMSR if and only if
there exists a solution for the constructed PC-JSOCMSR instance in which all jobs can be
scheduled.

3 Recursive model for PC-JSOCMSR

We provide a dynamic-programming-like recursive model for PC-JSOCMSR. The induced
state graph will then serve as a basis for deriving MDDs. To simplify the handling of time
windows let us define the function earliest feasible time eft(j, t) that computes for a given

123

Annals of Operations Research (2021) 302:507–531 511

job j and time point t the earliest time not smaller than t at which job j can be performed
according to the time windows, i.e.,

eft(j, t) = min
({Tmax} ∪ {

t ′ ≥ t | ∃Wj,w ∈ Wj : [t ′, t ′ + p j] ⊆ Wj,w
})

. (2)

Note that eft(j, t) = Tmax if job j cannot be scheduled within its time windows.
The main components of the recursive model are the states, the control variables that

conduct transitions between states, and finally the prizes associated with the transitions. In
our recursive formulation a state is a tuple (P, t) consisting of the set P ⊆ J of jobs that
are still available for scheduling and a vector t = (tr)r∈R0 of the earliest times from which
on each resource r is available. The initial state corresponding to the original PC-JSOCMSR
instance without any jobs scheduled yet is r = (J , (Tmin, . . . , Tmin)).

The control variables are π1, . . . , πn ∈ J . Starting from the root node they select the jobs
to be scheduled. Variable π1 selects the first job j to be scheduled, and we transition from
state r to a successor state (P ′, t ′), where π2 decides with which next job to continue. This
is repeated for all control variables. If a job selected by a control variable cannot be feasibly
scheduled as next job, then we obtain the special infeasible state 0̂. Any further transition
from 0̂ yields 0̂ again.

To specify the transitions, let the starting time of a next job j ∈ J w.r.t. a state (P, t) be

s((P, t), j) =
{
eft(j,max(t0 − pprej , tq j)) if j ∈ P

Tmax else.
(3)

The transition function to obtain the successor (P ′, t ′) of state (P, t)when scheduling job
j ∈ J next is

τ((P, t), j) =
{

(P\{ j}, t ′) if s((P, t), j) 	= Tmax

0̂ else,
(4)

with

t ′0 = s((P, t), j) + pprej + p0j (5)

t ′r = s((P, t), j) + p j for r = q j (6)

t ′r = tr for r ∈ R\{q j }. (7)

All states except the infeasible state 0̂ are possible final states. The prize associated with
a state transition is job j’s prize z j . Any sequence of state transitions τ(. . . τ (r, π1) . . . , πi)

yielding a feasible state (P, t) from the initial state r represents a solution. In fact, the
respective states map directly to the normalized schedule obtained by decoding the jobs
π1, . . . , πi as stated in Sect. 2. Moreover, the sum of the prizes of all these transitions
corresponds to Z(π1, . . . , πi), the total prize of the solution.

The individual states obtained by the transitions can be safely strengthened in many
cases, frequently leading to a smaller state graph. We aim at replacing state (P, t) by state
(P ′, t ′) with either P ′ ⊂ P or t ′r > tr for one or more r ∈ R0 without losing feasible
solutions. This is done by first considering the earliest starting times s((P, t), j) for all jobs
j ∈ P . Jobs that cannot be feasibly scheduled next can be safely removed from P , i.e.,
P ′ = { j ∈ P | s((P, t), j) 	= Tmax}.

Afterwards, we set the times t ′r , ∀r ∈ R0, to the earliest time resource r is actually used
by the jobs in P ′. If a resource is not required by any of the remaining jobs then we set the
corresponding time t ′r to Tmax. More formally,

t ′0 = min
j∈P ′ (s((P, t), j) + pprej) (8)

123

512 Annals of Operations Research (2021) 302:507–531

t ′r =
{
min j∈Jr∩P ′ s((P, t), j) if Jr ∩ P ′ 	= ∅
Tmax else

∀r ∈ R. (9)

The described strengthening of states helps in reducing the size of the state graph as two
or more originally different states may be turned into the same strengthened state. Moreover,
the strengthening of states also is valuable in conjunction with the merging of nodes in a
corresponding relaxed decision diagram, as we will see in the next section.

Note that a strengthened feasible state does not have to describe a single solution, because
the same state might be reached by multiple transition sequences. These different transition
sequences yielding the same statemight also have distinct total prizes due to the strengthening.
Since we are maximizing the total prize, we are primarily interested in sequences with
maximum total prize. To this end, let Z lp(P, t) be this maximum total prize for any sequence
τ(. . . τ (r, π1) . . . , πi) resulting in state (P, t). Ultimately, we are looking for a feasible state
with maximum Z lp(P, t).

Looking at these relationships from a dynamic programming perspective, we can express
the maximum total prize for jobs that can still be scheduled from any feasible state (P, t)
onward by

Z∗(P, t) = max
(
{0} ∪

{
z j + Z∗(τ ((P, t), j)) | j ∈ P ∧ τ((P, t), j) 	= 0̂

})
, (10)

and Z∗(r) then denotes the overall maximum achievable prize, i.e., the optimal solution
value.

4 Multivalued decision diagrams for PC-JSOCMSR

This section explains the relationships between the state graph of a PC-JSOCMSR problem
instance and exact, relaxed, and restrictedMDDs. An exactMDD is a layered directed acyclic
multigraph G = (V , A) with node set V and arc set A. The node set V is partitioned into
layers L0, . . . , Ln . The first layer L0 consists only of a single node associated with the
initial state r. Each subsequent layer Li contains nodes for all states obtained from feasible
state transitions from states associated with nodes in layer Li−1. Moreover, the MDD has
arcs for all feasible state transitions in the state graph connecting the corresponding nodes.
Observe that arcs exist only between directly successive layers and there might be nodes for
identical states on different layers. The length of these arcs are the state transition prizes z j .
The infeasible state 0̂ and all transitions to it are omitted. In the literature, a target node is
typically defined and arcs with zero length exist from any feasible end node to this target.
Since in our case any node represents a valid end state, we deviate here from the literature
and do not make explicit use of this target state.

Let us denote by j(a) ∈ J the job that is considered in the state transition associated with
arc a ∈ A. Moreover, let A+(u) and A−(u) indicate the set of all incoming and outgoing arcs
of a node u ∈ V , respectively. Moreover, for a node u we write P(u) and t(u) as a shorthand
for the set P and vector t of the node’s state. In particular, we denote with tr (u) for a node u
the time from which on each resource r ∈ R0 is available for performing a next job.

An optimal solution is obtained from an exact MDD by determining a longest path from
r to some end node v and scheduling the jobs associated with each arc in the respective order
and at the starting times s((P, t), j). The length of this path, i.e., the sum of the respective
arcs’ transition prizes, corresponds to the optimal solution value Z∗(r).

123

Annals of Operations Research (2021) 302:507–531 513

Fig. 1 A MDD for an example instance with four jobs and two secondary resources

Figure 1 shows an exact MDD for an instance with four jobs and two secondary resources.
Details of the PC-JSOCMSR instance are given on the top right, while the MDD is depicted
on the top left. Each arc’s label indicates the job that is scheduled by the respective state
transition and in parentheses the arc’s length. We indicate with dashed arcs the in our case
unique longest path of length seven. The corresponding optimal solution, scheduling the jobs
π = (3, 1, 4) with a total prize of Z(π) = 7, is shown on the bottom left. Moreover, states
of all nodes are given on the bottom right.

ExactMDDs grow in general in an exponential waywith the problem size as they basically
represent the complete state graph. We are more interested in more compact MDDs that rep-
resent the state graph only in an approximate way. This is usually done by limiting the number
of nodes allowed in each layer to a fixed maximum β ≥ 1. The number of nodes in a layer
is called the layer’s width, and the maximum width over all layers is the width of an MDD.
To receive MDDs of limited width, there have been proposed two concepts with contrary
effects: relaxed MDDs (Andersen et al. 2007) and restricted MDDs (Bergman et al. 2014b).

Relaxed MDDs cover all feasible solutions as a subset plus possibly a set of solutions that
are invalid for the original problem. Thus, they represent a discrete relaxation of the original
problem, and the length of a longest path of a relaxed MDD is a dual bound to the original
problem’s optimal solution value Z∗(r). To have limited width, a relaxed MDD in general
superimposes states of the original state graph: Sets of states of an exact MDD are combined
into so-called merged nodes; all affected arcs are redirected to the respective merged node.
To ensure that a valid relaxation is obtained, the state of a merged node must be set so that it
is in no dimension stricter than each original state. In case of our PC-JSOCMSR, if a set M
of original states is merged, the state of the respective merged node is

123

514 Annals of Operations Research (2021) 302:507–531

(a) (b)
Fig. 2 A relaxed and a restricted MDD for the example instance in Fig. 1

⊕ (M) =
⎛

⎝
⋃

(P,t)∈M
P,

(
min

(P,t)∈M tr

)

r∈R0

⎞

⎠ . (11)

Figure 2a shows for the exact MDD in Fig. 1 a relaxed MDD where nodes u3 and u4 are
merged resulting in node u′. The width of the relaxed MDD decreases from four to three.
Recall that the optimal solution of the considered instance has a total prize of seven. The
longest path within the relaxed MDD, indicated by the dashed arcs, has a total length of
eight. This is achieved by scheduling job 4 twice, which clearly does not correspond to a
feasible solution of the original problem. Moreover, notice that the relaxed MDD contains
all paths from the exact MDD. The original optimal solution is still represented by a respec-
tive path, however, it is not a longest anymore. The state of the merged node is given by
({1, 4}, (4, 3, 4)), while the states of all remaining nodes do not change.

Restricted MDDs are the second option for approximate MDDs with limited width. They
are obtained by removing nodes from an exact MDD with all incoming and outgoing arcs.
Whenever a node is removed, also all paths containing the node are not anymore encoded in
the MDD. Consequently, a restricted MDD represents only a subset of all feasible solutions,
and the length of a longest path in a restricted MDD might be shorter than one in an exact
MDD. For this reason the length of a longest path in a restricted MDD is a primal bound to
the original problem’s optimal solution value Z∗(r).

A restricted MDD for the exact MDD from Fig. 1 is depicted in Fig. 2b. The node u3
and all its incoming and outgoing arcs are removed. All other nodes, arcs, and states remain
unchanged. The longest path in the restricted MDD, again indicated by dashed arcs, has a
total length of six. This longest path encodes a feasible solution to the original problem,
however, not an optimal one.

5 Top-down construction

The top-down construction (Bergman et al. 2014a, b, 2016b) compiles exact MDDs, as well
as relaxed and restricted MDDs by traversing the state graph in a breadth-first fashion. The

123

Annals of Operations Research (2021) 302:507–531 515

method starts with an empty first layer L0 and adds a node for the initial state r. Then, one
layer after the other is filled with nodes. For a subsequent layer Li , this is done by adding all
feasible states that can be obtained by a transition from any node u ∈ Li−1, i.e.,

Li = {τ(u, j) | u ∈ Li−1, j ∈ P(u)}. (12)

Note that identical states produced by different transitions are represented by a single common
node within a layer. In addition to the nodes, we also add corresponding arcs for each of the
conducted transitions.

When we are compiling relaxed or restricted MDDs, we have to check at this point the
width of the current layer Li . If it exceeds a given maximum β, nodes have either to be
merged or dropped, respectively. The quality of the obtained primal and dual bounds from
the produced relaxed and restricted MDDs is predominantly influenced by the strategy to
select the nodes for merging or removal. The basic idea is to prefer nodes for merging or
removal that are unlikely part of any optimal solution. Bergman et al. (2014a) considered
three different merging heuristics: random nodes, nodeswith the shortest longest path Z lp(u),
and nodes with the most elements in P(u). In their experiments the second strategy achieved
the best results. Moreover, Bergman et al. (2014b) suggest the same node selection heuristic
for the compilation of restricted MDDs. We observed that merging or removing nodes with
the smallest Z lp(u) values is disadvantageous for PC-JSOCMSR. This can be explained by
the fact that this strategy focuses just on the longest path, but does not respect how well the
jobs fit next to each other. Therefore, we set the longest path to a node into perspective with
the time the common resource is occupied by the corresponding jobs. The nodes within the
currently considered layer Li , i > 0, are sorted according to the ratio Z lp(u)/(t0(u)− Tmin)

in increasing order. We then merge respectively remove the first nodes until the width of
Li becomes β. Afterwards, we continue with the next layer. The algorithm terminates when
either no further state transitions are possible or we completed layer Ln .

6 Incremental refinement

The basic idea of an incremental refinement approach is to apply filtering and refinement
steps iteratively on an initial simple relaxed MDD in order to improve it and approximate
an exact MDD. Filtering steps remove arcs that are only contained in root to sink paths that
represent infeasible solutions. The refinement steps consist of splitting nodes to represent so
far merged states in more detail and as a consequence to trigger further filtering of arcs. The
main goal of incremental refinement is to decrease the length of longest paths in the MDD,
i.e., the obtained upper bound on an instance’s solution value.

Incremental refinement has been initially proposed by Hadzic et al. (2008) and Hoda et al.
(2010) for constraint satisfaction systems. The central aspect of this approach is the division of
filtering and refinement into independent operations. As a consequence, the overall algorithm
can apply and combine these operations however it is appropriate. A relaxed MDD for the
PC-JSOCMSR problem contains in general paths that do not represent feasible solutions,
either because jobs occur more than once or not all jobs can be scheduled within their time
windows. Therefore, we have to find refinement and filtering operations that allow us to
exclude job repetitions and time window violations.

Due to the fact that exact MDDs have in general an exponential number of nodes w.r.t. the
problem size, we cannot hope to apply refinement and filtering until all invalid paths are sorted
out for problem instances of practically relevant size. Hence, a key aspect of an incremental

123

516 Annals of Operations Research (2021) 302:507–531

refinement approach is the order in which the refinement steps are applied on the nodes.
The works from Cire and Hoeve (2013) and Kinable et al. (2017) provide an incremental
refinement method for sequencing problems in which a permutation of jobs has to be found.
Essentially, they order the jobs according to the processing times and with it to a certain
extent according to the length of the corresponding arcs within the MDD. Their approach
removes repetitions of jobs according to that order until the maximal allowed width of the
MDD is reached. The rationale behind this strategy is that repetitions of jobs represented by
long arcs are more frequently contained within longest paths. For PC-JSOCMSR this method
is, however, not suitable because we have to assume that only a fraction of the jobs can be
actually scheduled. Hence, it is not clear in advance which jobs play a key role for deriving
a good approximation of an exact MDD.

Our incremental refinement for PC-JSOCMSR uses a current longest path as guidance.
We follow the arcs on such a longest path, starting from the root node, and check for each
arc whether the associated job can be feasibly scheduled. In case that a job occurs more than
once, we refine the MDD s.t. repetitions of this job are not possible anymore. To this end,
we reinterpret the refinement proposed by Cire and Hoeve (2013) based on our recursive
model from Sect. 3. If we detect that a job cannot be feasibly scheduled within its time
windows, then we split nodes using a novel operator that allows excluding the considered
path. Our filtering operator relies heavily on the underlying recursive model and, thus, differs
substantially from the ones proposed in the literature. In addition, we employ a new technique
that aims at removing redundancies in layers.

Algorithm 1: Incremental Refinement Guided by Longest Paths (IRLP)
Input: initial relaxed MDD G = (V , A) with V = L0 ∪ · · · ∪ Ln

1 while termination criterion not met do
2 Let p be a longest path in G;
3 if p admits a feasible schedule then
4 return; /* optimal solution has been found */

5 if p contains a job repetition then
6 for i ← 1 to n do
7 foreach node u ∈ Li do
8 update node u and filter incoming and outgoing arcs;
9 split node u into two if it allows to avoid the node repetition;

10 merge nodes with identical states in Li ;

11 else /* p contains a time window violation */
12 Split nodes on p to avoid the identified time window violation;
13 for i ← 1 to n do
14 foreach node u ∈ Li reachable from the splitted nodes do
15 update node u and filter incoming and outgoing arcs;

16 merge nodes with identical states in Li ;

Algorithm 1 shows an outline of the proposed Incremental Refinement Guided by Longest
Paths (IRLP). It acts on a given relaxed MDD, which is obtained in our case by the top down
construction from Sect. 5 with a small initial width. In each iteration of the main while loop
we obtain a longest path. If the sequence of jobs represented by the path can be feasibly
scheduled, then we have found an optimal solution and terminate.

123

Annals of Operations Research (2021) 302:507–531 517

Depending on whether we detected a job repetition or a time window violation on the
currently considered longest path the following steps differ. In the former case we traverse
the MDD starting from the root node r layer by layer. For each considered node we try
to filter arcs and update the node’s state if necessary. We check next if the node has to be
refined and perform a node split if it allows to remove the considered job repetition. After all
nodes of a layer have been considered, we might encounter that nodes are associated with an
identical state. Such nodes are merged to avoid redundancies in the MDD. In the latter case
of a time window violation we perform a much more local refinement operation in which
only nodes along the considered path are split. In the subsequent filtering we consider all
nodes reachable from the previously split nodes. We enforce also here that all nodes within
each layer represent a distinct state. Notice that the refinement of job repetitions is preferred
over the refinement of time window violations if both are contained in the longest path. This
has shown to provide better bounds if the algorithm has to terminate prematurely due to a
time limit.

The applied filtering techniques and the updating of the nodes’ state are described in
Sect. 6.1. The two types of refinement operations are presented in more detail in Sects. 6.2
and 6.3. Finally, in Sect. 6.4 we explain howwe avoid producing nodes representing identical
states within layers.

6.1 Node updates and filtering

Filtering applied in an incremental refinement method aims at identifying and removing
arcs that are only contained in paths corresponding to infeasible solutions. The filtering
techniques generally rely on the Markovian property of the MDD’s states, which means that
a state is defined by its predecessors and the transitions. This allows specifying tests that use
information local to a considered node to decide whether incoming or outgoing arcs can be
removed.

An intrinsic part of the presented filtering method is to keep the node’s states always up
to date, which is necessary because the removal of a node’s incoming arcs may change its
associated state. Moreover, an adjustment of a node’s state may imply further changes on
the nodes reachable from the currently considered node. Therefore, we traverse the MDD
s.t. we reach a node after we have processed all its predecessors. Consequently, we end up
in each iteration of the IRLP with an MDD where all states fulfill the Markovian property.
For each considered node we first update the node’s state and then check whether incoming
or outgoing arcs can be removed. In case incoming arcs are removed the node’s state has to
be reevaluated again. An update of a state consists of reassessing and merging the transitions
from all predecessors, which means for a node u to compute

⊕ ({τ(v, j(a)) | a = (v, u) ∈ A+(u)}) . (13)

Such a state update is a computational expensive operation and should only be performed
if a node’s state may actually change. For this reason, we recompute a node’s state only if
either a predecessors state has changed or if an incoming arc has been removed.

Let (P, t) and (P ′, t ′) be node u’s state before and after a reevaluation, respectively. Due
to the definition of the relaxation scheme (11) and the fact that we are only removing arcs
during filtering, it holds that t ′r ≥ tr for all r ∈ R0 and P ′ ⊆ P . In case P ′ ⊂ P , we remove
all outgoing arcs a ∈ A−(u)with j(a) /∈ P ′ since they cannot be part of any feasible solution
represented by a path reaching u from r. If any node except r ends up without any incoming
arc, it is removed together with all its outgoing arcs.

123

518 Annals of Operations Research (2021) 302:507–531

6.2 Refinement of job repetitions

We discuss in this section a technique that modifies an MDD in such a way that a considered
job j occurs on each path at most once. This method is conceptually an adaptation from the
one proposed by Cire and Hoeve (2013), but takes into account that in PC-JSOCMSR usually
only a subset of the jobs can be scheduled. The refinement is based on the observation that
a job repetition occurs if a job j is contained on a path starting from node r to a node u and
job j is still included in P(u). Consequently, node u has an outgoing arc associated with job
j which represents a repetition. Before we can derive a splitting strategy, we first have to
verify if the above condition is sufficient to detect all job repetitions. To this end we denote
with Some↓

u ⊆ J the subset of jobs appearing in some path from r to a node u ∈ V . For a
node u ∈ V the set Some↓

u can be calculated recursively by

Some↓
u =

⋃

a=(v,u)∈A+(u)

(
Some↓

v ∪ { j(a)}
)

. (14)

We show next that we can determine repetitions of a considered job j occuring on some path
in a MDD by using P(u) and Some↓

u of the nodes u in the MDD.

Lemma 1 A job j is assigned on each path starting from r at most once if and only if
j /∈ Some↓

u ∩ P(u) holds for all nodes u ∈ V .

Proof Assume first that a job j is associated with at most one arc in every path starting from
r of a given MDD G and consider an arbitrary node u ∈ V . If no path from r to u has an arc
labeled j then it holds by definition that j /∈ Some↓

u and consequently j /∈ Some↓
u ∩ P(u).

If on the other hand there exists a path from r to u with an arc associated with j then no
path starting from u can contain an arc labeled j . Moreover, it holds by definition that a node
v ∈ V can only have an outgoing arc a with j(a) = j if j ∈ P(u). Therefore, j /∈ P(u) and
j /∈ Some↓

u ∩ P(u).
Conversely, suppose that j /∈ Some↓

u ∩ P(u) for all nodes u ∈ V . In case j /∈ Some↓
u

we cannot have a repetition of node j on any path from r to u. If a node u is reached by
an arc associated with job j then j ∈ Some↓

u and thus, j /∈ P(u). Since node u can have
only outgoing arcs for the jobs in P(u), node u cannot have an outgoing arc labeled j .
Moreover, since j ∈ Some↓

v for all nodes v reachable from node u we can conclude by the
same argument that also for these nodes j /∈ P(u) and hence there are no respective outgoing
arcs. Thus, job j is assigned on each path starting from r at most once. ��

Whenever we detect a node repetition, i.e., j ∈ Some↓
u ∩ P(u) for some node u, we perform

a node split to obtain a node u1 with j /∈ P(u) and a node u2 with j /∈ Some↓
u as follows.

Theorem 1 Given job j and a MDD, we replace all nodes u ∈ V with j ∈ Some↓
u ∩ P(u) by

twonodes u1 andu2, s.t. all incomingarcs a = (v, u)are redirected to u1 if j /∈ P(τ (v, j(a)))

and to u2 otherwise. All outgoing arcs are replicated for both nodes. The resulting MDD
satisfies j /∈ Some↓

u ∩ P(u) for all nodes u ∈ V .

Proof For the root node rwehave by definition that Some↓
r = ∅ and, thus, j /∈ Some↓

u∩P(u).
Assume as induction hypothesis that the desired condition j /∈ Some↓

u ∩ P(u) holds for all
predecessors of a node u. In addition, consider that we have replaced node u by the nodes
u1 and u2 as described above. From the relaxation scheme (11) we know that set P of node

123

Annals of Operations Research (2021) 302:507–531 519

u1 cannot contain j . For all of u2’s incoming arcs a = (v, u2) it holds that j /∈ Some↓
v

since otherwise P(τ (v, j(a))) could not contain j . Consequently, u1 as well as u2 satisfy
the stated condition. ��

The actual refinement is done by enforcing Lemma 1 in a single top down pass. To this end,
we start with the root node and process all nodes layer by layer. For each considered node uwe
first update its state if needed and apply the filtering as described in Sect. 6.1. Afterwards, we
determine the set Some↓

u and split node u as described in Theorem 1 if necessary. Whenever
a node is split, new states are calculated for the two new nodes. Furthermore, we perform
filtering on the new nodes’ incoming and outgoing arcs.

6.3 Refinement of time window violations

Let sequence (u1, a1, u2, . . . , uk, ak, uk+1) of alternating nodes and arcs denote a path in
our MDD starting at the root node r (i.e., u1 = r) where (u1, a1, u2, . . . , uk−1, ak−1, uk)
corresponds to a feasible solution but the job represented by arc ak cannot be additionally
scheduled within its time windows. For the considered path we denote with (u↓

1 , . . . , u↓
k)

the not relaxed states along the considered path. That is, u↓
1 = r and u↓

i = τ(u↓
i−1, j(ai−1))

for 1 < i ≤ k. Due to the state relaxations of the nodes in the MDD we observe that
j(ak) ∈ P(uk) but j(ak) /∈ P(u↓

k). The basic idea is to split the nodes on the path in such
way that job j(ak) can be removed from P(uk) and with it also the arc ak .

In general, it is not sufficient to just split node uk but a subset of the path’s nodes
ul , . . . , uk , with 1 < l ≤ k, has to be refined. Ideally, the number of nodes to be
refined should be small and the refinement should exclude other time window violations
as well. We compute the subset of nodes to be refined as follows: We first check whether
s(τ (uk−1, j(ak−1)), j(ak)) evaluates to Tmax. If it does, then job j(ak) cannot be feasibly
scheduled on the state resulting from the transition from state uk−1. Consequently, it suf-
fices to refine node uk . If it does not, then we consider one predecessor more, i.e., we check
whether s(τ (τ (uk−2, j(ak−2)), j(ak−1)), j(ak)) results in Tmax. This step is repeated until
we find a node ul−1 on the considered path which allows excluding job j(ak) if we follow
exact transitions from it.

The actual refinement works as follows: We replace each node ui with i = l, . . . , k
by nodes ui,1 and ui,2. The incoming arcs a = (v, ui) ∈ A+(ui) are redirected to ui,1 if
tr (τ (v, j(a))) ≥ tr (τ (ui−1, j(ai−1))) for all r ∈ R0, otherwise, they are redirected to ui,2.
Outgoing arcs of ui are replicated for ui,1 and ui,2. After a node split we determine for the
two resulting nodes the corresponding states and perform a filtering of their incoming and
outgoing arcs as described in Sect. 6.1. Last but not least, we have to possibly reevaluate the
states and filter all incident arcs of all nodes reachable from each node ui .

6.4 Duplicate state elimination

A side effect of the node updates and the refinement methods is that we might end up
with multiple nodes within one layer that represent an identical state. For example, assume
that a considered layer already contains a node u without any outgoing arcs that represents
state (∅, (Tmax, . . . , Tmax)). Moreover, suppose that due to updating another node u′ we
encounter that its state cannot be feasibly extended and remove all outgoing arcs. Both, u and
u′, then represent the same identical state, but are reached by different paths.We can avoid this
redundancy in theMDDby redirecting all incoming arcs from u′ to u and removing u′ from V .

123

520 Annals of Operations Research (2021) 302:507–531

In the more general case, where u and u′ have outgoing arcs merging nodes with duplicate
states is more involved. First of all, we have to ensure that our MDD still remains a valid
relaxation. TheMarkovian property implies that for all feasible extensions of u there exist an
equivalent extension of u′ and vice versa (Cire and Hoeve 2013). This allows us to remove
node u′ including its outgoing arcs after redirecting all incoming arcs to u. Obviously, the
state of node u remains valid. However, if not done carefully, this operation may reintroduce
paths encoding infeasible solutions which have been already excluded. Furthermore, we have
to make sure that the duplicate state elimination does not produce cycles with the refinement
operations in order to guarantee that IRLP terminates. After performing the refinements
of job repetitions for a job j on a considered layer it holds that if a job j ∈ P(u) then
j /∈ Some↓

u′ whenever the states of u and u′ are identical. Splitting nodes for refining time
window violations aims at increasing the tr values to trigger filtering. Since our duplicate
state elimination does not change the nodes’ states, we will from a theoretical point of view
always converge to an exact MDD.

Our duplicate state elimination works as follows: After we have performed all refinement,
updating, and filtering operations within a layer, we consider all nodes with duplicate states
pairwise and remove one of them until all nodes’ states are distinct. To this end, we redirect
all incoming arcs to the node u having the larger Z lp(u) value and remove the other node
including outgoing arcs. The intention for selecting the node with the larger Z lp(u) value is
that we do not increase the longest path to any node. Moreover, the nodes reachable from u
are more likely to be already refined, as IRLP focuses on longest paths.

7 General variable neighborhood search

In this section the general variable neighborhood search (GVNS) is presented which serves
us as a reference approach for obtaining heuristic solutions. GVNS (Hansen et al. 2010) is
a prominent local search based metaheuristic which operates on multiple neighborhoods.
The basic idea is to systematically change local search neighborhood structures until a local
optimum in respect to all these neighborhood structures is found. This part is called variable
neighborhood descent (VND). To further diversify the search, the GVNS performs so-called
shaking for local optimal solutions by applying random moves in larger neighborhoods.
These perturbed solutions then undergo VND again, and the whole process is repeated until
a termination condition is met at which point the best solution encountered is returned.

In the context of this metaheuristic we represent a solution by a permutation π =
(πi)i=1,...,|J | of the entire set of jobs J . Starting times and the subset of jobs S ⊆ J that
actually is scheduled is obtained by considering all jobs in the order of π and determin-
ing each job’s earliest feasible time; jobs that cannot be feasibly scheduled w.r.t. their time
windows anymore are skipped. This solution representation allows us to use rather simple
neighborhood structures.

Our GVNS for PC-JSOCMSR starts with a random permutation of the jobs J as initial
solution. In a preliminary study, we also used initial solutions computed by a FRB4k (Rad
et al. 2009) construction heuristic. Although this constructive heuristic provided much better
starting solutions, we could not observe significant differences in the quality of final solutions
returned by the GVNS.

We employ in ourGVNS two local search neighborhood structures. The first one considers
all exchanges of pairs of jobs within the permutation, while the second considers the removal
of any single job and its re-insertion at another position. To avoid the consideration of moves

123

Annals of Operations Research (2021) 302:507–531 521

that do not change the actual schedule, we require that each move changes either S or the
order of the jobs within S.

In the VND, we apply any possible improving exchange move before considering the
moves that remove and reinsert jobs. Each neighborhood is searched in a first improvement
fashion. As shaking operation we perform a sequence of k random remove-and-insert moves.
Whenever a new incumbent local optimal solution is found, the following shaking starts with
k = 1. Parameter k is increased by one up to a maximum value kmax after every unsuccessful
shaking followed by the VND. After reaching kmax, k is reset to one again.

8 Computational study

We performed an experimental evaluation of the proposed approaches, i.e., the top down
construction (TDC) for relaxed and reduced MDDs, the incremental refinement guided by
longest paths (ILRP), and the general variable neighborhood search (GVNS). The algorithms
are implemented in C++ and have been compiled by GNU G++ 7.3.1. All experiments are
performed on a single core of an Intel Xeon E5-2640 v4 CPU with 2.40GHz and 16 GB of
memory.

We use the same two types of test instances as in Horn et al. (2018) but extend these to also
include particularly larger instances with up to 300 jobs; all instances are available at http://
www.ac.tuwien.ac.at/research/problem-instances. Each set contains in total 840 instances
with 30 instances for each combination of n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120,
150, 200, 300} jobs and m ∈ {2, 3} secondary resources. In the first set B of balanced
benchmark instances the secondary resources are equally distributed among the jobs and
each job requires in expectation the common resource for the second third of its processing
time. To this end a job’s secondary resource is uniformly sampled from R. The processing
time of a job j is determined by sampling values for pprej , ppostj from U{0, 8} and for p0j from
U{1, 8}. In the second set S of benchmark instances, which we regard as skewed, one of the
secondary resources is required predominantly and in expectation the common resource is
required more than the half the job’s processing time. In detail, a job’s secondary resource is
set tom with a probability of 0.5while the other resources in R are selected with a probability
of 1/(2m − 2). The duration p0j of the jobs j ∈ J are chosen uniformly from {1, . . . , 13}
and the pre-processing and post-processing times pprej and ppostj are both uniformly selected
from {0, . . . , 5}. The remaining characteristics of the two benchmark sets are obtained in the
same way: The prize z j associated with each job is sampled uniformly from {p0j , . . . , 2p0j }
in order to correlate with the time the common resource is used. For the jobs we generate
between one and three time windows in such a way that approximately 30% of the jobs
fit into a schedule. To this end, we sample for each job the number of time windows ω j

from {1, 2, 3}. Moreover, let E(p0) be the expected duration a job requires the common
resource and let T = �0.3 n E(p0)� be the total expected time required from the common
resource to schedule 30% of all jobs. The ω j time windows Wj for job j are generated
as follows: We choose a start time W start

jw uniformly from {0, . . . , T − p j } and an end time

W end
jw from {W start

jw +max(p j , �0.1 T /ω j�), . . . ,W start
jw +max(p j , �0.4 T /ω j�)}. If we obtain

overlapping time windows, they are merged and ω j is adjusted accordingly.
The initial relaxed MDD used by incremental refinement methods in the literature (Cire

and Hoeve 2013; Kinable et al. 2017) are typically trivial ones of width one and can be
obtained by calling TDC with β = 1. For PC-JSOCMSR there is a more meaningful initial
relaxed MDD of maximum width m, where on each layer all states are merged that are

123

http://www.ac.tuwien.ac.at/research/problem-instances
http://www.ac.tuwien.ac.at/research/problem-instances

522 Annals of Operations Research (2021) 302:507–531

obtained by jobs requiring the same secondary resource. This initial relaxed MDD has in
general already significantly stronger states than the relaxed MDD of width one, because in
the latter the advances on the times tr for the secondary resources r ∈ R cancel each other
out. Preliminary experiments showed that small instances can be optimally solved with fewer
iterations and on larger instances stronger bounds can be obtained when starting with the
width m initial relaxed MDD. Hence, we do this in all our further IRLP runs.

In other preliminary experiments we investigated different configurations of the GVNS.
We tried changing the order of the neighborhood structures within the VND and also shaking
operators based on exchanging the positions of randomly selected jobs. The configuration
described in Sect. 7 was found to work best. Moreover, we tuned the maximum shaking size
parameter kmax. Rather small values for kmax turned out to typically yield better results, and
we decided to use kmax = 4 for all further GVNS runs in this work.

In the first series of experiments we compare the quality of relaxed MDDs compiled
by TDC and IRLP, respectively. IRLP was performed with a CPU-time limit of 900s per
run, while for TDC we used different values for the maximum width β in dependence of
the number of jobs so that the required CPU-time was in a similar order of magnitude. In
Table 1 each row shows average results of 30 instances. The first three columns describe the
instance properties. For both approaches mean dual bounds Z lp are listed together with the
corresponding standard deviations σ(Z lp), the median numbers of nodes of the relaxedMDD
|V | and median completion times t in seconds. In addition, the employed maximum width
β in the TDC are given. Moreover, for the IRLP we state in column Δ[%] the percentage of
nodes saved due to the elimination of duplicate states. In other words, we compute 100 −
100 · (|V |/|V ′|), where |V ′| is the size of the MDDs of separate runs of the IRLP without
elimination of duplicate nodes, as it was presented in our preliminary work Maschler and
Raidl (2018b). Finally, column gap[%] shows the gap between the dual bounds of both
approaches obtained by calculating the mean of 100∗ (Z lp

IRLP − Z lp
TDC)/Z lp

TDC for each of the
30 instances in a row.

On the smallest instances both algorithms produce relaxed MDDs with the same dual
bounds. In these cases the obtained bounds correspond to the optimal objective values, which
we verified by checking that the longest paths indeed correspond to feasible schedules. In fact,
TDC could solve several instances with up to 60 jobs, while IRLP found optimal solution for
some instances with up to 50 jobs.While on themedium to large instances with balanced jobs
we cannot observe a clear tendencywhichmethod provides tighter bounds, IRLP outperforms
TDC by a rather large margin on almost all skewed instances. The standard deviations of the
dual bounds obtained from both approaches show that the scattering of the objective values of
the individual runs is within a reasonable order of magnitude, but otherwise no special trend
is observable. Notice that the size of the relaxed MDDs produced by both algorithms peaks
by instances with 60 or 70 jobs and declines for larger benchmark instances. This can be
explained for the TDC by the increasing number of state transitions that have to be performed
for each layer and by the increasing number of nodes that have to be merged as a result. For
IRLP the reason is similar. IRLP has to reevaluate for larger instances more frequently nodes
with many incoming arcs.

The IRLP has been extended in comparison to our preliminary work (Maschler and Raidl
2018b) by the elimination of duplicate states within layers. While the effects on the obtained
dual bounds have been negligible, the size of the produced MDDs has been reduced between
10 and 30% on average. Smaller MDDs of similar quality become especially important if the
MDDs are further exploited within a larger algorithmic framework such as in the DD-based

123

Annals of Operations Research (2021) 302:507–531 523

Ta
bl
e
1

C
om

pa
ri
so
n
of

th
e
re
la
xe
d
M
D
D
s
ob
ta
in
ed

fr
om

T
D
C
an
d
IR

L
P

Ty
pe

m
n

T
D
C
(r
el
ax
ed

M
D
D
s)

G
ap

[%
]

IR
L
P

β
|V

|
t
(s
)

Z
lp

σ
(
Z
lp

)
|V

|
Δ

(%
)

t
(s
)

Z
lp

σ
(
Z
lp

)

B
2

01
0

75
0,
00

0
42

<
1

30
.9
3

6.
91

0.
00

20
11

<
1

30
.9
3

6.
91

B
2

02
0

75
0,
00

0
52

6
<
1

50
.3
7

5.
71

0.
00

18
2

14
<
1

50
.3
7

5.
71

B
2

03
0

75
0,
00

0
53

65
<
1

75
.3
3

6.
41

0.
00

12
58

17
<
1

75
.3
3

6.
41

B
2

04
0

75
0,
00

0
78

,3
36

<
1

98
.9
3

7.
05

0.
00

12
,6
18

18
2

98
.9
3

7.
05

B
2

05
0

75
0,
00

0
85

0,
36

6
18

12
3.
83

9.
86

1.
61

21
0,
29

4
34

37
4

12
5.
80

10
.9
3

B
2

06
0

75
0,
00

0
6,
19

2,
51

8
21

4
18

1.
07

26
. 7
9

−
2.
01

1,
50

2,
93

8
36

90
0

17
5.
13

14
.8
9

B
2

07
0

10
0,
00

0
1,
82

1,
66

9
13

6
31

4.
30

30
.9
7

−
19

.4
3

4,
16

0,
27

6
33

90
0

25
3.
23

31
.0
6

B
2

08
0

10
0,
00

0
2,
29

1,
71

4
24

3
40

0.
57

35
.8
1

−
14

.5
5

4,
44

9,
45

6
26

90
0

34
2.
70

48
.3
8

B
2

09
0

10
0,
00

0
3,
10

9,
74

1
43

9
49

7.
17

51
.5
1

−
8.
38

3,
72

2,
24

8
27

90
0

45
4.
70

66
.5
5

B
2

10
0

10
0,
00

0
3,
88

5,
52

0
68

3
60

5.
10

47
.0
7

−
2.
03

3,
14

3,
18

4
29

90
0

59
3.
33

10
0.
04

B
2

12
0

20
,0
00

1,
09

6,
54

8
27

9
86

8.
50

85
.3
5

0.
35

2,
58

1,
05

6
19

90
0

87
2.
83

14
8.
05

B
2

15
0

20
,0
00

1,
67

8,
74

8
69

0
12

45
.5
0

99
.9
6

13
.2
1

1,
86

7,
37

2
14

90
0

14
09

.6
0

14
8.
46

B
2

20
0

20
00

28
9,
01

6
23

2
21

76
.4
7

20
6.
23

5.
60

1,
30

0,
65

9
8

90
0

22
83

.8
0

11
7.
48

B
2

30
0

20
00

51
2,
77

4
97

4
38

30
.1
7

29
1.
98

1.
57

61
9,
90

8
5

90
0

38
65

.9
0

99
.8
2

B
3

01
0

75
0,
00

0
52

<
1

36
. 1
7

6.
22

0.
00

30
5

<
1

36
.1
7

6.
22

B
3

02
0

75
0,
00

0
97

8
<
1

59
.2
7

7.
85

0.
00

33
6

12
<
1

59
.2
7

7.
85

B
3

03
0

75
0,
00

0
13

,7
66

<
1

86
.3
0

7.
08

0.
00

40
46

23
<
1

86
.3
0

7.
08

B
3

04
0

75
0,
00

0
21

5,
76

3
3

11
2.
00

7.
79

0.
78

68
,3
36

25
55

11
2.
97

9.
82

B
3

05
0

75
0,
00

0
3,
89

3,
39

5
84

15
4.
43

24
.5
7

5.
08

71
8,
03

0
32

90
0

16
0.
80

17
.6
1

123

524 Annals of Operations Research (2021) 302:507–531

Ta
bl
e
1

co
nt
in
ue
d

Ty
pe

m
n

T
D
C
(r
el
ax
ed

M
D
D
s)

G
ap

[%
]

IR
L
P

β
|V

|
t
(s
)

Z
lp

σ
(
Z
lp

)
|V

|
Δ

(%
)

t
(s
)

Z
lp

σ
(
Z
lp

)

B
3

06
0

75
0,
00

0
10

,3
16

,4
41

47
4

24
1.
53

16
.6
8

−
8.
00

3,
91

0,
07

0
21

90
0

22
1.
60

15
.1
9

B
3

07
0

10
0,
00

0
2,
44

1,
85

7
19

3
40

5.
50

51
.3
0

−
17

.2
4

4,
87

0,
40

3
22

90
0

33
4.
90

47
.2
5

B
3

08
0

10
0,
00

0
3,
28

2,
53

3
35

5
52

7.
47

56
.9
5

−
9.
12

3,
80

8,
83

8
24

90
0

47
7.
07

60
.8
6

B
3

09
0

10
0,
00

0
4,
25

9,
83

2
66

4
65

5.
80

68
.2
2

2.
91

3,
20

7,
02

4
27

90
0

67
2.
37

79
.2
3

B
3

10
0

10
0,
00

0
5 ,
21

4,
23

8
98

1
78

3.
30

76
.8
9

8.
00

3,
39

4,
37

4
19

90
0

84
0.
93

67
.2
2

B
3

12
0

20
,0
00

1,
55

2,
65

2
40

2
11

76
.5
7

91
.6
7

1.
18

2,
24

9,
18

6
23

90
0

11
86

.1
0

73
.6
3

B
3

15
0

20
,0
00

2,
29

0,
83

5
10

00
16

87
.2
7

13
7.
87

−
3.
29

1,
75

0,
71

6
11

90
0

16
19

.2
3

96
.3
1

B
3

20
0

20
00

38
1,
13

5
29

4
28

27
.7
7

16
1.
11

−
16

.1
9

1,
19

2,
37

3
2

90
0

23
64

.2
7

13
1.
87

B
3

30
0

20
00

59
8,
30

1
13

18
45

62
.1
7

12
2.
92

−
14

.1
4

53
6,
46

4
14

90
0

39
14

.3
3

12
7.
36

S
2

01
0

45
0,
00

0
40

<
1

50
.9
3

8.
36

0.
00

21
11

<
1

50
.9
3

8.
36

S
2

02
0

45
0,
00

0
10

39
<
1

89
.9
3

8.
23

0.
00

44
6

9
<
1

89
.9
3

8.
23

S
2

03
0

45
0,
00

0
21

,2
20

<
1

13
1.
37

10
.3
7

0.
00

94
78

26
1

13
1.
37

10
.3
7

S
2

04
0

45
0,
00

0
43

0,
09

3
7

18
0.
07

12
.4
0

3.
42

16
7,
55

8
25

59
8

18
6.
27

16
.4
9

S
2

05
0

45
0,
00

0
4,
39

4,
38

8
12

8
30

0.
13

50
.6
1

0.
72

2,
07

9,
22

5
25

90
0

29
7.
37

30
. 7
2

S
2

06
0

45
0,
00

0
8,
54

9,
48

6
53

0
53

5.
90

77
.4
7

−
12

.5
8

6,
31

1,
37

4
26

90
0

46
3.
60

44
.0
8

S
2

07
0

10
0,
00

0
3,
23

0,
80

9
32

1
83

5.
43

11
9.
97

−
12

.9
6

5,
26

4,
95

4
29

90
0

71
7.
07

74
.1
4

S
2

08
0

10
0,
00

0
4,
36

2,
59

0
54

6
10

91
.6
3

12
4.
31

−
13

.9
7

4,
37

3,
74

6
25

90
0

93
1.
40

94
.3
5

S
2

09
0

10
0,
00

0
5,
47

5,
53

2
89

3
13

15
.3
3

12
0.
45

−
11

.8
7

4,
19

6,
12

8
27

90
0

11
54

.0
3

10
0.
01

S
2

10
0

20
,0
00

1,
43

9,
17

9
28

7
17

54
.6
3

16
3.
18

−
16

.1
7

3,
28

7,
62

8
19

90
0

14
61

.5
0

10
2.
69

S
2

12
0

20
,0
00

1,
84

0,
61

4
53

7
22

76
.6
0

23
6.
54

−
16

.2
8

2,
71

3,
62

2
15

90
0

18
91

.1
7

13
2.
51

123

Annals of Operations Research (2021) 302:507–531 525

Ta
bl
e
1

co
nt
in
ue
d

Ty
pe

m
n

T
D
C
(r
el
ax
ed

M
D
D
s)

G
ap

[%
]

IR
L
P

β
|V

|
t
(s
)

Z
lp

σ
(
Z
lp

)
|V

|
Δ

(%
)

t
(s
)

Z
lp

σ
(
Z
lp

)

S
2

15
0

20
,0
00

2,
75

6,
87

1
12

18
33

15
.6
0

20
9.
25

−
21

.4
4

1,
92

9,
51

1
13

90
0

25
98

.4
7

15
2.
95

S
2

20
0

10
00

19
9,
20

1
18

0
48

53
.9
0

17
1.
69

−
22

.2
6

1,
20

3,
59

8
9

90
0

37
70

.2
7

18
1.
75

S
2

30
0

10
00

29
9,
30

1
79

1
74

83
.1
0

18
7.
80

−
16

.4
5

66
9,
65

4
6

90
0

62
49

.6
0

21
3.
77

S
3

01
0

45
0,
00

0
46

<
1

51
.9
7

9.
76

0.
00

34
7

<
1

51
.9
7

9.
76

S
3

02
0

45
0,
00

0
12

16
<
1

96
.4
7

9.
13

0.
00

47
0

20
<
1

96
.4
7

9.
13

S
3

03
0

45
0,
00

0
23

,3
58

<
1

13
5.
90

9.
42

0.
00

96
50

25
1

13
5.
90

9.
42

S
3

04
0

45
0,
00

0
1,
09

9,
24

0
15

19
1.
20

17
.1
9

8.
18

37
7,
38

8
31

90
0

20
6.
27

20
.8
7

S
3

05
0

45
0,
00

0
5,
96

8,
86

2
21

1
35

7.
60

57
.7
8

−
3.
48

5,
59

1,
74

5
31

90
0

34
1.
23

36
.5
3

S
3

06
0

45
0,
00

0
11

,2
41

,4
55

66
3

61
0.
37

70
.7
8

−
9.
91

6,
41

0,
65

2
29

90
0

54
8.
23

74
.0
3

S
3

07
0

10
0,
00

0
4,
13

4,
69

2
40

1
95

6.
73

11
4.
00

−
17

.8
9

5,
08

7,
21

2
29

90
0

77
9.
00

73
.1
0

S
3

08
0

10
0,
00

0
4,
67

6,
28

6
62

4
12

19
.1
0

16
6.
32

−
15

.5
9

4,
28

0,
44

2
24

90
0

10
12

.0
7

70
.4
1

S
3

09
0

10
0,
00

0
6,
80

3,
30

2
11

45
16

23
.8
7

16
2.
81

−
22

.2
8

3,
76

8,
94

8
23

90
0

12
49

.0
0

10
0.
66

S
3

10
0

20
,0
00

1,
69

1,
99

0
31

3
20

13
.3
7

23
9.
78

−
24

.7
4

3,
12

3,
38

1
22

90
0

14
89

.0
3

12
8.
71

S
3

12
0

20
,0
00

2,
29

8,
59

6
64

8
26

96
.1
0

20
8.
48

−
28

. 0
4

2,
44

1,
74

2
15

90
0

19
26

.1
3

15
3.
86

S
3

15
0

20
,0
00

2,
97

3,
85

7
14

56
35

10
.9
3

22
5.
37

−
23

.6
4

1,
80

6,
43

0
12

90
0

26
69

.8
0

99
.5
4

S
3

20
0

10
00

19
9,
20

1
20

8
49

04
.3
0

16
5.
27

−
20

.4
1

1,
13

2,
77

8
9

90
0

39
01

.6
7

19
4.
42

S
3

30
0

10
00

29
9,
30

1
80

0
75

08
.9
3

18
8.
07

−
14

.8
0

52
8,
61

0
2

90
0

63
93

.8
3

25
0.
52

B
ol
d
va
lu
es

sh
ow

th
e
be
st
av
er
ag
e
bo

un
d

123

526 Annals of Operations Research (2021) 302:507–531

branch-and-bound (Bergman et al. 2016b) or for constraint propagation in CP (Cire and
Hoeve 2013; Kinable et al. 2017).

In a second series of experiments the heuristic solutions obtained by the TDC for restricted
MDDs are compared with the ones computed by the GVNS.We employ for the GVNS a time
limit of 900 CPU-seconds as termination criterion. For TDC, different maximum widths β

were used again so that the running times are in a similar order ofmagnitude. Table 2 shows the
obtained results. The first three columns describe the instance properties and each row shows
average results of 30 corresponding instances. The means and the corresponding standard
deviations of the final objective values for TDC and GVNS are shown in the columns Z lp,
σ(Z lp), obj and σ(obj), respectively. In addition, for TDC the maximum width β, median
number of nodes in the restricted MDD |V |, and median computation times t in seconds are
listed. Moreover, column tbest shows for the GVNS median times in seconds when the best
solution has been found. Finally, column gap[%] shows the average relative gap between
the objective values obtained by the TDC and the GVNS computed by taking the mean of
100 ∗ (obj − Z lp)/Z lp.

The TDC for restricted MDDs is able to outperform the GVNS on most of our benchmark
instances.Only for the largest instanceswith three secondary resources or skewed jobs,GVNS
is able to provide better results. The main reason for the superior performance of the TDC
on instances with balanced jobs and two secondary resources is that the corresponding exact
MDDs are much smaller compared with the other instances. This can be seen on the smallest
instances where the imposed maximum width is not yet restrictive. On the instances with 30
jobs, for example, the resulting MDDs for balanced jobs with two secondary resources have
on average 5365 nodes, with three secondary resources 13,766 nodes, and for the instances
with skewed jobs there are 21,220 and 23,358 nodes. It is safe to assume that this difference
in size becomes even larger with more jobs. To stay within the memory and time limits,
the maximum allowed width has to be decreased with the increasing number of jobs, which
becomes more and more restrictive for the largest instances. Note that this relation can also
be observed in Table 1 for relaxed MDDs. The GVNS approach, on the other hand, seems to
be less affected by the instance type or by the number of secondary resources. This can be
seen by the times the GVNS finds the final solution, which increases with the instance size
but does not change substantially with the instance properties. The standard deviations of
the obtained objective values show that consistency of the performance of both approaches
is rather similar.

Concerning the gaps between the upper bounds obtained from the relaxed MDDs and the
lower bounds from the heuristic solutions (compare Tables 1 and 2), we can observe that
they are only small for the small and medium sized instances but become rather large for our
largest instances. For example for the skewed instances with 300 jobs, this gap even exceeds
340%. This also somewhat illustrates the difficulty of the considered problem and the limits
of MDDs—or at least the limits of the considered construction methods.

9 Conclusions and future work

In this work we studied the application of multivalued decision diagrams (MDDs) for the
prize-collecting job sequencing with one common and multiple secondary resources (PC-
JSOCMSR) problem. To this end, we first presented a recursive model and showed how to
obtain MDDs from the problem’s state graph. Whenever, the size of MDDs become to large
relaxed and restricted MDDs are employed to obtain dual bounds and heuristic solutions,

123

Annals of Operations Research (2021) 302:507–531 527

Ta
bl
e
2

C
om

pa
ri
so
n
of

he
ur
is
tic

so
lu
tio

ns
ob
ta
in
ed

fr
om

re
st
ri
ce
d
M
D
D
s
co
m
pi
le
d
by

T
D
C
an
d
th
e
G
V
N
S

Ty
pe

m
n

T
D
C
(r
es
tr
ic
te
d
M
D
D
s)

G
ap

(%
)

G
V
N
S

β
|V

|
t
(s
)

Z
lp

σ
(
Z
lp

)
ob

j
σ
(o
bj

)
tb
es
t
(s
)

B
2

01
0

75
0,
00

0
42

<
1

30
.9
3

6.
91

0.
00

30
.9
3

6.
91

<
1

B
2

02
0

75
0,
00

0
52

6
<

1
50

.3
7

5.
71

0.
00

50
.3
7

5.
71

<
1

B
2

03
0

75
0,
00

0
53

65
<

1
75

.3
3

6.
41

0.
00

75
.3
3

6.
41

<
1

B
2

04
0

75
0,
00

0
78

,3
36

1
98

.9
3

7.
05

−
0.
03

98
.9
0

7.
01

<
1

B
2

05
0

75
0,
00

0
85

0,
36

6
23

12
3.
27

10
.3
3

−
0.
05

12
3.
20

10
.3
4

<
1

B
2

06
0

75
0,
00

0
6,
14

9,
52

2
21

2
14

6.
80

10
.3
9

−
0.
18

14
6.
53

10
.3
8

<
1

B
2

07
0

75
0,
00

0
10

,0
39

,4
10

69
7

17
2.
23

11
.1
7

−
0.
18

17
1.
93

11
.4
1

8

B
2

08
0

15
0,
00

0
2,
67

8,
99

8
25

9
19

9.
97

13
.3
6

−
0.
24

19
9.
47

13
.1
3

8

B
2

09
0

15
0,
00

0
3,
27

5,
62

7
42

4
23

1.
83

13
.3
6

−
0.
50

23
0.
70

13
.7
3

31

B
2

10
0

15
0,
00

0
3,
75

6,
24

6
61

0
26

0.
40

11
.5
2

−
0.
60

25
8.
83

11
.7
1

67

B
2

12
0

50
,0
00

1,
59

2,
21

6
37

1
31

5.
90

13
.0
5

−
0.
97

31
2.
80

12
.4
4

18
6

B
2

15
0

50
,0
00

2,
13

2,
14

2
79

9
40

2.
43

18
.6
5

−
1.
46

39
6.
50

17
.4
7

55
1

B
2

20
0

60
00

35
3,
18

0
22

6
52

8.
17

18
.9
6

−
0.
24

52
6.
83

18
.7
3

45
9

B
2

30
0

60
00

52
4,
99

0
76

6
79

6.
17

16
.6
8

−
0.
56

79
1.
67

17
.2
6

75
1

B
3

01
0

75
0,
00

0
52

<
1

36
.1
7

6.
22

0.
00

36
. 1
7

6.
22

<
1

B
3

02
0

75
0,
00

0
97

8
<

1
59

.2
7

7.
85

0.
00

59
.2
7

7.
85

<
1

B
3

03
0

75
0,
00

0
13

,7
66

<
1

86
.3
0

7.
08

0.
00

86
.3
0

7.
08

<
1

B
3

04
0

75
0,
00

0
21

5,
76

3
8

11
2.
00

7.
79

−
0.
06

11
1.
93

7.
85

<
1

B
3

05
0

75
0,
00

0
3,
89

1,
53

2
10

5
14

0.
33

10
.4
0

−
0.
05

14
0.
27

10
.4
0

1

B
3

06
0

75
0,
00

0
9,
55

4,
02

4
41

4
16

5.
13

8.
83

−
0.
20

16
4.
80

8.
80

7

B
3

07
0

75
0,
00

0
13

,1
61

,2
24

10
45

19
4.
83

11
.1
3

−
0.
35

19
4.
17

11
.2
6

44

B
3

08
0

15
0,
00

0
3,
62

6,
75

4
35

4
22

7.
87

13
.5
4

−
0.
51

22
6.
70

13
.3
4

72

123

528 Annals of Operations Research (2021) 302:507–531

Ta
bl
e
2

co
nt
in
ue
d

Ty
pe

m
n

T
D
C
(r
es
tr
ic
te
d
M
D
D
s)

G
ap

(%
)

G
V
N
S

β
|V

|
t
(s
)

Z
lp

σ
(
Z
lp

)
ob

j
σ
(o
bj

)
tb
es
t
(s
)

B
3

09
0

15
0,
00

0
4,
21

0,
25

4
58

5
25

7.
53

8.
67

−
0.
88

25
5.
27

9.
14

55

B
3

10
0

15
0,
00

0
4,
90

2,
28

3
82

2
29

0.
53

14
.3
0

−
0.
86

28
8.
03

14
.6
0

27
4

B
3

12
0

50
,0
00

1,
99

6,
23

5
45

9
35

2.
27

15
.1
2

−
1.
02

34
8.
63

14
.1
2

25
5

B
3

15
0

50
,0
00

2,
48

9,
35

3
93

6
43

9.
87

15
.8
8

−
0.
82

43
6.
30

16
.6
8

35
8

B
3

20
0

60
00

40
8,
37

2
24

5
57

9.
97

18
.7
4

0.
68

58
3.
80

16
.3
1

50
7

B
3

30
0

60
00

60
6,
96

0
83

0
84

7.
67

16
.2
5

2.
07

86
5.
20

19
.2
5

70
7

S
2

01
0

75
0,
00

0
40

<
1

50
.9
3

8.
36

0.
00

50
.9
3

8.
36

<
1

S
2

02
0

75
0,
00

0
10

39
<

1
89

.9
3

8.
23

0.
00

89
.9
3

8.
23

<
1

S
2

03
0

75
0,
00

0
21

,2
20

<
1

13
1.
37

10
.3
7

0.
00

13
1.
37

10
.3
7

<
1

S
2

04
0

75
0,
00

0
43

0,
09

3
10

18
0.
07

12
.4
0

−
0.
04

18
0.
00

12
.3
8

<
1

S
2

05
0

75
0,
00

0
6,
33

5,
67

7
17

5
22

5.
67

12
.7
7

−
0.
12

22
5.
40

12
.8
0

1

S
2

06
0

75
0,
00

0
10

,8
73

,9
78

67
9

27
7.
53

11
.6
7

−
0.
24

27
6.
87

11
.9
7

10

S
2

07
0

15
0,
00

0
3,
23

3,
63

0
29

3
32

6.
20

14
.2
4

−
0.
31

32
5.
20

14
.5
1

42

S
2

08
0

15
0,
00

0
3,
95

9,
83

2
45

2
37

5.
80

16
.5
0

−
0.
42

37
4.
23

16
.6
6

70

S
2

09
0

15
0,
00

0
4,
49

5,
44

5
65

5
42

1.
50

17
.4
3

−
0.
53

41
9.
27

17
.3
7

15
9

S
2

10
0

15
0,
00

0
5,
10

5,
28

9
96

2
47

9.
13

20
.9
1

−
0.
65

47
6.
03

20
.8
4

25
9

S
2

12
0

50
,0
00

2,
07

2,
13

3
52

5
57

4.
37

21
.7
9

−
0.
64

57
0.
70

22
.3
2

23
9

S
2

15
0

50
,0
00

2,
74

1,
18

4
10

62
71

5.
93

14
.2
2

0.
06

71
6.
37

16
.2
8

40
1

S
2

20
0

60
00

43
2,
74

6
27

0
93

1.
57

21
.9
0

1.
87

94
8.
87

22
.2
5

63
2

S
2

30
0

60
00

66
8,
57

0
93

8
13

82
.7
0

30
.4
2

2.
99

14
24

.0
7

38
.5
6

78
4

S
3

01
0

75
0,
00

0
46

<
1

51
.9
7

9.
76

0.
00

51
.9
7

9.
76

<
1

S
3

02
0

75
0,
00

0
12

16
<

1
96

.4
7

9.
13

0.
00

96
.4
7

9.
13

<
1

123

Annals of Operations Research (2021) 302:507–531 529

Ta
bl
e
2

co
nt
in
ue
d

Ty
pe

m
n

T
D
C
(r
es
tr
ic
te
d
M
D
D
s)

G
ap

(%
)

G
V
N
S

β
|V

|
t
(s
)

Z
lp

σ
(
Z
lp

)
ob

j
σ
(o
bj

)
tb
es
t
(s
)

S
3

03
0

75
0,
00

0
23

,3
58

<
1

13
5.
90

9.
42

0.
00

13
5.
90

9.
42

<
1

S
3

04
0

75
0,
00

0
1,
09

9,
24

0
31

18
5.
43

10
.9
2

0.
00

18
5.
43

10
.9
2

<
1

S
3

05
0

75
0,
00

0
8,
57

2,
08

6
29

8
23

4.
40

10
.9
2

−
0.
10

23
4.
17

11
.1
0

9

S
3

06
0

75
0,
00

0
13

,7
23

,6
65

84
2

28
6.
97

13
.0
0

−
0.
30

28
6.
10

13
.1
3

9

S
3

07
0

15
0,
00

0
3,
65

6,
98

3
32

6
33

1.
30

17
.3
7

−
0.
34

33
0.
20

17
.7
1

51

S
3

08
0

15
0,
00

0
4,
25

3,
94

0
47

5
38

4.
77

17
.2
7

−
0.
37

38
3.
33

17
.3
8

37

S
3

09
0

15
0,
00

0
5,
15

7,
73

1
75

4
42

9.
60

16
.9
2

−
0.
38

42
7.
97

16
.9
3

11
9

S
3

10
0

15
0,
00

0
5,
79

4,
92

6
10

35
48

7.
30

19
.4
1

−
0.
26

48
6.
00

18
.2
8

16
3

S
3

12
0

50
,0
00

2,
30

8,
30

6
57

5
56

5.
13

17
.1
2

0.
63

56
8.
63

16
.7
4

44
8

S
3

15
0

50
,0
00

2,
90

4,
06

0
10

60
70

8.
07

21
.6
1

1 .
13

71
6.
00

20
.4
2

44
2

S
3

20
0

60
00

46
0,
54

1
26

7
92

8.
80

24
.1
9

3.
55

96
1.
70

24
.2
7

51
9

S
3

30
0

60
00

71
5,
92

0
92

6
13

78
.5
3

38
.4
2

3.
64

14
28

.5
7

39
.6
8

74
7

B
ol
d
va
lu
es

sh
ow

th
e
be
st
av
er
ag
e
bo

un
d

123

530 Annals of Operations Research (2021) 302:507–531

respectively. We adapted the two main compilation techniques for relaxed MDDs proposed
in the literature to PC-JSOCMSR: top down construction (TDC) and incremental refinement
(IR). To obtain restricted MDDs we use a variant of the TDC. In our computational study
we first compared the relaxed MDDs obtained by TDC and IR. While both methods perform
rather similar on balanced instances, IRLP is clearly superior on the benchmark instances
sampled from skewed distributions. Afterwards, we assessed the quality of the restricted
MDDs compiled with the TDC by comparing the obtained heuristic solutions with the ones
froman independent general variable neighborhood search (GVNS).While theTDCperforms
better than the GVNS on small to medium-sized instances, the GVNS is mostly superior on
the largest instances of our benchmark suite.

The focus of this paper is on the compilation of MDDs themself. A next step is to exploit
the produced MDDs in various ways in other algorithmic frameworks to ultimately solve
also larger instances of the problem in better ways. For example highly promising are novel
branching schemes on the basis of relaxed MDDs as described in Bergman et al. (2016b) or
the utilization ofMDDs in new inference techniques in constraint programming, see e.g. Cire
and Hoeve (2013). Last but not least, relaxed MDDs also have a great potential to provide
guidance for finding good heuristic solutions in advanced metaheuristics.

A further promising future research direction seems to be to rethink the strict layered
structure of the MDDs. For problems like PC-JSOCMSR their exist equivalent states on
different layers. If we allow “long arcs” over multiple layers, such equivalent states may be
represented by a single node possibly yielding more compact MDDs. Such a generalization
provides new opportunities for merging states but also bears new challenges on how to
identify nodes to be merged efficiently.

Acknowledgements Open access funding provided by TU Wien (TUW).

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

Allahverdi, A. (2016). A survey of scheduling problems with no-wait in process. European Journal of Oper-
ational Research, 255(3), 665–686.

Andersen, H. R., Hadzic, T., Hooker, J. N., & Tiedemann, P. (2007). A constraint store based on multivalued
decision diagrams. In Principles and practice of constraint programming—CP 2007 (pp. 118–132).
Berlin: Springer.

Bergman, D., van Hoeve, W.-J., & Hooker, J. N. (2011). Manipulating MDD relaxations for combinatorial
optimization. In Integration of AI and OR techniques in constraint programming for combinatorial
optimization problems (pp. 20–35). Berlin: Springer.

Bergman, D., Cire, A. A., van Hoeve, W.-J., & Hooker, J. N. (2014a). Optimization bounds from binary
decision diagrams. INFORMS Journal on Computing, 26(2), 253–268.

Bergman,D.,Cire,A.A., vanHoeve,W.-J.,&Yunes, T. (2014b).BDD-basedheuristics for binary optimization.
Journal of Heuristics, 20(2), 211–234.

Bergman, D., Cire, A. A., van Hoeve, W.-J., & Hooker, J. N. (2016a). Decision diagrams for optimization.
In B. O’Sullivan & M. Wooldridge (Eds.), Artificial intelligence: Foundations, theory, and algorithms.
Cham: Springer.

Bergman, D., Cire, A. A., van Hoeve, W.-J., & Hooker, J. N. (2016b). Discrete optimization with decision
diagrams. INFORMS Journal on Computing, 28(1), 47–66.

Cire, A. A., & Hoeve, W. V. (2013). Multivalued decision diagrams for sequencing problems. Operations
Research, 61(6), 1411–1428.

123

http://creativecommons.org/licenses/by/4.0/

Annals of Operations Research (2021) 302:507–531 531

Hadzic, T., Hooker, J. N., O’Sullivan, B., & Tiedemann, P. (2008). Approximate compilation of constraints
into multivalued decision diagrams (pp. 448–462)., Lecture notes in computer science Berlin: Springer.

Hansen, P., Mladenović, N., Brimberg, J., & Pérez, J. A. M. (2010). Variable neighborhood search. In M.
Gendreau & J.-Y. Potvin (Eds.), Handbook of metaheuristics (pp. 61–86). New York: Springer.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project
scheduling problem. European Journal of Operational Research, 207(1), 1–14.

Hoda, S., van Hoeve,W.-J., &Hooker, J. N. (2010). A systematic approach toMDD-based constraint program-
ming. In Principles and practice of constraint programming—CP 2010 (pp. 266–280). Berlin: Springer.

Hooker, J. N. (2013). Decision diagrams and dynamic programming. In CPAIOR 2013: Integration of AI
and OR techniques in constraint programming for combinatorial optimization problems, volume 7874
of LNCS (pp. 94–110). Springer.

Horn, M., Raidl, G., & Blum, C. (2017). Job sequencing with one common and multiple secondary resources:
A problem motivated from particle therapy for cancer treatment. In Giuffrida, G., Nicosia, G., Pardalos,
P., & Umeton, R. (Eds.),MOD 2017: Machine learning, optimization, and big data—Third international
conference, volume 10710 of LNCS (pp. 506–518). Springer.

Horn,M.,Raidl,G.,&Rönnberg, E. (2018).AnA*algorithm for solving a prize-collecting sequencing problem
with one common and multiple secondary resources and time windows. In PATAT 2018: Proceedings
of the 12th international conference of the practice and theory of automated timetabling (pp. 235–256).
Vienna, Austria.

Kinable, J., Cire, A. A., & van Hoeve,W. J. (2017). Hybrid optimization methods for time-dependent sequenc-
ing problems. European Journal of Operational Research, 259(3), 887–897.

Lee, C. Y. (1959). Representation of switching circuits by binary-decision programs. Bell System Technical
Journal, 38(4), 985–999.

Maschler, J., & Raidl, G. R. (2018a). Particle therapy patient scheduling with limited starting time variations
of daily treatments. International Transactions in Operational Research. https://doi.org/10.1111/itor.
12579.

Maschler, J., &Raidl, G. R. (2018b).Multivalued decision diagrams for a prize-collecting sequencing problem.
In PATAT 2018: Proceedings of the 12th international conference of the practice and theory of automated
timetabling (pp. 375–397), Vienna, Austria.

Maschler, J., Riedler, M., Stock, M., & Raidl, G. R. (2016). Particle therapy patient scheduling: First heuristic
approaches. In PATAT 2016: Proceedings of the 11th international conference of the practice and theory
of automated timetabling (pp. 223–244), Udine, Italy.

Rad, S. F., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for minimizing makespan in
permutation flowshops. Omega, 37(2), 331–345.

Riedler, M., Jatschka, T., Maschler, J., & Raidl, G. R. (2017). An iterative time-bucket refinement algorithm
for a high-resolution resource-constrained project scheduling problem. International Transactions in
Operational Research, 27(1), 573–613.

Van der Veen, J. A. A., Wöginger, G. J., & Zhang, S. (1998). Sequencing jobs that require common resources
on a single machine: A solvable case of the TSP. Mathematical Programming, 82(1–2), 235–254.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1111/itor.12579
https://doi.org/10.1111/itor.12579

	Multivalued decision diagrams for prize-collecting job sequencing with one common and multiple secondary resources
	Abstract
	1 Introduction
	2 The problem
	3 Recursive model for PC-JSOCMSR
	4 Multivalued decision diagrams for PC-JSOCMSR
	5 Top-down construction
	6 Incremental refinement
	6.1 Node updates and filtering
	6.2 Refinement of job repetitions
	6.3 Refinement of time window violations
	6.4 Duplicate state elimination

	7 General variable neighborhood search
	8 Computational study
	9 Conclusions and future work
	Acknowledgements
	References

