
Robust Vertex Enumeration for Convex Hulls in High Dimensions∗

Pranjal Awasthi
pranjal.awasthi@cs.rutgers.edu

Bahman Kalantari
kalantar@cs.rutgers.edu

Yikai Zhang
yz422@cs.rutgers.edu

Abstract

The problem of computing the vertices of the convex hull of a given finite set of points in the Euclidean
space is a classic and fundamental problem, studied in the context of computational geometry, linear and
convex programming, machine learning and more. In this article we present All Vertex Triangle Algorithm
(AVTA), a robust and efficient algorithm that for a given input set S = {vi ∈ Rm : i = 1, . . . , n} computes
the subset S of all K vertices of the convex hull of S. If desired AVTA computes an approximation to
S and it can also work if the input data is a perturbation of S. Let R be the diameter of S. We say
conv(S), the convex hull of S, is Γ∗-robust if the minimum of the distances from each vertex to the
convex hull of the remaining vertices is Γ∗. Given γ ≤ γ∗ = Γ∗/R, the number of operations of AV TA to
compute S is O(nK(m+ γ−2)). Even without the knowledge of γ∗, but when K is known, using binary
search, the complexity of AVTA is O(nK(m+ γ−2

∗)) log(γ−1
∗). More generally, without the knowledge of

γ∗ or K, given any t ∈ (0, 1), AVTA computes a subset S
t

of S of cardinality K(t) in O(nK(t)(m+ t−2))

operations so that the Euclidean distance between any point p ∈ conv(S) to conv(S
t
) is at most tR.

Next we consider AVTA under perturbation since in practice the input maybe a perturbation of S,
Sε = {vεi : i = 1, . . . , n}, where ‖vi − vεi ‖ ≤ εR. The set of perturbed vertices, Sε may differ drastically
from the set of vertices of conv(Sε). Let Σ∗ be the minimum of distances of vertices of conv(S) to
the convex hull of the remaining point of S. Under the assumption that σ∗ = Σ∗/R ≥ 4ε, given σ
satisfying 4ε ≤ σ ≤ σ∗, AVTA computes Sε in O(nKε(m + σ−2)), where K ≤ Kε ≤ n. When only
K is known, but assuming 4ε ≤ σ∗, using binary search the complexity of AVTA to compute Sε is

O(nK(m + σ−2
∗)) log(σ−1

∗). More generally, given any t ∈ (0, 1), AVTA computes a subset S
t
ε of Sε of

cardinality K
(t)
ε in O(nK

(t)
ε (m+ t−2) so that the distance between any point p ∈ conv(S) to conv(S

t
ε) is

at most (t+ ε)R.
We also consider the application of AVTA in the recovery of vertices through the projection of S or

Sε under a Johnson-Lindenstrauss randomized linear projection L : Rm → Rm′ . Denoting U = L(S)
and Uε = L(Sε), by relating the robustness parameters of conv(U) and conv(Uε) to those of conv(S)
and conv(Sε), we derive analogous complexity bounds for probabilistic computation of the vertex set of
conv(U) or those of conv(Uε), or an approximation to them. Finally, we apply AVTA to design new
practical algorithms for two popular machine learning problems: topic modeling and non-negative matrix
factorization. For topic models, our new algorithm leads to significantly better reconstruction of the topic-
word matrix than state of the art approaches Arora et al. (2013); Bansal et al. (2014). Additionally,
we provide a robust analysis of AVTA and empirically demonstrate that it can handle larger amounts of
noise than existing methods. For non-negative matrix we show that AVTA is competitive with existing
methods that are specialized for this task Arora et al. (2012a).

Keywords: Convex Hull Membership, Approximation Algorithms, Machine Learning, Linear Program-
ming, Random Projections

∗A conference version of the article will appear in the Proceedings of AISTATS 2018

1

ar
X

iv
:1

80
2.

01
51

5v
2

 [
cs

.C
G

]
 2

4
Se

p
20

18

1 Introduction

In this article we present All Vertex Triangle Algorithm (AVTA), a robust and efficient algorithm that for
given input set S = {v1, . . . , vn} ⊂ Rm, computes the subset S = {v1, . . . , vK} of all vertices of conv(S), the

convex hull of S. More generally, given any t ∈ (0, 1), AVTA computes a subset S
t

of S so that the distance

between any point p ∈ conv(S) to conv(S
t
) is to within a distance of tR. AVTA is also applicable if the

input date is a perturbation of S.
AVTA, a fully polynomial-time approximation scheme, builds upon the Triangle Algorithm Kalantari

(2015), designed to solve the the convex hull membership problem. Specifically, given S, the Triangle Algo-
rithm tests if a distinguished point p lies in the conv(S), either by computing a point pε ∈ conv(S) to within
a prescribed distance to p, or a hyperplane that separates p from conv(S). Before describing AVTA and
its applications we wish to give an overview of the related problems and research, as well as their history,
significance and connections to our work.

The convex hull membership problem is a basic problem in computational geometry and a very special
case of the convex hull problem, see Goodman and Toth et al. (2004). Besides being a fundamental problem
in computational geometry, it is a basic problem in linear programming (LP). In fact LP over the integers can
be reduced to a convex hull membership problem. Furthermore, the two most famous polynomial-time LP
algorithms, the ellipsoid algorithm of Khachiyan (1980) and the projective algorithm of Karmarkar (1984),
are in fact explicitly or implicitly designed to solve the convex hull membership problem when p = 0, see Jin
and Kalantari (2006). Furthermore, using an approach suggested by Chvátal, in Jin and Kalantari (2006)it
can be shown that there is a direct connection between a general LP feasibility and this homogeneous case
of the convex hull membership problem.

An important problem in computational geometry and machine learning is the irredundancy problem,
the problem of computing all the vertices of conv(S), see Toth et al. (2004). Clearly, any algorithm
for LP feasibility can be used to solve the irredundancy problem by solving a sequence of O(n) convex hull
membership problems. For results that reduce the number of linear programming problems, see e.g. Clarkson
(1994) and Chan (1996b). Some applications require the description of conv(S) in terms of its vertices,
facets and adjacencies, see Chazelle (1993). The complexity of many exact algorithms for irredundancy is
exponential in terms of the dimension of the points, thus only practical in very low dimensions. On the other
hand, the convex hull membership problem by itself has been studied in the context of large scale applications
where simplex method or polynomial time algorithms are too expensive to run. Thus approximation schemes
have been studied for the problem.

Blum et al. (2016) propose a bi-criterion algorithm based on Nearest Neighbot Oracle, computing a
subset of vertices T satisfying two properties: i) the Hausdorff distance between conv(T) and conv(S) is
bounded above by (8ε1/3 + ε)R (ii) |T | = O(Kopt/ε

2/3). Since T ⊂ S, this implies that ε = Ω((Kopt/n)3/2).
The running time of the algorithm is

O

(
nKopt

ε2/3

(
m+

Kopt

ε8/3
+
K2
opt

ε4/3

))
.

While there is a theoretical bound on the size of T as a polynomial in 1/ε, it is in-efficient since it uses
the Nearest Neighbot Oracle. Indeed, in AVTA, the Triangle algorithm works as an approximate oracle
which achives great improvement in efficiency. Given that S̄ is γ robust and additionally γ is Ω(ε1/3), then
we cannot use fewer than |S̄| vertices to give an ε approximation. This argument shows that in Blum
et al. (2016) Kopt = |S̄|. In a general case where γ is arbitrarily close to 0, AVTA will find all vertices in
O(nKε(m + 1

ε2)) time. While we so far have no nontrivial bound on Kε, it is known that Kε ≤ n. In this
case the complexity of AVTA is O(n2m+n2/ε2) and Greedy clustering requires at least O(nm/ε2 +n/ε10) to
achieve the same accuracy. It could be concluded that there exists regimes that AVTA outperforms Greedy
Clustering. It is interesting to observe that AVTA could be used as a pre-processing algorithm for Greedy
Clustering. By our analysis, AVTA only detects vertices and will not omit any of them. In case n >> Kε,
we can use AVTA to delete points inside the convex hull thus reduce the size of the problem for Greedy
Clustering. In summary, the two algorithms coexist.

2

Not only is convex hull detection a fundamental problem in computational geometry, state of the art
algorithms for many machine learning problems rely on being able to solve this problem efficiently. Consider
for instance the problem of non-negative matrix factorization (NMF) Lee and Seung (2001). Here, given
access to a data matrix A, we want to compute non-negative, low rank matrices U and V such that A =
UV . Although in general this problem is intractable, recent results show that under a natural separability
assumption Donoho and Stodden (2003) such a factorization can be computed efficiently Arora et al. (2012a).
The key insight in these works is that under the separability assumption, the rows of the matrix V will appear
among the rows of A. Furthermore, the rows of V will be the vertices of the convex hull of rows of A. Hence,
a fast algorithm for detecting the vertices will lead to a fast factorization algorithm as well.

A problem related to NMF is known as topic modeling Blei (2012). Here one is given access to a
large corpus of documents, with each document represented as a long vector consisting of frequency in the
document of every word in the vocabulary. This is known as the bag-of-words representation. Each document
is assumed to represent a mixture of up to K hidden topics. A popular generative model for such documents
is the following: For every document d, a K dimensional vector θd is drawn from a distribution over the
simplex. Typically this distribution is the Dirichlet distribution. Then, for each word in the document, a
topic is chosen according to θd. Finally, given a chosen topic i, a word is output according to the topic
distribution vector βi. This is known as the Latent Dirichlet Allocation (LDA) model Blei et al. (2003). The
parameters of this model consist of the topic-word matrix β so that βi defines the distribution over words
for topic i. Additionally, there are hyper parameters associated with the Dirichlet distributions generating
the topic distribution vector θd. The topic modeling problem concerns learning the topic-word matrix β
and the parameters of the topic generating distribution. Similar to NMF, the problem is intractable in
the worst case but can be efficiently solved under separability Arora et al. (2012b). In this context, the
separability assumption requires that for each topic i, there exists an anchor word that has a non-zero
probability of occurring only under topic i. Separability is an assumption that is known to hold for real
world documents Arora et al. (2012b). The key component towards learning the model parameters is a fast
algorithm for finding the anchor words. The algorithm of Arora et al. (2012b, 2013) uses the word-word
covariance matrix and shows that under separability, the vertices of the convex hull of the rows of the matrix
will correspond to the anchor words. Similarly, the work of Ding et al. (2013) shows that finding the vertices
of the convex hull of the document-word matrix will also lead to detection of anchor words. Both approaches
rely on the vertex detection subroutine. Furthermore, in the case of topic models, the documents are limited
in size and this translates to the fact that one is given a perturbation of the set S. The goal is to use this
perturbed set to approximate the original vertices S. Hence in this application it is crucial that the approach
to finding the vertices be robust to noise.

The convex hull membership problem can be formulated as the minimization of a convex quadratic
function over the unit simplex. This particular convex program finds applications in statistics, approximation
theory, and machine learning, see e.g Clarkson (2010) and Zhang (2003) who consider the analysis of a
greedy algorithm for minimizing smooth convex functions over the unit simplex. The Frank-Wolfe algorithm
Frank and Wolfe (1956) is a classic greedy algorithm for convex programming. When the the convex hull of
a set of points does not contain the origin, the problem of computing the point in the convex hull with least
norm, known as polytope distance is also a problem of interest. In some applications the polytope distance
refers to the distance between two convex hulls, a fundamental problem in machine learning, known as SVM,
see e.g. Burges (1998). Gilbert’s algorithm Gilbert (1966) for the polytope distance problem is one of the
earliest known algorithms. Gärtner and Jaggi (2009) show Gilbert’s algorithm coincides with Frank-Wolfe
algorithm when applied to the minimization of a convex quadratic function over a unit simplex. In this case
the algorithm is known as sparse greedy approximation. For many results regarding the applications of the
minimization of a quadratic function over a simplex, see Zhang (2003), Clarkson (2010) and Gärtner and
Jaggi (2009). Clarkson (2010) analyzes the Frank-Wolfe and its variations while studying the notion of
coresets. While the Triangle Algorithm has features that are very similar to those of Frank-Wolfe algorithm,
there are other features and properties that make it an algorithm distinct from Frank-Wolfe or Gilbert’s

3

algorithm. To describe these differences, consider the distance between p and conv(S):

∆ = min

{
d(p′, p) ≡ ‖p′ − p‖ : p′ ∈ conv(S)} = d(p∗, p)

}
. (1)

Clearly, p 6∈ conv(S), if and only if ∆ > 0. The goal of the convex hull membership problems (equivalently
an LP feasibility) is to test feasibility, i.e. if p lies in conv(S). Solving this does not require the computation of
∆ when it is positive. Thus the goal of solving the convex hull membership is different from that of computing
this distance ∆when positive. When p ∈ conv(S), the analysis of complexity of the Triangle Algorithm is
essentially identical with Clarkson (2010) analysis of the basic Frank-Wolfe algorithm. Gärtner and Jaggi
Gärtner and Jaggi (2009) on the other hand analyze the complexity of Gilbert’s algorithm for the polytope
distance problem, i.e. the approximation of ∆, however under the assumption that ∆ > 0. Gärtner and
Jaggi (2009) do not address the case when ∆ = 0.

What distinguishes the Triangle Algorithm from the Frank-Wolfe and Gilbert’s algorithms is the distance
dualities which gives more flexibility to the algorithm. The algorithm we will analyze in this article, namely
AVTA, is designed to generate all vertices of conv(S). It makes repeated use of the distance dualities of
the Triangle Algorithm, resulting in an over all efficient algorithm for computing the vertices of conv(S),
or very good approximation to these vertices, even under perturbation of the input set. Indeed AVTA is
testimonial to the uniqueness of the Triangle Algorithm while itself is a nontrivial extension of the Triangle
Algorithm. AVTA finds many applications in computational geometry and machine learning. Some of these
are demonstrated here theoretically and computationally. We next describe AVTA in more detail.

To describes the complexities of AVTA we need to define some parameters. We say conv(S) is Γ∗-robust,
if Γ∗ is the minimum of the distances from each vi ∈ S to conv(S \ {vi}). Set R = max{d(vi, vj), vi, vi ∈ S},
the diameter of S. AVTA works as follows.

(1) If a number 0 < γ ≤ Γ∗/R is known, the number of operations of AV TA to computes S is.

O(nK(m+ γ−2)). (2)

(2) If only K is known, the number of operations of AV TA to compute S is

O(nK(m+ γ−2
∗)) log γ−1

∗). (3)

(3) More generally, given any t ∈ (0, 1), AVTA can compute a subset S
t

of S so that the distance of each

point in conv(S) to conv(S
t
) is at most tR. The corresponding number of operations is

O(nK(t)(m+ t−2)), K(t) = |St|. (4)

In practice the input set may be not S but a perturbation of it, Sε = {vε1, . . . , vεn}, where ‖vi−vεi ‖ ≤ εRS .
The set of perturbed vertices, Sε = {vε1, . . . , vεK} may differ considerably from the set of actual vertices of
conv(Sε). Under mild assumption on ε, AVTA computes Sε = {vε1, . . . , vεK}. More generally, given any

t ∈ (0, 1), AVTA computes a subset S
t

ε of Sε so that the distance from any p ∈ conv(S) to conv(S
t

ε) is at
most (t + ε)R. The complexity of AVTA for this variation of the problem is analogous to the unperturbed
case, however it makes use a weaker parameter. We say conv(S) is Σ∗-weakly robust, if Σ∗ is the minimum
of the distances of each vertex in S to the convex hull of all the remaining points in S. In Figure 1 we show
a simple example where Γ∗ and Σ∗ are shown for set of eight points.

We first prove when σ∗ = Σ∗/R ≥ 4ε, Sε is a subset of vertices of conv(Sε) and conv(Sε) is at least
Σ∗/2-weakly robust. Using this, we prove

(i) If σ ≤ σ∗ = Σ∗/R is known to satisfying 4ε ≤ σ, the number of operations of AV TA to computes Sε,
is.

O(nKε(m+ σ−2)), (5)

where Kε is at most the cardinality of the set of vertices of Sε.
Clearly Γ∗ ≥ Σ∗, however we prove

Σ∗ ≥ .5Γ∗ρ∗, (6)

4

v1

v2 v3

v4

Σ3

Σ1

v5

v6

v7

v8

Σ2

Γ1

Γ2
Γ3

Figure 1: Γ∗ = Γ1 and Σ∗ = Σ2.

where ρ∗ is the minimum distance between distinct pair of points in S. This allows deriving lower bound to
Σ∗ from a known lower bound on Γ∗. Thus we can alternatively write

(ii) If γ ≤ γ∗ = Γ∗/R is known satisfying 4ε ≤ γρ∗/R, the number of operations of AV TA to computes
Sε is.

O(nKε(m+ (γρ∗)
−2)). (7)

(iii) If only K is known, where 4ε ≤ σ∗ = Σ∗/R, the number of operations of AV TA to computes Sε is.

O(nKε(m+ σ−2
∗)) log(σ−1

∗). (8)

(iv) More generally, given any t ∈ (0, 1), AVTA can compute a subset S
t

ε of Sε so that the distance from

each p in conv(S) to conv(S
t

ε) is at most (t+ ε)R. The corresponding number of operations is

O(nKt
ε(m+ t−2)), Kt

ε = |Stε|. (9)

We also consider the application of AVTA in the recovery of vertices through the projection of S or Sε
under a Johnson-Lindenstrauss randomized linear projection L : Rm → Rm′ . By relating the robustness
parameters of conv(U) and conv(Uε), where U = L(S) and Uε = L(Sε), to those of conv(S) and conv(Sε),
we derive analogous complexity bounds for probabilistic computation of the vertex set of conv(U) or those of
conv(Uε), or an approximation to these subsets for a given t ∈ (0, 1). Table 1 summarizes the complexities
of computing desired sets under various cases.

The organization of the the article is as follows. In Section 2, we review the Triangle Algorithm for solving
the convex hull membership problem. In Section 3, we describe an efficient implementation of the Triangle
Algorithm. This will be used throughout the the article. In Section 4, we describe All Vertex Triangle
Algorithm (AVTA), a modification of the Triangle Algorithm, for computing all vertices of the convex hull
of a given finite set of points, S. We discuss several applications of this, in particular in solving the convex
hull membership problem itself. Other applications will be described in subsequent sections. In Section 5,
we consider the performance of AVTA under perturbation of data. In Section 6, we consider AVTA with
Johnson-Lindenstrauss projections. Furthermore, we consider the performance of AVTA under perturbation
of data with Johnson-Lindenstrauss projections.

2 Review of The Triangle Algorithm

The Triangle Algorithm described in Kalantari (2015) is a simple iterative algorithm for solving the con-
vex hull membership problem, a fundamental problem in linear programming and computational geometry.

5

Input and Description Computed via AVTA Conditions Complexity

S = {v1, . . . , vn} ⊂ Rm S, vertices of conv(S), |S| = K γ ≤ γ∗ ≡ Γ∗/R is known O
(
nK(m+ γ−2)

)
R = max{‖vi − vj‖ : vi, vj ∈ S} S = {v1, . . . , vK} Only K is known O

(
nK(m+ γ−2

∗)
)
× log(γ−1

∗)

Given t ∈ (0, 1), S
t ⊂ S, |St| = K(t) General Case O

(
nK(t)(m+ t−2)

)
d(p, conv(S

t
) ≤ tR,∀p ∈ conv(S)

Sε = {vε1, . . . , vεn}, Ŝε, vertices in conv(Sε), |Ŝε| = Kε, σ ≤ σ∗ ≡ Σ∗/R is known, ε ≤ σ/4 O
(
nKε(m+ σ−2)

)
a perturbation of S Sε = {vε1, . . . , vεK} ⊂ Ŝε γ ≤ γ∗ is known, ε ≤ γρ∗/4R O

(
nKε(m+R2/(γρ∗)

2)
)

Only K is known, ε ≤ σ∗/4 O
(
nKε(m+ σ−2

∗)
)
× log(σ−1

∗)

‖vεi − vi‖ ≤ εR Given t ∈ (0, 1), S
t

ε ⊂ Sε, |S
t

ε| = K
(t)
ε General Case O

(
nK

(t)
ε (m+ t−2)

)
d(p, conv(S

t

ε) ≤ (t+ ε)R,∀p ∈ conv(S)

J-L Projection of S U , vertices of conv(U), |U | = Kε′ γ ≤ γ∗ is known O
(
nKε′(m

′ + (γ(1− ε′))−2)
)

U = L(S) = {u1, . . . , un} U = {u1, . . . , uKε′}, U ⊂ L(S) m′ = ε′2/c log n < m, c a constant

ui = L(vi), L : Rm → Rm′ Given t ∈ (0, 1), U
t ⊂ L(S), |U t| = Kt

ε′ General Case O
(
nKt

ε′(m
′ + t−2)

)
R′ diameter of U d(q, conv(U

t
) ≤ tR′,∀q ∈ conv(U)

J-L Projection of Sε Ûε, vertices in conv(Uε), |Ûε| = Kεε′ , σ ≤ σ∗ is known, ε ≤ σ(1− ε′)/4 O
(
nKεε′(m

′ + (σ(1− ε′))−2)
)

Uε = L(Sε) = {uε1, . . . , uεn} Uε = {uε1, . . . , uεK∗}, Uε ⊂ Ûε γ ≤ γ∗ is known, ε ≤ γρ∗(1− ε′)/4R O
(
nKεε′(m

′ +R2/(γρ∗(1− ε′))2)
)

uεi = L(vεi) Given t ∈ (0, 1), U
t

ε ⊂ Uε, |U
t

ε| = K
(t)
εε′ General Case O

(
nK

(t)
εε (m′ + t−2)

)
d(q, conv(U

t

ε) ≤ (t+ ε)R,∀q ∈ conv(U)

Table 1: Γ∗ = min{d(vi, conv(S \ {vi}))}, Σ∗ = min{d(vi, conv(S \ {vi}))}, ρ∗ = min{d(vi, vj), i 6= j}.

Formally, the convex hull membership problem is as follows: Given a set of point S = {v1, . . . , vn} ⊂ Rm
and a distinguished point p ∈ Rm, test if p ∈ conv(S). If p 6∈ conv(S), find a hyperplane that separates p
from conv(S). If p ∈ conv(S), the Triangle Algorithm solves the problem to within prescribed precision by
generating a sequence of points inside of conv(S) that get sufficiently close to p.

Given two point u, v ∈ Rm we interchangeably use d(u, v) = ‖u − v‖. Given a point in conv(S), the
Triangle Algorithm searches for a pivot to get closer to p:

Definition 1. Given p′ ∈ conv(S), called iterate, we call v ∈ S a p-pivot (or simply pivot) if

d(p′, v) ≥ d(p, v). (10)

Equivalently, v is a pivot if and only if

vT p− vT p′ ≥ 1

2
(‖p‖2 − ‖p′‖2). (11)

Definition 2. A point p′ ∈ conv(S) is a p-witness (or simply witness) if the orthogonal bisecting hyperplane
to the line segment pp′ separates p from conv(S).

Equivalently, p′ ∈ conv(S) is a p-witness if and only if

d(p′, vi) < d(p, vi), ∀i = 1, . . . , n. (12)

Definition 3. Given ε ∈ (0, 1), p′ ∈ conv(S) is an ε-approximate solution if for some v ∈ S,

d(p′, p) ≤ εR, (13)

where R is the diameter of S:
R = max{d(vi, vj) : vi, vj ∈ S}. (14)

Given a point p′ ∈ conv(S) that is neither an ε-approximate solution nor a witness, the Triangle Algo-
rithm finds a p-pivot v ∈ S. Then on the line segment p′v it compute the closest point to p, denoted by
Nearest(p; p′v). It then replaces p′ with Nearest(p; p′v) and repeats the process. It is easy to show,

6

Proposition 1. If an iterate p′ ∈ conv(S) satisfies d(p′, p) ≤ min{d(p, vi) : i = 1, . . . , n}, and vj is a
p-pivot, then the new iterate

p′′ = Nearest(p; p′vj) = (1− α)p′ + αvj , (15)

where the step-size α is

α =
(p− p′)T (vj − p′)

d2(vj , p′)
=
pT vj − p′T vj − pT p′ + ‖p′‖2

‖vj‖2 − 2p′T vj + ‖p′‖2
. (16)

In particular if

p′ =

n∑
i=1

αivi,

n∑
i=1

αi = 1, αi ≥ 0, ∀i, (17)

then

p′′ =

n∑
i=1

α′ivi (18)

where
α′j = (1− α)αj + α, α′i = (1− α)αi, ∀i 6= j. (19)

The following duality ensures the correctness of the iterative step of the Triangle Algorithm.

Theorem 1. (Distance Duality) Precisely one of the two conditions is satisfied:
(i) For each p′ ∈ conv(S) there exists vj ∈ S that is p-pivot, i.e. d(p′, vj) ≥ d(p, vj).
(ii) There exists p′ ∈ conv(S) that is p-witness, i.e. d(p′, vi) < d(p, vi) for all vi ∈ S.

The following relates the gap in two consecutive iterates of the Triangle Algorithm:

Theorem 2. Let p, p′, v be distinct points in Rm. Suppose d(p, p′) ≤ d(p, v) ≤ d(p′, v). Let p′′ =
Nearest(p, p′v). Let δ = d(p′, p), δ′ = d(p′′, p), and r = d(p, v). Then,

δ′ ≤ δ
√

1− δ2

4r2
. (20)

r

δ δ′

p′′

p v

p′

Figure 2: Reduction of gaps δ = ‖p′ − p‖ by using a p-pivot v, δ′ = ‖p′′ − p‖.

The following gives the aggregate complexity bound.

Theorem 3. The Triangle Algorithm correctly solves the convex hull membership problem as follows:
(i) Suppose p ∈ conv(S). Given ε > 0, the number of iterations Kε to compute pε ∈ conv(S) so that

d(p, pε) ≤ εd(p, vi), for some vi ∈ S is

Kε ≤
48

ε2
= O

(
1

ε2

)
. (21)

(ii) Suppose p 6∈ conv(S). Let R = max{d(vi, vj) : vi, vj ∈ S}, ∆ = min{d(x, p) : x ∈ conv(S)}. The number
of iterations K∆ to compute p∆ ∈ conv(S) so that d(p∆, vi) < d(p, vi) for all vi ∈ S, satisfies

K∆ ≤
48R2

∆2
= O

(
R2

∆2

)
. (22)

7

The straightforward implementation of each iteration of the Triangle Algorithm is easily seen to take
O(mn) arithmetic operations. The algorithm can be described as follows:

Triangle Algorithm (S, p, ε ∈ (0, 1))

• Step 0. Set p′ = argmin{d(vi, p)}.

• Step 1. If d(p′, p) ≤ εR, then output p′ as an ε-approximate solution, stop.

• Step 2. If a p-pivot v ∈ S exists, set p′ ← Nearest(p; p′v). Goto Step 1.

• Step 3. Output p′ as p-witness. Stop.

Remark 1. In each iteration of the Triangle Algorithm it suffices to have a representation of the iterate p′

in terms of vi’s, i.e. p′ =
∑n
i=1 αivi, where

∑n
i=1 αi = 1, αi ≥ 0 for all i = 1, . . . , n. It is not necessary to

know the coordinates of p′. Rather it is enough to have an array of size n to store the vector of αi’s. Then
assuming that we have stored pT vi, i = 1, . . . , n, we can compute the step size α (see (16)) and p′′ (the new
iterate) in O(n) time.

An alternate complexity bound can be stated for the Triangle Algorithm, especially when p ∈ conv(S) is
well situated.

Definition 4. Given p′ ∈ conv(S), v ∈ S is a strict p-pivot (or simply strict pivot) if ∠p′pv ≥ π/2.

Theorem 4. (Strict Distance Duality) Assume p 6∈ S. Then p ∈ conv(S) if and only if for each
p′ ∈ conv(S) there exists strict p-pivot, v ∈ S.

The following theorem shows that under the assumption that p is an interior point of conv(S) we can
give an alternate complexity for the Triangle Algorithm whose number of iterations are logarithmic in 1/ε.

Theorem 5. Suppose p is contained in a ball of radius ρ, Bρ(p) = {x : d(x, p) < ρ}, contained in
conv◦(S), the relative interior of conv(S). Suppose the Triangle Algorithm uses a strict pivot in each
iteration. Given ε ∈ (0, 1), the number of iterations to compute pε ∈ conv(S) such that d(p, pε) ≤ εR,
R = max{d(vi, vj), vi, vj ∈ S} is

O

((
R

ρ

)2

log
1

ε

)
. (23)

3 Efficient Implementation of Triangle Algorithm

The worst-case complexity of each iteration in the Triangle Algorithm is O(mn). Assuming that all the
inner products vTi vj are computed the iteration complexity of Triangle Algorithm can be shown to reduce to
O(n). The cost of pre-computing the inner products is O(mn2). The complexity can be made more efficient.
To do so it suffices to compute the inner products vTi vj progressively rather than pre-computing them all.
Ignoring this complexity, the iteration complexity of the Triangle Algorithm reduces to O(N) where N ≤ n
is the number of points of S considered in the Triangle Algorithm. The following shows how to achieve this.

Proposition 2. Let Ŝ = {v̂1, . . . , v̂N} be a subset of Rm. Consider testing if a given p ∈ Rm lies in conv(Ŝ).

Suppose we have computed ‖p‖2, as well as pT v̂i, i = 1, . . . , N . Suppose we have available p′ =
∑N
i=1 αiv̂i ∈

conv(Ŝ) satisfying d(p′, p) ≤ min{d(p, v̂i) : i = 1, . . . , N}. Suppose ‖p′‖2 is also computed. Also, suppose
p′T v̂i is computed for each i = 1, . . . , N . Then excluding the cost of computing the entries of the N × N
matrix M̂ = (v̂Ti v̂j), each iteration of the Triangle Algorithm can be implemented in O(N) operations. More
precisely,

(i) Computation of a p-pivot v̂j at p′, if one exists, takes O(N) operations.
(ii) Given a pivot v̂j, the computation of step size α takes O(1) operations.

8

(iii) Computation of Nearest(p; p′v) = p′′ = (1− α)p′ + αv̂j =
∑N
i=1 α

′
iv̂i takes O(N) operations.

(iv) Computation of ‖p′′‖2 takes O(1) operations.
(v) Computation of p′′T v̂i, i = 1, . . . , N takes O(N) operations.

Proof. The Triangle Algorithm needs to use the entries of the N ×N matrix M̂ = (v̂Ti v̂j). However, not all

entries may be needed, nor do all entries of M̂ need to be computed in advance. Putting aside the complexity
of computing M̂ , in the following we justify the claimed complexities.

(i): From (11) and the given assumptions, to check if a particular v̂i is a pivot takes O(1) operations.
Thus to check if there exists a pivot takes O(N) time.

(ii): From (16) and the assumptions, to compute α takes O(1) operations.

(iii): From equations (18) and (19) the computation of p′′ and its representation as p′′ =
∑N
i=1 α

′
iv̂i takes

O(N) operations.
(iv): Since p′′ = (1− α)p′ + αv̂j , we have

‖p′′‖2 = p′′T p′′ = (1− α)2‖p′‖2 + 2α(1− α)p′T v̂j + α2‖v̂j‖2. (24)

It follows that computing ‖p′′‖2 takes O(1) operations.
(v): Using that p′′ = (1 − α)p′ + αv̂j , the computation of p′′T v̂i takes O(1) computations. Hence to

compute all inner products p′′T v̂i, i = 1, . . . , N takes O(N) computations.

The following theorem combines Theorem 3 and Proposition 2 giving an improved complexity for the
Triangle Algorithm.

Theorem 6. Let Ŝ = {v̂1, . . . , v̂N} be a subset of S = {v1, . . . , vn}. Given p ∈ Rm, consider testing if

p ∈ conv(Ŝ). Suppose ‖p‖2 as well as pT v̂i, i = 1, . . . , N are computed. Given ε ∈ (0, 1), assume the
Triangle Algorithm starts with p′ = argmin{d(v̂i, p) : i = 1, . . . , N}. Then the complexity of testing if there
exists an ε-approximate solution is

O

(
mN2 +

N

ε2

)
. (25)

In particular, suppose in testing if p ∈ conv(S), S = {v1, . . . , vn}, the Triangle Algorithm computes an

ε-approximate solution pε by examining only the elements of a subset Ŝ = {v̂1, . . . , v̂N} of S. Then the
number of operations to determine if there exists an ε-approximate solution pε ∈ conv(S), is as stated in
(25).

4 All Vertex Triangle Algorithm (AVTA)

Given S = {vi ∈ Rm : i = 1, . . . , n}, let R be its diameter, i.e. R = max{d(vi, vj), vi, vj ∈ S}. Denote the
set of vertices of conv(S) by

S = {v1, . . . , vK}. (26)

A straightforward but naive way to compute S is to test for each vi if it lies in conv(S \ {vi}), to within an ε
precision. Thus the overall this would take n times the complexity of Triangle Algorithm. This is inefficient.
In what follows we describe a modification of the Triangle Algorithm with more efficient complexity than
the straightforward algorithm. First we give a definition.

Definition 5. We say conv(S) is Γ∗-robust if

Γ∗ = min{d(vi, conv(S \ {vi})) : i = 1, . . . ,K}. (27)

As an example, given a triangle with vertices v1, v2, v3, Γ∗ is the minimum of the distances from each
vertex to the line segment determined by the other vertices. Thus if other points are placed inside the
triangle Γ∗ will not be affected.

The following is immediate from Definition 5.

9

Proposition 3. Let Ŝ = {v̂1, . . . , v̂N} be a subset of S. Suppose conv(S) is Γ∗-robust. Given v ∈ S \ Ŝ, if

for some γ ≤ γ∗ ≡ Γ∗/R we have d(v, conv(Ŝ)) < γR, then v 6∈ S.

Theorem 7. Let Ŝ = {v̂1, . . . , v̂N} be a subset of S. Given γ ∈ (0, 1), consider testing if a given v ∈ S \ Ŝ
satisfies d(v, conv(Ŝ)) ≤ γR/2. Suppose we are given p′ ∈ conv(Ŝ) for which ‖p′‖2 as well as p′T v̂i, i =

1, . . . , N are computed. Then the number of operations to check if d(v, conv(Ŝ)) ≤ γR/2 satisfies

O

(
mK2 +

K

γ2

)
. (28)

Proof. Proof is immediate from Theorem 6 and the fact that N ≤ K.

We now describe a modification of the Triangle Algorithm for computing all vertices of conv(S). We call
this All Vertex Triangle Algorithm or simply AVTA. Assume conv(S) is Γ∗-robust, where Γ∗ may or may
not be available. However, assume we have a constant γ ∈ (0, 1) known to satisfy γ ≤ γ∗ = Γ∗/R. AVTA

works as follows. Given a working subset Ŝ of S, initially of cardinality N = 1 (see Proposition 4), a single

vertex of S, it randomly selects v ∈ S \ Ŝ. It then tests via the Triangle Algorithm if d(v, conv(Ŝ)) ≤ γR/2.
If so, it discards v since by definition of γ it cannot belong to S (see Proposition 3). Otherwise, it computes

a v-witness p′ ∈ conv(Ŝ). It then sets c′ = v − p′ and maximizes c′Tx where x ranges in conv(S \ Ŝ). The

maximum value coincides with the maximum of c′T vi where vi ranges in S \ Ŝ. If the set of optimal solution

S \ Ŝ is denoted by S′, then conv(S′) is a face of conv(S). A vertex v′ of conv(S′) is a point in S′ and is
necessarily a vertex of conv(S). Such a vertex can be computed efficiently. Having computed a new vertex

v′ of conv(S), AVTA replaces Ŝ with Ŝ ∪ {v′} and the process is repeated. However, if v coincides with v′

AVTA selects a new point in S \ Ŝ. Otherwise, AVTA continues to test if the same v (for which a witness

was found) is within a distance of γR/2 of the convex hull of the augmented set Ŝ. Also, as an iterate AVTA
uses the same witness p′. In doing so each selected v ∈ S is either determined to be a vertex itself, or it will
continue to be tested if it is lies to within a distance of γR/2 of the growing set Ŝ. If within γR/2 distance,
it will be discarded before AVTA tests another point. We will describe AVTA more precisely. However, we
first prove the necessary results.

Lemma 1. Let Ŝ = {v̂1, . . . , v̂N} be a subset of S. For a given v ∈ S \ Ŝ suppose p′ ∈ conv(Ŝ) is a v-witness.
Let c′ = v − p′. Then

max{c′Tx : x ∈ conv(S \ Ŝ)} = max{c′T vi : vi ∈ S \ Ŝ}. (29)

Proof. Each x ∈ conv(S \ Ŝ) can be written as a convex combination

x =
∑

i:vi∈S\Ŝ

αivi,
∑

i:vi∈S\Ŝ

αi = 1, αi ≥ 0. (30)

Then
c′Tx =

∑
i:vi∈S\Ŝ

αic
′T vi,

∑
i:vi∈S\Ŝ

αi = 1, αi ≥ 0. (31)

It follows that the maximum of c′Tx over S \ Ŝ can be computed trivially.

Corollary 1. Let c′ = v− p′ be as in Lemma 1, p′ ∈ conv(Ŝ) for which ‖p′‖2 as well as p′T v̂i, i = 1, . . . , N

are computed. Then, max{c′Tx : x ∈ conv(S \ Ŝ)} can be computed in O(nK) operations.

Proof. Since N ≤ K, for each i, c′T vi can be computed in O(K) operations.

Theorem 8. Let S′ be the set of optimal solutions of max{c′Tx : x ∈ S \ Ŝ}. Let v′ ∈ S′ be a vertex of
conv(S′). Then v′ is a vertex of conv(S), i.e. v ∈ S = {v1, . . . , vK}.

10

Proof. We can write v′ as a convex combination of vi, i = 1, . . . ,K:

v′ =

K∑
i=1

αivi,

K∑
i=1

αi = 1, αi ≥ 0, ∀i. (32)

The above can be rewritten as
v′ =

∑
i:vi∈S′

αivi +
∑

i:vi 6∈S′
αivi. (33)

Since for vi ∈ S′, c′T v′ = c′T vi and for vi 6∈ S′, c′T v′ > c′T vi, it follows that v′ is a convex combination of vi
for which c′T v′ = c′T vi. But since v′ is a vertex of conv(S′) it follows that v′ ∈ S.

The following shows computing a single vertex of conv(S) is trivial.

Proposition 4. Given any v in S, let Farthest(v, S) return a point in S that is farthest from v. Then
Farthest(v, S) is a vertex of conv(S), hence a member of S.

Proof. If Farthest(v, S) is not a vertex of conv(S) it can be written as a convex combination of two other
points v1, v2 ∈ conv(S). But then this gives a contradiction by considering the triangle with vertices
v1, v2, Farthest(v, S).

When n ≥ 2, Farthest(v, S) for all v ∈ S results in a set with at least two points but it may also contain
exactly two points. It can be computed in O(n2) time. Next we describe AVTA for computing all vertices
of conv(S).

AVTA (S, γ ∈ (0, 1))

• Step 0. Set Ŝ = {Farthest(v, S)} for some v ∈ S.

• Step 1. Randomly select v ∈ S \ Ŝ.

• Step 2. Call Triangle Algorithm (Ŝ, v, γ/2).

• Step 3. If the output p′ of Step 2 is a v-witness then Goto Step 4. Otherwise, p′ is a
γ/2-approximate solution to v. Set S ← S \ {v}. If S = ∅, stop. Otherwise, Goto Step 1.

• Step 4. Let c′ = v − p′.
Compute S′, the set of optimal solutions of max{c′Tx : x ∈ S \ Ŝ}. Randomly select v′ ∈ S′.
v′ ← Farthest(v′, S′), Ŝ ← Ŝ ∪ {v′}.

• Step 5. If v = v′, Goto Step 1. Otherwise, Goto Step 2.

Remark 2. Here we make remarks about the steps of AVTA. In Step 0 AVTA selects the first vertex. In Step
1 it randomly select a v in S \ Ŝ. In Step 2 AVTA checks if the point v selected in Step 1 is sufficiently close

to the convex hull of the current set of vertices, Ŝ. If so, in Step 3 v is discarded from further considerations.
Otherwise, a v-witness p′ is at hand. Step 4 then uses this witness to compute a direction, c′ = v− p′, where
the maximization of c′Tx gives a subset S′ of S consisting of the optimal solutions. Then a vertex conv(S′)
will necessarily be a vertex of conv(S). A vertex of conv(S′) is selected by choosing an arbitrary v′ ∈ S′ and
computing its farthest point in S′. It maybe the case that the vertex v′ found in Step 4 coincides with v. Step
5 checks if v′ = v in which case it select a new v in the updated S \ Ŝ in Step 1 for consideration. Otherwise,
when this new vertex v′ is not v itself, in Step 5 in AVTA v is sent back to Step 2 to be reexamined if v is
within γR/2 distance of the convex hull of augmented Ŝ.

Example 1. We consider an example of AVTA, see Figure 3. In this example S = {v1, . . . , v11}. Note
that the set of vertices is S = {v4, v10, v6, v1, v9, v2, v5, v8}. Suppose the current working subset of vertices

11

S consists of Ŝ = {v1, v9, v2, v5} and v = v3 is randomly selected to be tested if it lies in conv(Ŝ). A

witness p′ ∈ conv(Ŝ) is computed and with c′ = p′ − v maximum of c′Tx over conv(S \ Ŝ) is attained at
S′ = {v4, v7, v10}. Subsequently one of the two points v4 or v10 will become the next vertex to be placed in

Ŝ.

v1
v2

v = v3

v9

v5

v7 v4v10

v6

p′

v11

v8

Figure 3: An example where Ŝ = {v1, v9, v2, v5}, then v = v3 is randomly selected from S \ Ŝ and is tested

if it lies in conv(Ŝ). A witness p′ is found. Then using c′ − v − p′ the set S′ = {v4, v7, v10} is computed and

one of vertices of conv(S′), i.e. v4 or v10 is selected for inclusion in Ŝ.

The following theorem is one of the main results:

Theorem 9. Let S = {v1, . . . , vn} ⊂ Rm. Let R be the diameter of S. Let S = {v1, . . . , vK} be the set of
vertices of conv(S). Suppose that conv(S) is Γ∗-robust. Let γ∗ = Γ∗/R.

(1) If a number γ is known satisfying 0 < γ ≤ γ∗, the number of arithmetic operations to compute S is

O

(
nK(m+

1

γ2
)

)
. (34)

(2) If only K is known, the complexity of computing S is

O

((
nK(m+

1

γ2
∗

)

)
log

1

γ∗

)
. (35)

(3) More generally, given any prescribed t ∈ (0, 1) in

O

(
nK(t)(m+

1

t2
)

)
(36)

operations AVTA computes a subset S
t

of S of size K(t) so that the distance from each p in conv(S) to

conv(Ŝ) is at most tR.

Proof. (1): Initially in AVTA the subset Ŝ consists of a single element of S. It continues to grow until it

reaches S. By Theorem 6 for each v ∈ S\Ŝ the cost of Step 2 in AVTA is O(mK2 +K/γ2). The needed inner

12

products in Step 2 are v̂Ti v̂j . However, these inner products need to be computed only once and since there
are at most K of v̂i’s, these inner products can be computed at the cost of O(mK2) operations. We can store
the values of the inner products in an array. Then we use them again as they arise in subsequent iterations.
This kind of storing can be done for other inner products that may need to be computed in the course of the
algorithm. When a selected v is within the distance of γR/2 to conv(Ŝ), Step 3 eliminates it from further
considerations. If v is not eliminated, it either gives rise to a new vertex v′ ∈ S, or v is a vertex itself.
In either case, in order to identify a new vertex of S, after a witness has become available, it requires the
minimization of c′T vi as vi ranges over current set of vertices, S \ Ŝ. Since c′ = v−p′, p′ =

∑N
j=1 αj v̂j , where

N = |Ŝ|, the evaluation of c′T vi requires the computation of vT vi, and vTi v̂j , j = 1, . . . , N . This requires
O(Nm) operations. Since such computation is only required of each vertex in S, over all the computation
of all c′T vi requires O((n−K)mK) = O(nmK) operations. These together with Theorem 6 imply that the
over all complexity is O(mK2 + nmK + nK/γ2) which is the claimed complexities in (1).

(2): When only K is known, we execute AVTA, first selecting γ = .5. If we compute K vertices with this
estimate of γ∗ = Γ∗/R, we stop. Otherwise, we halve γ and repeat the process. Eventually in O(log(γ−1

∗))
calls to AVTA we accumulate all K vertices in S.

(3): For each input t ∈ (0, 1), AVTA computes a subset S
t

of S with K(t) elements. The proof of
complexity is analogous to the previous cases. Next we prove for each p ∈ conv(S), the distance from p to
conv(S) is at most tR. We have

p =

K∑
i=1

αivi,

K∑
i=1

αi = 1, αi ≥ 0. (37)

For each i let pi ∈ conv(St) be the closest point to vi. Now consider

pt =

K∑
i=1

αipi. (38)

Then pt ∈ conv(St). On the other hand, by the triangle inequality

‖p− pt‖ ≤
K∑
i=1

αi‖vi − pi‖ ≤ tR
K∑
i−1

αi = tR. (39)

Remark 3. If nether K nor an estimate γ to γ∗ = Γ∗/R are known, initially we select t = 0.5 and with
this value of t compute a subset of vertices with K(t) elements. We can then halve t and repeat the process.
Intuitively, if for two consecutive values of t no more vertices are generated we can terminate the process, or
decrease t by a factor of four. If Γ∗ is not too small we will produce a reasonably good subset of S within a
reasonable number of calls to AVTA. In either case we are assured of an approximation of conv(S) according
to (3) in Theorem 9.

4.1 Application of AVTA in Solving the Convex Hull Membership

Suppose we wish to solve the convex hull membership problem: Test if a particular point p lies in conv(S),
S = {v1, . . . , vn}. This is equivalent to linear programming and thus can be solved with variety of algorithms,
including polynomial-time algorithms, the simplex method, Frank-Wolfe, or triangle Algorithm. Whichever
algorithm we use, the number n plays a role in the complexity. Thus if we compute the set of vertices
of conv(S), S, we can then test if p lies in conv(S) with K instead of n. This approach may seem to be
inefficient, however depending upon the accuracy to which we wish to solve the problem and the size of γ∗
it may result in a more efficient algorithm. The next theorem considers the application of Theorem 9 in
solving the convex hull membership problem.

13

Theorem 10. Let S = {v1, . . . , vn} ⊂ Rm. Let R be the diameter of S. Let S = {v1, . . . , vK} be the set of
vertices of conv(S). Suppose conv(S) is Γ∗-robust. Given any 0 < γ ≤ Γ∗/R, the number of operations to
test if for a given p ∈ Rm admits an ε-approximate solution is

O

(
nmK +

nK

γ2
+
K

ε2

)
. (40)

Proof. To test if p admits an ε-approximate solution can be achieved by first computing the vertices in S,
followed by testing if p admits an ε-approximate solution in conv(S). From Theorem 8 and Theorem 3 it
follows that the total complexity is as claimed.

Remark 4. It is easy to check that for some values of ε < γ the computations of S followed by testing if p
lies in conv(S) could be more efficient than solving the convex hull membership without computing S. This
is especially true when K = o(n).

5 AVTA Under Input Perturbation

As in the previous section, we assume S = {v1, . . . , vn} ⊂ Rm, R the diameter of S, and S = {v1, . . . , vK}
the set of vertices of conv(S). Assume conv(S) is Γ∗-robust.

As before we wish to compute S or a reasonable subset of it. However, in practice the input set S may
be not S but a perturbation of S. This changes the set of vertices, robustness parameter and more. We wish
to study perturbations under which we can recover the corresponding perturbation of S and extend AVTA
to computing this perturbation.

Definition 6. For a given ε ∈ (0, 1) the ε-perturbations of S is the set Sε defined as

Sε = {vε1, . . . , vεn}, ‖vi − vεi ‖ ≤ εR. (41)

The ε-perturbations of S is the set Sε, denoted by

Sε = {vε1, . . . , vεK}, (42)

where vεi is the perturbation of vi.

In practice we may be given Sε as opposed to S. The first question that arises is: What is the relationship
between the vertices of S and those of Sε? Without any assumptions, the vertices of conv(Sε) could change
drastically, even under small perturbations.

Example 2. Consider a triangle with three additional interior points, very close to its vertices. It may
be the case that even under small perturbation all six points become vertices, or that the interior points
become the new vertices while the vertices become the new interior points. Thus there is a need to make
some assumptions before we can say anything about the nature of perturbed points.

We would hope that for appropriate range of values of ε, Sε would at least be a subset of the set of
vertices of Sε. First we need a definition.

Definition 7. We say conv(S) is Σ∗-weakly robust if

Σ∗ = min{d(v, conv(S \ {v})) : v ∈ S}. (43)

Example 3. Suppose that S consists of the vertices of a non-degenerate triangle with vertices v1, v2, v3.
Suppose one additional point is placed inside the triangle. Then clearly Σ∗ < Γ∗.

More generally we have

14

Proposition 5. Given S = {v1, . . . , vn}, we have

Σ∗ ≤ Γ∗. (44)

Other than the inequality in Proposition 5, Σ∗ and Γ∗ corresponding to the set S may seem unrelated,
however in the following theorem we establish a relationship between the two that is useful in the analysis
of AVTA for computing Sε.

Theorem 11. Let S and S be as before. Suppose conv(S) is Γ∗-robust, also Σ∗-weakly robust. Let ρ∗ =
min{d(vi, vj) : vi, vj ∈ S, i 6= j}. We have

Σ∗ ≥
ρ∗
R

Γ∗ = ρ∗γ∗. (45)

Proof. For each vertex v ∈ conv(S), let Γv be the distance from v to the convex hull of the remaining vertices
in S. Specifically,

Γv = d(v, conv(S \ {v})). (46)

Also let Σv be the distance from v to the convex hull of all other points in S. Specifically,

Σv = d(v, conv(S \ {v})). (47)

Clearly we have,

Σv ≤ Γv. (48)

Assume v is a vertex for which Σv < Γv. If no such a vertex exists then Σ∗ = Γ∗ (see Figure 4). Let u
be the closest point to v lying in the convex hull of the the other vertices of S. Thus

Γv = d(v, u), u ∈ conv(S). (49)

Let Hu be the hyperplane orthogonal to the line segment vu, passing through u. By definition of u and
Carathéodorey’s theorem u is a convex combination of vertices of conv(S) lying on Hu. Thus for some subset
T of S

u =
∑

vi∈T⊂S

αivi,
∑

vi∈T⊂S

αi = 1, αi ≥ 0. (50)

Figure 4 gives a depiction of this property for a simple example. In the example u is a convex combination
of v and v′, vertices of conv(S) lying in the intersection of Hu and conv(S). Consider one of these vertices,
say v. Moving the hyperplane Hu parallel to itself toward v, it intersects the line segment uv at a unique
point w that lies on a facet of conv(S \ {v}). Such w exists because Σ∗ < Γ∗. In other words, if Hw is
a hyperplane parallel to Hu passing through w, then the region of conv(S) enclosed between the halfspace
defined by Hw and v contains no point of S in its interior (see shaded area in Figure 4. This implies

Σv ≥ d(v, w). (51)

Now consider the intersection of Hw and each ray connecting v to vi ∈ T . Denote this intersection by
yi. In the figure the intersection of Hw and the ray connecting vv is denoted by y. By definition of w and
Carathéodorey’s theorem there must exist a point vj ∈ S lying on Hw. Furthermore, vj can be written as a
convex combination of all the yi’s. Thus may may write

vj =
∑

vi∈T⊂S

βiyi,
∑

vi∈T⊂S

βi = 1, βi ≥ 0. (52)

Since by definition of ρ∗, d(v, vj) ≥ ρ∗, at least for one yi we must have d(v, yi) ≥ ρ∗. This implies we could
assume v was chosen so that the corresponding y satisfies

d(v, y) ≥ ρ∗. (53)

15

Hu

v

vv′
u

w yy′
vj

Hw

Figure 4: Given v ∈ S, u is its closet point in conv(S \ {v}). v, v′ ∈ S are vertices of conv(S) lying on Hu,
the orthogonal hyperplane to line segment uv at u. u is a convex combination of these vertices. Moving
Hu parallel to itself toward v, it intersects the line segment uv at a unique point w lying on a facet of
conv(S \ {v}). Thus interior of shaded region contains no point of S.

From similarity of the triangles 4vuv and 4vwy we may write

d(v, w)

Γv
=
d(v, y)

d(v, v)
. (54)

From the definition of R as the diameter of S, d(v, v) ≤ R. From (54), (51) and (53) it follows that

Σv ≥ d(v, w) ≥ 1

R
d(v, y)Γv ≥

1

R
ρ∗Γ∗. (55)

This means we have

Σ∗ ≥
1

R
ρ∗Γ∗. (56)

In what follows we will derive complexity bounds for computing Sε. These complexities will in particular
depend on Σ∗ or any lower bound σ on σ∗ = Σ∗/R. Theorem 10 implies that we can choose σ = ρ∗Γ∗/R.

The following theorem describes a simple condition under which the set of vertices of conv(S) under
perturbation remain to be vertices of the perturbed convex hull.

Theorem 12. Let S be as before, R diameter of S. Suppose conv(S) is Σ∗-weakly robust. Suppose Sε is an
ε-perturbation of S. Let σ be a positive number satisfying σ ≤ σ∗ = Σ∗/R. Assume ε < σ/2. If v ∈ S is a
vertex conv(S) and vε ∈ Sε its corresponding ε-perturbation, then vε is a vertex of conv(Sε).

Proof. Suppose vε is not a vertex of conv(Sε). Without loss of generality assume v = v1. Hence, vε = vε1.
Thus vε ∈ conv(Sε \ {vε}). We may write

vε =

n∑
i=2

αiv
ε
i ,

n∑
i=2

αi = 1, αi ≥ 0. (57)

Set

u =

n∑
i=2

αivi. (58)

16

On the one hand we have

u− vε =

n∑
i=2

αi(vi − vεi). (59)

Then by the triangle inequality

‖u− vε‖ ≤
n∑
i=2

αi‖vi − vεi ‖ ≤
n∑
i=2

αiεR = εR. (60)

On the other hand, v is in S. Without loss of generality assume v = v1. From this assumption and since by
(58) u ∈ conv(S \ {v1}) we have

u =

K∑
i=2

γivi,

K∑
i=2

γi = 1, γi ≥ 0. (61)

Since conv(S) is Σ∗-weakly robust on S and σ ≤ σ∗ = Σ∗/R we have,

‖u− v‖ ≥ σR. (62)

However, from (60), the fact that ‖v − vε‖ ≤ εR and the triangle inequality we may write.

‖u− v‖ = ‖u− vε + vε − v‖ ≤ ‖u− vε‖+ ‖vε − v‖ ≤ εR+ εR = 2εR. (63)

This contradicts the assumption that 2ε < σ. Hence vε is a vertex of conv(Sε).

Remark 5. The theorem implies that if the input to AVTA is Sε instead of S, AVTA will still return at
least K vertices. However, the set of vertices of conv(Sε) may have more elements than K, possibly all of
Sε. Moreover, the weakly robustness parameter Σ∗ will change. We thus need to revise AVTA if we wish to
extract the subset Sε = {vε1, . . . , vεK} from the set of vertices of conv(Sε).

In what follows we will first show how under a mild assumptions on the relationship between Σ∗/R and

ε, AVTA can compute a subset Ŝε of the vertices of conv(Sε) containing Sε (Theorem 13). We then show

how AVTA can efficiently extract from Ŝε the desired set, namely Sε. The next lemma establishes a lower
bound on the week-robustness of conv(Sε). It also shows how spurious vertices of conv(Sε) are situated
with respect to the convex hull of the remaining vertices. This will be used in Theorem 13 in pruning such
vertices.

Lemma 2. Suppose conv(S) is Σ∗-weakly robust. Suppose ε < Σ∗/2R. Let vε be any point in Sε. Let Ŝε)
be any subset of vertices of conv(Sε) containing Sε). Then,

d(vε, conv(Ŝε)) ≥ (Σ∗ − 2εR). (64)

Moreover let v̂ε be any (spurious) point in Ŝε \ Sε. Then

d(v̂ε, conv(Ŝε \ {v̂ε})) ≤ εR. (65)

Proof. By Theorem 12, Sε is a subset of vertices of conv(Sε). Given vε ∈ Sε, let v be the corresponding
vertex in S. Given wε in conv(Sε \ {vε}), let w in conv(S \ {v}) be the corresponding point, i.e. defined
with respect to the same convex combination of corresponding vertices. Then

‖v − vε‖ ≤ εR, ‖w − wε‖ ≤ εR. (66)

From the above it is easy to show
|d(v, w)− d(vε, wε)| ≤ 2εR. (67)

17

But this implies
d(v, w)− d(vε, wε) ≤ 2εR. (68)

Equivalently,
d(v, w)− 2εR ≤ d(vε, wε). (69)

But d(v, w) ≥ σ∗R = Σ∗. This proves (64).
To prove (65), let v̂ be the point in S corresponding to v̂ε. We have

v̂ =

K∑
i=1

αivi,

K∑
i=1

αi = 1, αi ≥ 0. (70)

Define

ŵ =

K∑
i=1

αiv
ε
i ,

K∑
i=1

αi = 1, αi ≥ 0. (71)

It is now easy to show
‖v̂ε − ŵ‖ ≤ ‖v̂ε − v̂‖+ ‖v̂ − ŵ‖ ≤ 2εR. (72)

This proves (65).

Theorem 13. Let S = {v1, . . . , vn} ⊂ Rm. Assume conv(S) is Σ∗-weakly robust. Suppose ε ≤ Σ∗/4R.

(i) Given σ satisfying, 4ε ≤ σ ≤ σ∗ = Σ∗/R, AVTA can be modified to compute a subset Ŝε of the set of

vertices of Sε containing Sε, then compute from this subset Sε itself. If Kε is the cardinality of Ŝε, the total
number of operations satisfies

O

(
nKε(m+

1

σ2
)

)
. (73)

(ii) Given γ, satisfying 4ε ≤ γρ∗ ≤ Γ∗ρ∗/R = γ∗ρ∗, AVTA can be modified to compute a subset Ŝε of the

set of vertices of Sε containing Sε, then compute from this subset Sε itself. If Kε is the cardinality of Ŝε the
total number of operations satisfies

O

(
nKε(m+

1

(ρ∗γ)2
)

)
. (74)

(iii) Given only K, where 4ε ≤ Σ∗/R, the number of operations of AV TA to computes Sε is.

O(nKε(m+
1

σ2
∗

)) log(
1

σ∗
). (75)

(iv) More generally, given any t ∈ (0, 1), AVTA can be modified to compute a subset S
t

ε of the set of

vertices of conv(Sε) of cardinality K
(t)
ε so that the distance from each point in conv(Sε) to conv(S

t

ε) is at
most t. In particular, the distance from each point in conv(S) to conv(Stε) is at most (t+ε)R. The complexity

of the computation of S
t

ε is

O

(
nK(t)

ε (m+
1

t2
)

)
. (76)

Proof. By Theorem 12, Sε is a subset of vertices of conv(Sε). Let σ◦ = (Σ∗−2εR)/R. Then since ε ≤ Σ∗/4R,
σ◦ ≥ Σ∗/2R. Then by Lemma 2, for each vε ∈ Sε, we have

d(vε, conv(Sε \ {vε}) ≥ Σ∗/2R. (77)

Now consider a modification of AVTA that replaces γ/2, by σ/2. Such modified AVTA will compute a subset
Sε of vertices of conv(Sε) that must necessarily contain Sε. Analogous to Theorem 9, (1), the complexity
of this part is as stated in part (i) of the present theorem.

18

Now consider conv(Ŝε) and assume vε is a vertex of it within a distance of less than σ/2, say σ/4. Then

by Lemma 2, vε 6∈ Sε. We can thus apply the Triangle Algorithm to remove any vertex of conv(Ŝε) that is

within a distance of less than σ/2 of the convex hull of the other vertices in conv(Ŝε). Again analogous to
Theorem 9 the over all complexity of this step is bounded by

O

(
mK2

ε +
K2
ε

σ2
◦

)
= O

(
mK2

ε +
K2
ε

σ2

)
. (78)

This is dominated by the complexity of the first part. This proves (i). Proof of (ii) follows from Theorem
11, (45), that γρ∗ ≤ σ∗.

To prove (iii), we start by σ = 1/2 and run AVTA. Then as previous case prune unwanted vertices. If
we end up with Sε, we are done. If not, we repeat the process with σ = 1/4 and so on. Eventually we will
recover Sε.

The proof of (iv) is analogous to the proof of Theorem 12, part (3).

Remark 6. Ideally, Kε is within a constant multiple of K, in which case the complexities are analogous to
those of Theorem 9. In the worst-case Ŝε = Sε, i.e. Kε = n. On the other hand, ignoring the size of Kε,
suppose σ◦ ≥ (

√
n/K)ε, then the complexity of generating the vertices of conv(Sε) is

O

(
nmKε +

nK

ε2

)
. (79)

6 Triangle Algorithm with Johnson-Lindenstrauss Projections

Consider again S = {v1, . . . , vn} ⊂ Rm. We wish to compute the subset S = {v1, . . . , vK} of all vertices of
conv(S). Johnson-Lindenstrauss lemma allows embedding the n points of S in an m′-dimensional Euclidean
space, where Rm′ , m′ < m, via a randomized linear map so that the distances between every pair of points in
S and those of their images in Rm′ remain approximately the same, with high probability. More specifically,
there is a universal constant c such if ε′ satisfies,

c log n

m
≤ ε′2 < 1, (80)

and m′ < m is an integer satisfying

m′ ≈ c log n

ε′2
, (81)

then there exists a randomized linear map L : Rm → Rm′ so that if ui = L(vi), and

U = L(S) = {u1, . . . , un} ⊂ Rm
′
, (82)

then for for each i, j ∈ {1, . . . , n} we have

Pr

(
d(vi, vj)(1− ε′) ≤ d(ui, uj) ≤ d(vi, vj)(1 + ε′)

)
> 1− 2

n
. (83)

The projection of each point takes O(m log n) operations so that the overall number of operations to project
all the n points is

O(nm log n). (84)

In this section we consider computing S, the set of vertices of conv(S) by using the Johnson-Lindenstrauss
projections and then computing the set of vertices of conv(U) via AVTA. Let U denote the set of vertices of
conv(U) and let its cardinality be K ′. First we state some properties of conv(U).

19

Lemma 3. Given v ∈ S, L : Rm → Rm′ , a randomized linear map, suppose u = L(v) is a vertex of conv(U).
Then v is a vertex of conv(S).

Proof. Suppose v is not a vertex of conv(S). Then v =
∑n
i=1 αivi,

∑n
i=1 αi = 1, αi ≥ 0, i = 1, . . . , n, with

some 0 < αj < 1. By linearity of L we have

u = L(v) =

n∑
i=1

αiL(vi) =

n∑
i=1

αiui. (85)

This implies u is not a vertex of conv(U), a contradiction.

The next theorem gives an estimate of the robustness parameters of conv(U) in terms of those conv(S).

Theorem 14. Suppose conv(S) is Γ∗-robust and Σ∗-weakly robust. Let U = L(S), L a randomized linear
map, L : Rm → Rm′ . Let m′ and ε′ be related as in (81). If conv(U) is Γ′∗-robust, Σ′∗-weakly robust, then
with probability at least (1− 2/n), we have

Γ′∗ ≥ Γ∗(1− ε′), Σ′∗ ≥ Σ∗(1− ε′). (86)

Proof. Suppose u is a vertex of conv(U) and Û a subset of its vertices not containing u. Let v and Ŝ be

the preimages of u and Û under the linear map L. By Lemma 3 v and the elements of Ŝ are all vertices of
conv(S). From (83) it is easy to argue that with probability at least (1− 2/n) we have

d(u, conv(Û)) ≥ d(v, conv(Ŝ))(1− ε′). (87)

The claimed inequalities follow.

From Theorem 14 and Theorem 9 we can state the following:

Theorem 15. Given S = {v1, . . . , vn} ⊂ Rm let U = L(S) = {u1, . . . , un} ⊂ Rm′ , L a randomized linear
map, m′, ε′ as before. Let U = {u1, . . . , uKε′} be the set of vertices of conv(U). Suppose conv(S) is Γ∗-robust
and conv(U) is Γ′∗-robust. Then with probability at least (1− 2/n),

(1) The number of arithmetic operations of AVTA to compute U is

O

(
nKε′(m

′ +
nKε′R

2

Γ′2∗
)

)
= O

(
n log nKε′

ε′2
+

nKε′

γ2
∗(1− ε′)2

)
. (88)

(2) Given any prescribed positive t ∈ (0, 1), AVTA in

O

(
nKt

ε′(m
′ +

1

t2
)

)
= O

(
n log nKt

ε′

ε′2
+
nKt

ε′

t2

)
(89)

operations can compute a subset U
t

of U of size Kt
ε′ so that the distance from each point in conv(U) to

conv(U
t
) is at most t. �

Remark 7. The results in this section and the above theorem suggest a heuristic approach as an alter-
native to using AVTA directly to compute all the vertices of conv(S): Compute U = L(S), the Johnson-
Lindenstrauss projection of S under a randomized linear map L. Then apply AVTA to compute all the
vertices of conv(U), U . This identifies |U | ≤ K vertices of conv(S). Next move up to the full dimension and
continue with AVTA to recover the remaining vertices of conv(S). Alternatively, we can repeat randomized
projections and compute the corresponding vertices. We would have to delete duplications which is not
difficult, given that we store the computed vertices via their vector of representation of convex combination
coefficients. We would expect that when sufficient number of projections are applied all vertices of conv(S)
can be recovered. However, in the remaining of the section we analyze the probability that under a random
projection, the projection of a vertex of conv(S) is a vertex of the projection.

20

In what follows we first state a result on Johnson-Lindenstrauss random projections on the convex hull
membership problem from Vu et al. (2017). Next we state an alternative result.

Proposition 6. (Vu et al. (2017), Proposition 3.3) Given S = {v1, . . . , vn} ⊂ Rm, p ∈ Rm such that
p 6∈ conv(S), let d = min{d(p, x) : x ∈ conv(S)} and D = max{d(p, vi) : i = 1, . . . , n}. Let T : Rm → Rk be
a random linear map. Then

Prob

(
T (p) 6∈ T (conv(S))

)
≥ 1− 2n2e−c(ε

2−ε3)k (90)

for some constant c (independent of m,n, k, d,D) and ε < d2/D2.

Remark 8. Note that k = O(lnn/ε2) = O(lnnD4/d4).

The following is an alternative to Proposition 6 based on the Distance Duality theorem (1) and generally
gives a better estimate of ε, hence a smaller k than Proposition 6.

Theorem 16. Given S = {v1, . . . , vn} ⊂ Rm, p ∈ Rm such that p 6∈ conv(S), let d = min{d(p, x) : x ∈
conv(S)}, p∗ = argmin{d(p, x) : x ∈ conv(S)} and D = max{d(p, vi) : i = 1, . . . , n}. Let

E = min

{
d(p, vi)

d(p∗, vi)
: i = 1, . . . , n

}
. (91)

Let T : Rm → Rk be a random linear map. Then

Prob

(
T (p) 6∈ T (conv(S))

)
≥ 1− 2n2e−cε

2k, (92)

for some constant c (independent of m,n, k, d,D) and ε < (E−1)/(E+1). Furthermore, (E − 1)/(E + 1) >
d2/4D2.

Proof. Since p∗ is the closest point to p in conv(S), it is easy to show that it is a p-witness, i.e.

d(p∗, vi) < d(p, vi), ∀i = 1, . . . , n. (93)

Let p = T (p), p∗ = T (p∗), and for i = 1, . . . , n, vi = T (vi). We now consider the set of n + 1 points
{v0 = p, v1, . . . , vn} and their random projections and find condition on ε such that p∗ will be an p-pivot
with respect to T (conv(S)), probabilistically. By the Johnson-Lindenstrauss Lemma we have,

Prob

(
(1− ε)d(vi, vj) ≤ d(vi, vj) ≤ (1 + ε)d(vi, vj)

)
≥ 1− 2(n+ 1)2e−cε

2k, (94)

for some constant c (independent of m,n, k). From (94) and definition of E, for each i = 1, . . . , n with

probability at least 1− 2(n+ 1)2e−cε
2k we have,

d(p∗, vi) ≤ (1 + ε)d(p∗, vi) ≤
(1 + ε)

E
d(p, vi) ≤

(1 + ε)

(1− ε)
1

E
d(p, vi). (95)

Note that assuming n ≥ 2, 1 < E <∞. We thus restrict ε to satisfy

(1 + ε)

(1− ε)
1

E
< 1. (96)

Equivalently,

ε <
E − 1

E + 1
. (97)

Thus with ε satisfying the above, p∗ is a witness with high probability.

21

Next we find a lower bound on the right-hand-side of the above. Since E is finite, E = d(p, vj)/d(p∗, vj)
for some j, i.e. p∗ 6= vj . Consider the triangle with vertices p, vj and p∗. With d(p, p∗) and d(p, vj) fixed,

the maximum value of d(p∗, vj) is
√
d2(p, vi)− d2(p, p∗). Using this we may write

E =
d(p, vj)

d(p∗, vj)
≥ d(p, vj)√

d2(p, vi)− d2(p, p∗)
=

1√
1− d2(p, p∗)/d2(p, vj)

. (98)

But d(p, p∗) = d and d(p, vj) ≤ D. Thus

E ≥ 1√
1− d2/D2

=
D√

D2 − d2
. (99)

The function (x− 1)/(x+ 1) is monotonically increasing. Thus from (100) we have

E − 1

E + 1
≥ D −

√
D2 − d2

D +
√
D2 + d2

=
d2

(D +
√
D2 − d2)2

≥ d2

4D2
. (100)

Remark 9. We would expect that (E−1)/(E+1) is generally a larger number than d2/4D2. Thus Theorem
16 gives generally a better estimate of ε and k than those of Proposition 6. An additional advantage of
Theorem 16 is that it shows the applicability of the Triangle Algorithm in solving the convex hull membership
problem using random projections.

We now state a corollary of the theorem on computation of all vertices of conv(S).

Corollary 2. Given S = {v1, . . . , vn} ⊂ Rm, suppose conv(S) is Γ∗-robust. Let R be the diameter of S.
Suppose vj is a vertex of conv(S). Let T : Rm → Rk be a random linear map. Then the probability that

T (vj) is a vertex of T (conv(S)) is at least 1− 2n2e−cε
2k, for some constant c (independent of m,n, k) and

ε < γ2
∗/4.

Proof. We apply the previous theorem with vj as b and considering the probability that under a random
projection of vj lies in projection of the convex hull of the remaining points. Note that d(vj , conv(S \{vj}) ≥
Γ∗ and max{d(vj , vi) : vi ∈ S \ {vj} ≤ R. Thus we can replace for b/D in (100) in the previous theorem by
γ∗ = Γ∗/R. Thus we can write (E − 1)/(E + 1) ≥ γ2

∗/4. This gives the upper bound on ε.

6.1 AVTA Under Perturbation and Johnson-Lindenstrass Projection

Let Sε be as before and Uε, a subset of Rm′ the perturbation of U . Let Uε be the perturbation of U . Based
on the results in this section and previous complexity bounds we have

Theorem 17. Let S = {v1, . . . , vn} ⊂ Rm. Assume conv(S) is Σ∗-weakly robust. Suppose ε < Σ∗/4R. Let
σ◦ = (Σ∗ − 2εR)/R = σ∗ − 2ε. Then with probability at least (1− 2/n),

(i) AVTA can be modified to compute a subset Ûε of Uε, of cardinality Kεε′ such that it contains Uε.
Then AVTA can compute from this subset Uε itself, where the total number of operations satisfies

O

(
nm′Kεε′ +

nKεε′

σ2
◦(1− ε′)2

)
= O

(
n log nKεε′

ε2
+

nKεε′

σ2
◦(1− ε′)2

)
. (101)

(ii) Given any prescribed positive t ∈ (0, 1), in

O

(
n log nK

(t)
εε′

ε2
+

nK(t)εε′

σ2
◦(1− ε′)2

)
(102)

operations the modified AVTA can compute a subset U tε of Uε of size K
(t)
εε′ so that the distance from each

point in conv(Uε) to conv(U tε) is at most t.

22

7 Applications

While the modified AVTA algorithm comes with theoretical guarantees, in certain cases the algorithm might
output many more vertices, Kε, than desired. Here we present a practical implementation that always
outputs exactly K vertices, provided K is known. When K is unknown, our experiments in the next section
reveal that the algorithm can automatically detect a slightly larger set that contains a good approximation
to the K vertices of interest. Notice that we want a fast way to detect good approximations to the original
vertices of the set S and prune out spurious points, i.e., additional vertices of the set Sε. The key insight
on top of the AVTA algorithm is the following: If the perturbed set is randomly projected onto a lower
dimensional space, it is more likely for an original vertex to still be a vertex than for a spurious vertex.
Using this insight the algorithm outlined below runs the modified AVTA algorithm over several random
projections and outputs the set of points that appear as vertices in many random projections.

AVTA with multiple random projections (S = {v1, . . . , vn}, K, γ, M)

• Step 0. Set Freq ← 0|S|.

• Step 1. For i = 1 to M :

– S′ ← S: Project data on to randomly chosen 4log(n)
ε2 dimensions.

– Ŝ ← AVTA(S′, γ)

– For each dj ∈ Ŝ, Freq[j] = Freq[j] + 1.

• Step 2. Output top K frequent vertices.

We now show how AVTA can be used to solve various problems in computational geometry and machine
learning.
Application of AVTA in Linear Programming: Consider linear programming feasibility problem of
testing if P = {x ∈ Rn : Ax = b, x ≥ 0} is nonempty, where A is m × n, b ∈ Rn. Suppose n is much larger
than m. If we reduce the size of A the problem would be more efficiently solvable, no matter what algorithm
we use to solve it.

Proposition 7. Given P = {x ∈ Rn : Ax = b, x ≥ 0}, let conv(A) denote the convex hull of columns of A.
Let A′ denote the m× n′ submatrix A whose columns form the set of all vertices of conv(A). Let

P ′ = {x′ ∈ Rn
′

: A′x′ = b, x′ ≥ 0}. (103)

Then P is feasible if and only P ′ is feasible.

Proof. Clearly, if P ′ is feasible then P is feasible. Assume P is feasible. Thus for some x ∈ Rn, x ≥ 0,
Ax = b. Denote the columns of A by a(i). Then each a(i) is a convex combination of columns of A′. That
is, for each i = 1, . . . , n, there exists

α(i) ∈ Sn′ = {s ∈ Rn
′

:

n′∑
i=1

si = 1, s ≥ 0}, (104)

where
a(i) = A′α(i). (105)

Thus

Ax =

n∑
i=1

xia
(i) =

n∑
i=1

xiA
′α(i) = A′

n∑
i=1

xiα
(i). (106)

23

Letting

x′ =

n∑
i=1

xiα
(i), (107)

A′x′ = b, x′ ≥ 0.

Proposition 8. Assume P = {x ∈ Rn : Ax = b, x ≥ 0} is nonempty. Consider the linear program
min{cTx : x ∈ P}. Let B be the (m+ 1)×n matrix whose first row is cT and the remaining rows are A. Let
B′ be the (m+ 1)× n′ matrix whose columns form the vertices of the convex hull of the columns of B. Let
c′T be the first row of B′ and A′ the remaining m× n′ submatrix of B′. Then

min{cTx : Ax = b, x ≥ 0} = min{c′Tx : A′x′ = b, x′ ≥ 0}. (108)

Proof. Consider any feasible solution x0 of original LP. Then by Proposition 7 the set {c′Tx′ = cTx0, A
′x′ =

b, x′ ≥ 0} is feasible. This implies the original LP has a finite optimal value if and only if the restricted
problem does. In particular, the optimal objective values of the two problems coincide.

The above propositions imply that AVTA has potential applications in the reduction of the LP feasibility
or optimization, whether we solve the problem via simplex method or other methods.
AVTA for topic modeling in the presence of anchor words: Arora et al. (2013) provide a practical
algorithm for topic modeling with provable guarantees. Their algorithm works under the assumptions that
the topic-word matrix is separable. In particular, they assume that corresponding to each topic i, there exists
an anchor word wi that has a non zero probability of appearing only under topic i. Under this assumption,
the algorithm of Arora et al. (2013) consists of two stages: a) find the anchor words, and b) use the anchor
words to learn the topic word matrix. The problem of finding anchor words corresponds to finding the
vertices of the convex hull of the word-word covariance matrix. They propose an algorithm named fast
anchor words in order to find the vertices. Since AVTA works in general setting, we can instead use AVTA
to find the anchor words. Additionally, the fast anchor words algorithm needs to know the value of the
number of anchor words, as an input. On the other hand, from the statements of Theorems 9 and 13 it is
easy to see that AVTA can work in a variety of settings when other properties of the data are known such as
the robustness. We argue that robustness is a parameter that can be tuned in a better manner than trying
different values of the number of anchor words. In fact, one can artificially add random noise to the data and
make it robust up to certain value. One can then run AVTA with the lower bound on robustness as input
and let the algorithm automatically discover the number of anchor words. This is much more desirable in
practical settings. Our first implementation of AVTA is named AVTA+RecoverL2 that uses AVTA to detect
anchor words and then uses the anchor words to learn the topic word matrix using the approach from Arora
et al. (2013). AVTA is also theoretically superior than fast anchor words and achieves slightly better run
times in the regime when the number of topics is o(log n), where n is the number of words in the vocabulary.
This is usually the case in most practical scenarios.
AVTA for topic modeling the absence of anchor words: The presence of anchor words is a strong
assumption that often does not hold in practice. Recently, the work of Bansal et al. (2014) designed a new
practical algorithm for topic models under the presence of catch words. Catch words for topic i correspond
to set Si such that it’s total probability of appearing under topic i is significantly higher than in any other
topic. Their algorithm called TSVD recovers much better reconstruction of the topic-word matrix in terms
of the `1 error. They also assume that for each topic i, there are a few dominant documents that mostly
contain words from topic i. The TSVD algorithm works in two stages. In stage 1, the (thresholded) word-
document data matrix is projected onto a K-SVD space to compute a different embedding of the documents.
Then, the documents are clustered into K clusters. Under the assumptions mentioned above, one can show
that the dominant documents for each topic will be clustered correctly. In stage 2, a simple post processing
algorithm can approximate the topic-word matrix from the clustering.

We improve on TSVD by asking the following question: is K-SVD the right representation of the data?.
Our key insight is that if dominant documents are present in the topic, it is easy to show that most other

24

documents will be approximated by a convex combination of the dominant topics. Furthermore, the coeffi-
cients in the convex combinations will provide a much more faithful low dimensional embedding of the data.
Using this insight, we propose a new algorithm that runs AVTA on the data matrix to detect vertices and
to approximate each point using a convex combination of the vertices. We then use the coefficient matrix as
the new representation of the data that needs to be clustered. Once the clustering is obtained, the same post
processing step from Bansal et al. (2014) can be used to recover the topic-word matrix. Our results show
that the embedding produced by AVTA leads to much better reconstruction error than of that produced by
TSVD. Furthermore, K-SVD is an expensive procedure and very sensitive to the presence of outliers in the
data. In contrast, our new algorithm called AVTA+CatchWord is much more stable to noise in the data.

AVTA+CatchWord (S = {v1, . . . , vn}, γ, K, ε)

• Step 0. Randomly project S onto 2K dimensions to get Ŝ.

• Step 1. Compute a a super set of vertices V̄ by AV TA(Ŝ, γ).

• Step 2. Prune V̄ into V̂ (of size K) by iteratively picking v̄ ∈ {V̄ }/{V̂ } which has the
maximum distance to conv(V̂).

• Step 3. For each projected point v̂i ∈ Ŝ \ V̂ , compute a vector αi such that ‖V̂ αi− v̂i‖ ≤ ε.

• Step 4. Initialize cluster assignment for each point by majority weight: argmax
j∈[K]

αj .

• Step 5. Clustering using Lloyds algorithm on the embedding provided by the α vectors.

• Step 6. Use the post processing as described in Bansal et al. (2014) to recover the topic-
word matrix from the clustering.

AVTA for NMF: The work of Arora et al. (2012a) showed that convex hull detection can be used to solve
the non-negative matrix factorization problem under the separability assumption. We show that by using
the more general AVTA algorithm for solving the convex hull problem results in comparable performance
guarantee.

8 Applications and Experiments 1

8.1 Feasibility problem

In this section, we present experimental results which empirically show when the problem is ’over complete’,
AVTA can be a ’shortcut’ solution. In another word, given an m×n matrix A as data, where the convex hull
of the columns of A, denoted by conv(A), has K vertices, K � n. We apply the AVTA to solve 2 classical
problems which appear in many applications.
Convex hull membership problem:
In the experiments, vertices of the convex hull are generated by the Gaussian distribution, i.e. vi ∼
N (0, Im), i ∈ [K]. Having generated the vertices, the ’redundant’ points dj where dj ∈ conv(S), j ∈ [n−K]

are produced using random convex combination dj =
∑K
i=1 αivi. Here αi are scaled standard uniform ran-

dom variable where αi are scaled so that
∑K
i=1 αi = 1. Specifically, comparison is by fixing K = 100, m = 50

and n varying from 5, 000 ∼ 500, 000. We compare the efficiency of 4 algorithms on solving this problem: the
Simplex method Chvatal (1983), the Frank Wolfe Algorithm (FW) Jaggi (2013), the Triangle Algorithm
(TA) Kalantari (2015), and our algorithm on solving the convex hull membership query problem.
Results on Convex hull membership query: Table 2 shows when n� K, AVTA is more efficient than
other algorithms solving the convex hull membership problem. This result supports the output sensitivity

1Resources: https://github.com/yikaizhang/AVTA

25

https://github.com/yikaizhang/AVTA

Table 2: Running time of convex hull memberhip (secs)

of
redundant pts

AVTA TA FW Simplex

5,000 1.75 0.21 0.52 0.9
20,000 1.49 0.66 1.94 2.76
45,000 2.94 1.84 5.51 6.16
80,000 2.71 3.22 10.87 10.63
125,000 3.83 4.28 17.67 15.95
180,000 4.15 5.38 23.14 24.13
245,000 6.95 9.56 33.42 36.96
320,000 8.09 13.24 44.99 44.26
405,000 10.01 14.75 56.35 59.5
500,000 14.12 15.69 70.7 90.41

property of AVTA.

Non-negative linear system: The non-negative linear system problem is to find a feasible solution of :

Aα = p

α ≥ 0
(109)

In another word, to test if p ∈ cone(Aj) where Aj are columns of A. In case when A is over complete,
any feasible p can be represented using only the generators of cone(A) the set Ā ⊂ A. By scaling A
so that columns of AD (Dii = b

a·Ai
) are in a m − 1 dimensional hyperlane 〈a, α〉 = b, one can find the

generators of cone(A) by finding the vertices of the convex hull of the projected points. This could be done
efficiently by AVTA. Suppose we have a linear system A and series of query points p , it is sufficient to run
AVTA once for dimension reduction and solve the subproblem Āα′ = p, α′ ≥ 0 using simplex method. We
compare the running time of Simplex Method with AVTA+Simplex Method. The generator Ā is entrywise
independent uniform(0, 1) random matrix and the ’overcomplete’ part of the matrix Āc = A/Ā are generated
by Āc = ĀB where B ∈ RK×(n−K) is entrywise independent uniform(0, 10) random matrix. We set the
number of generators K = 100, the dimension m = 50, and the number of ’redundant’ columns n = 50, 000.
We simply set half of the query points feasible and rest infeasible. The feasible points p are generated as
p = Ax where x ∈ Rn is entrywise independent uniform(0, 1) random vector and the infeasible points are
generated in the same way as generators.

Table 3: Running time of linear programming feasibility (secs)

of
query

AVTA+Simplex Simplex # of query AVTA+Simplex Simplex

1.00 241.24 152.09 11.00 241.94 1810.72
2.00 241.36 303.86 12.00 242.01 1967.93
3.00 241.41 477.89 13.00 242.07 2125.62
4.00 241.45 660.95 14.00 242.16 2289.91
5.00 241.54 853.91 15.00 242.23 2490.52
6.00 241.61 1016.77 16.00 242.29 2680.61
7.00 241.69 1177.30 17.00 242.32 2866.23
8.00 241.72 1336.38 18.00 242.41 3065.50
9.00 241.83 1495.70 19.00 242.44 3245.78
10.00 241.91 1652.84 20.00 242.47 3412.39

26

(a) Running time for algorithms to find a feasible
solution.

(b) Running time for algorithms to find all vertices.

It can be observed from Figure 5a and Table 3 that the running time of AVTA+Simplex doesn’t have
obvious increase while Simplex increases drastically. This suggests the potential applications of AVTA in
linear programming feasibility problem.

8.2 Computing all vertices

Compute vertices of convex hull: In this section, we compare the efficiency of AVTA with another
popular algorithm for finding vertices Quickhull Barber et al. (1996). We generate vertices according to a
Gaussian distribution N (0, 10)m. Having generated K such points, n interior points are generated as convex
combination of the vertices, where the weights are generated scaled i.i.d uniform distribution.
Experiment and results: In the experiment, we set K = 100, n = 500 and m varying from 2 ∼ 12. 2. The
computational results is shown in Table 4. In high dimension m ≥ 9, when conv(S) is γ robust for some
γ > 0, the AVTA algorithm successfully find all vertices of the convex hull efficiently while the Quick hull
algorithm is stuck by its explosion of complexity in dimension m.

Table 4: Running time (secs)

dim Qhull AVTA dim Qhull AVTA
2 0.13 14.82 7 2.92 41.51
3 0.02 16.62 8 16.48 39.63
4 0.04 24.49 9 82.09 44.21
5 0.12 32.76 10 391.36 45.79
6 0.59 37.66 11 1479.51 51.19

Compute vertices of simplex in high dimension: The Fast Anchor Word can be used to detect the
vertices of a simplex. In this section, we compare the efficiency of AVTA with Fast Anchor Word when
convex hull is a simplex with K = 50 and m = 100. The number of points in the convex hull n varies from
100 ∼ 100, 000.
Results of running time in simplex case: The running of efficiency comparison between AVTA and
Fast Anchor Word in simplex case is presented in Figure 6c. In regime n ≥ 30, 000, AVTA has less running
time.

Compute vertices with perturbation: In this section, we compare the robustness of AVTA with multiple
random projections presented in section 7 with Fast Anchor Word Arora et al. (2013). Instead of actual set

2 The maximum of dimension is 12 in the experiment because of the explosion of running time of the Quick hull algorithm

27

of points S as input, the algorithm is given a perturbed set S◦, i.e. S is corrupted by some noise. Having
fixed K = 100,n = 500, m = 100 , we choose a Gaussian perturbation from N (0, τ)m where τ varies from 0.3
to 3. In case of general convex hull, a failure of Fast Anchor Word on computing vertices of general convex
hull is presented. The data is generated by setting τ = 0.3, m = 50, n = 500 and let K varies from 10 ∼ 100.
We do an error analysis and evaluate the output of the algorithms by measuring the l2 distance between true
vertices and the convex hull of output vertices of the two algorithms. More precisely, given a true vertex
vi ∈ S and Ŝ, the output of an algorithm, the error in recovering vi is defined to be min

u∈conv(Ŝ)
||u− vi||2. We

add up all the errors to get the total accumulated error.
Results on computing perturbed vertices:
The recovery error in robustness comparison is shown in Table 5. The AVTA with multiple random projection
has a better recovery error in the simplex case.
It can also be observed from Figure 6b that in general case, as number of vertices exceeds the number of
dimensions, Fast Anchor Word fails to recover more vertices and its error explodes.

Table 5: Recovery error (Simplex)

Var AVTA+Multiple Rp Fast Anhor variance AVTA+Multiple Rp Fast Anhor
0.3 2.96 2.96 1.8 16.60 17.98
0.6 5.79 5.79 2.1 19.40 20.58
0.9 8.61 9.36 2.4 21.93 23.77
1.2 11.34 12.00 2.7 23.69 24.90
1.5 14.16 15.44 3 26.72 28.78

8.3 Topic modeling

We compare our algorithms with the Fast Anchor + Recoverl2 algorithm of Arora et al. (2013) and the
TSVD algorithm of Bansal et al. (2014) on two types of data sets: semi-synthetic data and real world data.
We next describe our methodology and empirical results in detail.
Semi Synthetic Data: For Semi-Synthetic data set, we use similar methodology as in Arora et al. (2013).
We first train the model on real data set using Gibbs sampling with 1, 000 iterations. We choose 50 as the
number of topics which follows Bansal et al. (2014). Given the parameters learned from dataset, we generate
documents with α set to be 0.01. The average document length is 1, 000. Then the reconstruction error
is measured by the l1 distance of bipartite matched pairs between the true word-topic distribution and the
word-topic distribution Arora et al. (2013). We then average the errors to compute the final mean error.
Real Data: We use the NIPS data set with 1500 documents , and a pruned vocabulary of 2K words, and
the NYTimes Corpus with sub sampled 30, 000 documents, and a pruned vocabulary of 5k words. 3. For the
real world data set, as in prior works Arora et al. (2013); Bansal et al. (2014), we evaluate the coherence
to measure topic quality Yao et al. (2009). Given a set of words W associated with a learned topic, the

coherence is computed as: Coherence(W) =
∑
w1,w2∈W log D(w1,w2)+ε

D(w2) , where D(w1) and D(w1, w2) are the

number of documents where w1 appears and (w1, w2) appear together respectively Arora et al. (2013), and
ε is set to 0.01 to avoid w1, w2 that never co-occur Stevens et al. (2012). The total coherence is the sum of
the coherence of each topic. In the NIPS dataset, 1, 000 out of the 1, 500 documents were selected as the
training set to learn the word-topic distributions. The rest of the documents were used as the testing set.
Implementation Details: We compare 4 algorithms, AVTA+CatchWord, TSVD, the Fast Anchor +
Recoverl2 and the AVTA+Recoverl2. We implement our own version of Fast Anchor + Recoverl2 as described
in Arora et al. (2013). TSVD is implemented using the code provided by the authors in Bansal et al. (2014).
AVTA+Recoverl2 corresponds to using AVTA to detect anchor words from the word-word covariance matrix

3https://archive.ics.uci.edu/ml/datasets/bag+of+words

28

https://archive.ics.uci.edu/ml/datasets/bag+of+words

(a) Recovery error-computing vertices(simplex case)
(b) Recovery error-computing vertices(eneral convex
hull)

(c) Running time (secs) of computing vertices of sim-
plex

(d) `1 error in the semi-synthetic dataset.

(e) `1 error in the perturbed semi-synthetic dataset.
(f) Range of the `1 error over 10 runs on the noisy
semi-synthetic dataset.

Figure 6

and then using the Recoverl2 procedure from Arora et al. (2013) to get the topic-word matrix. AVTA
+ CatchWord corresponds to finding the low dimensional embedding of each document in terms of the
coefficient vector of its representation in the convex hull of the vertices. The next step is to cluster these

29

points. In practice, one could use the Lloyd’s algorithm for this step which could be sensitive to initialization.
To remedy this, we use similar heuristic as Bansal et al. (2014) of the initialization step. We repeat AVTA
for 3 times and pick the set of vertices with highest quality where the quality is measured by sum of distances
of each vertex to convex hull of other vertices. We set the number of output vertices K = 50 which is the
same as the number of topics. i.e. each vertex corresponds to a topic. We found that initializing by simply
assigning clusters using neighborhoods of highest degree vertices works effectively. As a final step, we use
the post processing step from Bansal et al. (2014) to recover the topic-word matrix from the clustering.
Robustness: We also generate perturbed version of the semi synthetic data. We generate a random matrix
with i.i.d. entries uniformly distributed with different scales varying from 0.005 − 0.05. We test all the
algorithms with the document-word matrix added with the noise matrix.
Results on Semi Synthetic Data: Figures 6d and 6e show the `1 reconstruction of all the four algorithms
under both clean and noisy versions of the semi synthetic data set. For topic i, let Ai be the ground
truth topic vector and Âi be the topic vector recovered by the algorithm. Then the `1 error is defined as
1
K

∑K
i=1 ‖Ai − Âi‖1. The plots show that AVTA+CatchWord is consistently better than both TSVD and

Fast Anchor + Recoverl2 and produces significantly more accurate topic vectors. In order to further test
the robustness of our approach, we plot in Figure 6f the range of the `1 error obtained across multiple runs
of the algorithms on the same data set. The range is defined to be the difference between the maximum
and the minimum error recovered by the algorithm across different runs. We see that AVTA+CatchWord
produces solutions that are much more stable to the effect of the noise as compared to other algorithms.
Table 6 shows the running time of the experiments of 4 algorithms. As can be seen, when using AVTA to
learn topic models via the anchor words approach, our algorithm has comparable run time to Fast Anchor
+ Recoverl2. In CatchWord based learning, computing vertices is expensive compared to K-SVD step of
TSVD thus AVTA has longer running time.

Table 6: Running time of algorithms on semi synthetic data (secs)

Num of
documents

5,000 15,000 30,000 50,000

Fast anchor+Recoverl2 5.49 6.00 10.30 13.60
AVTA+Recoverl2 7.82 7.68 12.84 16.40
TSVD 17.02 43.27 81.24 112.80
AVTA+Catch Word 29.89 120.04 372.17 864.30

Results on Real Data: Table 7 shows the topic coherence obtained by the algorithms. One can see
that in both the approaches, either via anchor words or the clustering approach, AVTA based algorithms
perform comparably to state of the art methods 4. The running time is presented in Table 8. The
AVTA+CathchWord has less running time in the real data experiments. Per our observation, the convex
hull of word-document vectors in real data set has more vertices than K, the number of topics. The AVTA
catches K vertices efficiently due to its small number of iterations on line search for γ. In semi-synthetic
data set, the number of ’robust’ vertices is approximately the same as number of topics K thus AVTA needs
to find almost all vertices. To catch enough vertices, AVTA needs several iterations decreasing γ which is
computationally expensive.

8.4 Non-negative matrix factorization

AVTA for NMF: For our experiments on NMF we use the Swimmer data set Donoho and Stodden (2003)
that consists of 256 swimmer figures with each a 32× 32 binary pixel images. One can interpret each image
as a document and pixels as a word in the document Ding et al. (2013). All swimmers consist of 4 limbs with
each limb having 4 different possible poses. One can then consider the different poses of limbs as the true

4The topic coherence results for TSVD do not match the ones presented in Bansal et al. (2014) since in their experiments,
the authors look at top 10 most frequent words in each topic. In our experiments we compute coherence for the top 5 most
frequent words in each topic.

30

underlying topics Donoho and Stodden (2003). We compare the algorithm proposed in Arora et al. (2012a)
with AVTA+Recoverl2 on the swimmer data set. We construct a noisy version by adding spurious poses to
original swimmer data set. Let Ω(A) be a function that outputs a randomly chosen 32×8 block of an image.
We generate a ’spurious pose’ of size 32×8 by Ω(Mi) where Mi is a randomly chosen swimmer image. Then
we take another randomly chosen image Mj and compute the corrupted image as M ′j = Mj +c ·Ω(Mi) where
we simply set c = 0.1. An illustration of the noise data set is shown in Figure 7b. Since the true underlying
topics are known, we will plot the output of the algorithms and compare it with the underlying truth.
Results on NMF: We compare the performance of AVTA on these data sets with the performance of
the Separable NMF algorithm proposed in Arora et al. (2012a). Figures 7c and 7d show the output of
the Separable NMF algorithm and that of our algorithm respectively on the noisy data set. Our approach
produces competitive results as compared to the Separable NMF algorithm.

Table 7: Topic coherence on real data

Fast Anchor+RecoverL2 AVTA+RecoverL2 TSVD AVTA+Catch Word

NIPS -15.8 ±2.24 -16.04 ±2.09 -16.86 ±1.66 -18.65 ±1.78
NYTimes -32.15 ±2.7 -32.13 ±2.43 -29.39 ±1.43 -30.13 ±1.98

Table 8: Running time on real data experiments (secs)

Fast Anchor+RecoverL2 AVTA+RecoverL2 TSVD AVTA+Catch Word

NIPS 3.22 4.41 56.58 22.78
NYTimes 26.05 27.79 237.6 101.07

(a) An example of swimmer images. (b) An example of spurious actions in swimmer images.

(c) Output of NMF +RecoverL2 (d) Output of AVTA +RecoverL2

Figure 7

31

9 Conclusion

In this work we have presented a fast and robust algorithm for computing the vertices of the convex hull of
a set of points. Our algorithm efficiently computes the vertices of convex hulls in high dimensions and even
in the special case of the simplex is competitive with the state of the art approaches in terms of running
time Arora et al. (2013). Furthermore, our algorithm leads to an improved algorithm for topic modeling
that is more robust and produces better approximations to the topic-word matrix. It will be interesting to
provide theoretical claims supporting this observation in the context of specific applications. Furthermore,
we believe that our algorithm will have more applications in machine learning problems beyond the ones
investigated here as well as applications in computational geometry and in linear programming.

References

Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Yi-Kai Liu. A spectral algorithm
for latent dirichlet allocation. In Advances in Neural Information Processing Systems, pages 917–925,
2012.

Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a nonnegative matrix
factorization–provably. In Proceedings of the forty-fourth annual ACM symposium on Theory of com-
puting, pages 145–162. ACM, 2012a.

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–going beyond svd. In Foundations of
Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 1–10. IEEE, 2012b.

Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen Wu, and
Michael Zhu. A practical algorithm for topic modeling with provable guarantees. In International Con-
ference on Machine Learning, pages 280–288, 2013.

Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete
dictionaries. In COLT, pages 779–806, 2014.

Pranjal Awasthi and Andrej Risteski. On some provably correct cases of variational inference for topic
models. In Advances in Neural Information Processing Systems, pages 2098–2106, 2015.

Trapit Bansal, Chiranjib Bhattacharyya, and Ravindran Kannan. A provable svd-based algorithm for learn-
ing topics in dominant admixture corpus. In Advances in Neural Information Processing Systems, pages
1997–2005, 2014.

C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex hulls.
ACM Transactions on Mathematical Software (TOMS), 22(4):469–483, 1996.

David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse approximation via generating point sets. In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 548–557.
Society for Industrial and Applied Mathematics, 2016.

Christopher JC Burges. A tutorial on support vector machines for pattern recognition. Data mining and
knowledge discovery, 2(2):121–167, 1998.

Timothy M Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete
& Computational Geometry, 16(4):361–368, 1996a.

32

Timothy M Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete
& Computational Geometry, 16(4):369–387, 1996b.

Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete & Computational
Geometry, 10(1):377–409, 1993.

Vasek Chvatal. Linear programming. Macmillan, 1983.

Kenneth L Clarkson. More output-sensitive geometric algorithms. In Foundations of Computer Science,
1994 Proceedings., 35th Annual Symposium on, pages 695–702. IEEE, 1994.

Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM Trans-
actions on Algorithms (TALG), 6(4):63, 2010.

Weicong Ding, Mohammad Hossein Rohban, Prakash Ishwar, and Venkatesh Saligrama. Topic discovery
through data dependent and random projections. In ICML (3), pages 1202–1210, 2013.

David Donoho and Victoria Stodden. When does non-negative matrix factorization give a correct decompo-
sition into parts? In Advances in Neural Information Processing Systems, 2003.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research Logistics
(NRL), 3(1-2):95–110, 1956.

Bernd Gärtner and Martin Jaggi. Coresets for polytope distance. In Proceedings of the twenty-fifth annual
symposium on Computational geometry, pages 33–42. ACM, 2009.

Elmer G Gilbert. An iterative procedure for computing the minimum of a quadratic form on a convex set.
SIAM Journal on Control, 4(1):61–80, 1966.

Sariel Har-Peled, Dan Roth, and Dav Zimak. Maximum margin coresets for active and noise tolerant learning.
In IJCAI, pages 836–841, 2007.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. 2013.

Ray A Jarvis. On the identification of the convex hull of a finite set of points in the plane. Information
Processing Letters, 2(1):18–21, 1973.

Yi Jin and Bahman Kalantari. A procedure of chvátal for testing feasibility in linear programming and
matrix scaling. Linear algebra and its applications, 416(2-3):795–798, 2006.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Con-
temporary mathematics, 26(189-206):1, 1984.

Bahman Kalantari. A characterization theorem and an algorithm for a convex hull problem. Annals of
Operations Research, 226(1):301–349, 2015.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the
sixteenth annual ACM symposium on Theory of computing, pages 302–311. ACM, 1984.

Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72, 1980.

Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. In Advances in
neural information processing systems, pages 556–562, 2001.

Jǐŕı Matoušek and Otfried Schwarzkopf. Linear optimization queries. In Proceedings of the eighth annual
symposium on Computational geometry, pages 16–25. ACM, 1992.

33

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6583):607, 1996.

Christos H Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vempala. Latent semantic
indexing: A probabilistic analysis. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 159–168. ACM, 1998.

Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. In COLT,
pages 37–1, 2012.

Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. Exploring topic coherence over
many models and many topics. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages 952–961. Association
for Computational Linguistics, 2012.

Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computational geometry.
CRC press, 2004.

Godfried T Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE Melecon,
volume 83, page A10, 1983.

Ky Vu, Pierre-Louis Poirion, and Leo Liberti. Random projections for linear programming. arXiv preprint
arXiv:1706.02768, 2017.

Limin Yao, David Mimno, and Andrew McCallum. Efficient methods for topic model inference on streaming
document collections. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 937–946. ACM, 2009.

Tong Zhang. Sequential greedy approximation for certain convex optimization problems. IEEE Transactions
on Information Theory, 49(3):682–691, 2003.

34

	1 Introduction
	2 Review of The Triangle Algorithm
	3 Efficient Implementation of Triangle Algorithm
	4 All Vertex Triangle Algorithm (AVTA)
	4.1 Application of AVTA in Solving the Convex Hull Membership

	5 AVTA Under Input Perturbation
	6 Triangle Algorithm with Johnson-Lindenstrauss Projections
	6.1 AVTA Under Perturbation and Johnson-Lindenstrass Projection

	7 Applications
	8 Applications and Experiments
	8.1 Feasibility problem
	8.2 Computing all vertices
	8.3 Topic modeling
	8.4 Non-negative matrix factorization

	9 Conclusion

