Skip to main content
Log in

Robustness-based approach for fuzzy multi-objective problems

  • S.I.: MOPGP 2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In recent years, reasoning under uncertainty in multi-objective problems has become an active research area. However, solving this kind of problems reveals many performance and robustness issues that have been so far been neglected. Most of existing studies in this area are focused on dealing with robustness in the field of mono-objective optimization. The aim of the present paper is to address robustness of multi-objective optimization problems over uncertain inputs data. In particular, we focus on the specific case of fuzziness propagation to the multiple objectives in such problems. Then in order to avoid the loss of efficiency of fuzzy-valued objective values, we introduce new robustness techniques combining fuzziness and multi-objective context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Let \(x, y \in {\mathbb {R}}^n \times {\mathbb {R}}^n\) where \(x = (x_1,\dots ,x_n)\) and \(y = (y_1,\dots ,y_n)\), then:   \(x \le y\)   iff \(x = y\)   or   \(x_i < y_i\)   for \(1\le i \le n\).

  2. defined as the difference between the best minimum cost and the second minimum for every problem solution.

  3. Big-oh O is the most popularly used complexity measure which denotes the asymptotic upper bound.

References

  • Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min–max and min–max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research, 197(2), 427–438.

    Article  Google Scholar 

  • Bader, J., & Zitzler, E. (2010). Robustness in hypervolume-based multiobjective search. Computer Engineering and Networks Laboratory (TIK), ETH Zurich, TIK Report, 317.

  • Bahri, O., Ben Amor, N., & Talbi, E. G. (2014a). New Pareto approach for ranking triangular fuzzy numbers. In International conference on IPMU’14 (pp. 264–273).

  • Bahri, O., Ben Amor, N., & Talbi, E. G. (2014b). Optimization algorithms for multi-objective problems with fuzzy data. In International conference on MCDM’14 (pp. 194–201).

  • Bahri, O., & Talbi, E. G. (2016a). \(\beta \)-Robustness approach for fuzzy multi-objective problems. In International conference on IPMU’16 (pp. 225–237).

  • Bahri, O., & Talbi, E. G. (2016b). Robust routes for the fuzzy multi-objective Vehicle routing problem. In 8th IFAC conference on manufacturing modelling management and control MIM’16 (Vol. 49, pp. 769–774).

  • Bahri, O., & Talbi, E. G. (2018). Dealing with epistemic uncertainty in multi-objective optimization: A survey. In International conference on IPMU’18 (pp. 260–271).

  • Bahri, O., Talbi, E. G., & Amor, N. B. (2018). A generic fuzzy approach for multi-objective optimization under uncertainty. Swarm and Evolutionary Computation, 40, 166–183.

    Article  Google Scholar 

  • Barrico, C., & Antunes, C. H. (2006). Robustness analysis in multi-objective optimization using a degree of robustness concept. In IEEE Congress on Evolutionary Computation CEC (pp. 1887–1892).

  • Bent, R., & Van Hentenryck, P. (2004). Online stochastic and robust optimization. In Proceeding of the ninth annual Asian computing science conference (pp. 286–300).

  • Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464–501.

    Article  Google Scholar 

  • Bertsimas, D., & Nohadani, O. (2010). Robust optimization with simulated annealing. Journal of Global Optimization, 48(2), 323–334.

    Article  Google Scholar 

  • Bertsimas, D., Pachamanova, D., & Sim, M. (2004). Robust linear optimization under general norms. Operations Research Letters, 32(6), 510–516.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Curry, D. M., & Dagli, C. H. (2014). Computational complexity measures for many-objective optimization problems. Procedia Computer Science, 36, 185–191.

    Article  Google Scholar 

  • Daniels, R. L., & Carrillo, J. E. (1997). \(\beta \)-Robust scheduling for single-machine systems with uncertain processing times. IIE Transactions, 29(11), 977–985.

    Google Scholar 

  • Deb, K., & Gupta, H. (2005). Searching for robust Pareto-optimal solutions in multi-objective optimization. In International conference on evolutionary multi-criterion optimization (pp. 150–164)

  • Deb, K., & Gupta, H. (2006). Introducing robustness in multi-objective optimization. Journal of Evolutionary computation, 14(4), 463–494.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1987). The mean value of a fuzzy number. Fuzzy Sets and Systems, 24(3), 279–300.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1998). Possibility theory: Qualitative and quantitative aspects. In Quantified representation of uncertainty and imprecision (pp. 169–226). New York: Springer.

  • Dupačovà, J., & Kopa, M. (2012). Robustness in stochastic programs with risk constraints. Annals of Operations Research, 200(1), 55–74.

    Article  Google Scholar 

  • Ehrgott, M., Ide, J., & Schöbel, A. (2014). Minmax robustness for multi-objective optimization problems. European Journal of Operational Research, 239(1), 17–31.

    Article  Google Scholar 

  • Gunawan, S., & Azarm, S. (2005). Multi-objective robust optimization using a sensitivity region concept. Structural and Multidisciplinary Optimization, 29(1), 50–60.

    Article  Google Scholar 

  • Heilpern, S. (1997). Representation and application of fuzzy numbers. Fuzzy Sets and Systems, 91(2), 259–268.

    Article  Google Scholar 

  • Jin, Y., & Sendhoff, B. (2003). Trade-off between performance and robustness: An evolutionary multiobjective approach. In International conference on evolutionary multi-criterion optimization (pp. 237–251).

  • Jiménez, A., & Ríos-Insua, S. (2003). Monte–Carlo simulation techniques in a multi-attribute decision support system. In Proceedings of the 12th IASTED international conference on applied simulation and modelling (pp. 85–90).

  • Kang, S. C., Brisimi, T. S., & Paschalidis, I. C. (2015). Distribution-dependent robust linear optimization with applications to inventory control. Annals of Operations Research, 231(1), 229–263.

    Article  Google Scholar 

  • Kasperski, A., & Kulej, M. (2009). Choosing robust solutions in discrete optimization problems with fuzzy costs. Fuzzy Sets and Systems, 160(5), 667–682.

    Article  Google Scholar 

  • Kouvelis, P., & Yu, G. (2013). Robust discrete optimization and its applications (Vol. 14, pp. 26–73). New York: Springer.

    Book  Google Scholar 

  • Li, M., Azarm, S., & Aute, V. (2005). A multi-objective genetic algorithm for robust design optimization. In Proceedings of the 7th annual conference on genetic and evolutionary computation (pp. 771–778).

  • Liefooghe, A., Basseur, M., Jourdan, L., & Talbi, E. G. (2007). ParadisEO-MOEO: A framework for evolutionary multi-objective optimization. In International conference on evolutionary multi-criterion optimization (pp. 386–400).

  • Limbourg, P. (2005). Multi-objective optimization of problems with epistemic uncertainty. In International conference on evolutionary multi-criterion optimization (pp. 413–427).

  • Maeda, S., & Kawachi, T. (2001). Epsilon-constraint approach for robust optimization of wasteload allocation in river systems. Transactions of the Japanese Society of Irrigation Drainage and Reclamation Engineering (Japan), 215, 117–124.

    Google Scholar 

  • Medsker, L., Tan, M., & Turban, E. (1995). Knowledge acquisition from multiple experts: Problems and issues. Expert Systems with Applications, 9(1), 35–40.

    Article  Google Scholar 

  • Palacios, J. J., González-Rodríguez, I., Vela, C. R., & Peinador, J. P. (2014). \(\beta \)-robust solutions for the fuzzy open shop scheduling. In International Conference on IPMU’14 (Vol. 442, pp. 447–456).

  • Palacios, J. J., González-Rodríguez, I., Vela, C. R., & Puente, J. (2017). Robust multi-objective optimisation for fuzzy job shop problems. Applied Soft Computing, 56, 604–616.

    Article  Google Scholar 

  • Pishevar, A., & Tavakkoi-Moghaddam, R. (2014). \(\beta \)-Robust parallel machine scheduling with uncertain durations. Universal Journal of Industrial and Business Management, 2(3), 69–74.

    Google Scholar 

  • Rivaz, S., & Yaghoobi, M. A. (2013). Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients. Central European Journal of Operations Research, 21(3), 625–649.

    Article  Google Scholar 

  • Ruiz, P., Dorronsoro, B., Talbi, E. G., & Bouvry, P. (2015). Finding a robust configuration for the AEDB information dissemination protocol for mobile ad hoc networks. Applied Soft Computing, 32, 494–508.

    Article  Google Scholar 

  • See, C. T., & Sim, M. (2010). Robust approximation to multiperiod inventory management. Operations Research, 58(3), 583–594.

    Article  Google Scholar 

  • Sevaux, M., & Sörensen, K. (2004). Robustness analysis: Optimisation. In Newslett Eur Working Group “Multiple Criteria Decision Aiding” Ser, 3

  • Soares, G., Adriano, R. L., Maia, C. A., Jaulin, L., & Vasconcelos, J. A. (2009). Robust multi-objective TEAM 22 problem: A case study of uncertainties in design optimization. IEEE Transactions on Magnetics, 45(3), 1028–1031.

    Article  Google Scholar 

  • Soares, G., Guimarães, F. G., Maia, C. A., Vasconcelos, J. A., & Jaulin, L. (2009). Interval robust multi-objective evolutionary algorithm. In IEEE Congress on Evolutionary Computation CEC’09 (pp. 1637–1643).

  • Solano-Charris, E. L., Prins, C., & Santos, A. C. (2014). Heuristic approaches for the robust vehicle routing problem. In International symposium on combinatorial optimization (pp. 384–395).

  • Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154–1157.

    Article  Google Scholar 

  • Steele, J. M. (1997). Probability theory and combinatorial optimization (Vol. 69). Philadelphia: SIAM.

    Book  Google Scholar 

  • Tal, A. B., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. Princeton series in applied mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Talbi, E. G. (2009). Metaheuristics: From design to implementation (Vol. 74). New York: Wiley.

    Book  Google Scholar 

  • Tütüncü, R. H., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1–4), 157–187.

    Article  Google Scholar 

  • Wu, C. W., Brown, K. N., & Beck, J. C. (2009). Scheduling with uncertain durations: Modeling \(\beta \)-robust scheduling with constraints. Computers & Operations Research, 36(8), 2348–2356.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(1), 9–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oumayma Bahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahri, O., Talbi, EG. Robustness-based approach for fuzzy multi-objective problems. Ann Oper Res 296, 707–733 (2021). https://doi.org/10.1007/s10479-020-03567-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03567-y

Keywords

Navigation