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Abstract

In this note we introduce a multivariate extension to the bivariate
discrete analogoue to continous probability distributions proposed in [1].
We furthermore show that identical properties of the bivariate case also
hold for n-variate discrete analogues.

1 Introduction

2 Discrete Analogues

In this section we will derive the discrete analogue of an n-variate continuous
random variable. We will do so in accordance with the two approaches originally
proposed by Barbiero in [1]. We begin with the first method which is based on
the continuous denisty function (pdf) of the continuous parent random variable.

2.1 Method 1

Theorem 1. Let (W1, . . . ,Wn) be a continuous n-variate random variable with
corresponding pdf f(W1,...,Wn), then its D-type discrete analogue random vari-
able is (X1, . . . , Xn) with the probability mass function as follows:

p(X1,...,Xn) =
f(W1,...,Wn)(x1, . . . , xn)∑

w1∈N · · ·
∑
wn∈N f(W1,...,Wn)(w1, . . . , wn)

(1)

Proof. Deriving the two main properties of the pmf is trivial. As the pdf is
always non-negative f(W1,...,Wn)(x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Nn both
denominator and numeratorof the pmf are non-negative and the property fol-
lows. The second property may be derived as follows:
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∞∑
i1=1

· · ·
∞∑
in=1

p(X1,...,Wn)(i1, . . . , in) =

∑∞
i1=1 · · ·

∑∞
in=1 f(W1,...,Wn)(x1, . . . , xn)∑

w1∈N · · ·
∑
wn∈N f(W1,...,Wn)(w1, . . . , wn)

= 1 (2)

2.2 Method 2

Theorem 2. Let (W1, . . . ,Wn) be a multivariate continuous random variable
with the survival function SW1,...,Wn

(w1, . . . , wn) and CDF FW1,...,Wn
(w1, . . . , wn)

then the S-type multivariate discrete andalogue random variable (X1, . . . , Xn)
possess the pmf below:

p(x1, . . . , xn) =

n∑
k=0

(−1)n−k
(nk)∑
t=0

F(W1,...,Wn)(x + ρk
t ) (3)

where x = (x1, . . . ,xn) and ρkt with t = 1, . . . ,
(
n
k

)
are the permutations

of a vector of length n with k values of xi = 1 and the remaing n − k values
zero. Alternatively we can define the analogous formulation using the survival
function below:

p(x1, . . . , xn) =

n∑
k=0

(−1)n−k+1

(nk)∑
t=0

S(W1,...,Wn)(x + ρk
t ) (4)

Proof. We have to show the two basic properties of the pmf, e.g. that p(x1, . . . , xn) ≥
0, and that

∑∞
x1=0 · · ·

∑∞
xn=0 = 1. We begin with property one analogously to

the proof provided for the bivariate case by Barbieri in [1]:

p(x1, . . . , xn) =

n∑
k=0

(−1)n−k
(nk)∑
t=0

F(W1,...,Wn)(x + ρk
t ) (5)

= P [x1 < W1 < x1 + 1, . . . , xn < Wn < xn + 1] (6)

≥ 0 (7)

Similarly we can derive the second property:
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∞∑
x1=0

· · ·
∞∑

xn=0

p(x1, . . . , xn)

=

∞∑
x1=0

· · ·
∞∑

xn=0

n∑
k=0

(−1)n−k
(nk)∑
t=0

F(W1,...,Wn)(x + ρk
t )

=

∞∑
x1=0

· · ·
∞∑

xn=0

n∑
k=0

(−1)n−k+1

(nk)∑
t=0

S(W1,...,Wn)(x + ρk
t )

=

∞∑
x2=0

· · ·
∞∑

xn=0

∞∑
x1=0

(−1)n+1S(x1 + 1, x2 + 1, . . . , xn + 1) (8)

+ (−1)nS(W1,...,Wn)(x1, x2 + 1, . . . , xn + 1)

+ (−1)nS(W1,...,Wn)(x1 + 1, x2, x3 + 1, . . . , xn + 1) (9)

+ (−1)n−1S(W1,...,Wn)(x1, x2, x3 + 1, . . . , xn + 1)

+ · · ·+ S(W1,...,Wn)(x1, . . . , xn)

=

∞∑
x2=0

· · ·
∞∑

xn=0

S(W1,...,Wn)(0, x2 + 1, . . . , xn + 1)

− S(W1,...,Wn)(0, x2, x3 + 1, . . . , xn + 1)

+ · · ·+ S(W1,...,Wn)(0, . . . , xn)

...

= S(W1,...,Wn)(0, . . . , 0) = 1 (10)

For each xi the telescope sum properties of the pmf lets us reduce the 2n sum
terms by half, while leaving the respective variable with a zero value. Repeating
this n times leaves us with the n-dimensional survival function at x = (0, . . . ,0).

Similarly we may derive the same corollaries as with the bivariate case from
the original manuscript [1].

Proposition 3. Let (X1, . . . , Xn be the S-type multivariate discrete random
variable and (W1, . . . ,Wn) its continuous parent random variable. Then two
properties hold, firstly for the survival functions of both random variables:

S(X1,...,Xn)(h1, . . . , hn) = S(W1,...,Wn)(h1, . . . , hn) (11)

where hi ∈ Nn for i = 1, . . . , n. Secondly the marginal survival functions are
preserved.

SXi(h) = SWi
(h) ∀i ∈ 1, . . . , n (12)
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Proof. The first property follows by the same logic as used for Theorem 2:

∞∑
x1=h1

· · ·
∞∑

xn=h2

p(x1, . . . , xn)

=

∞∑
x1=h1

· · ·
∞∑

xn=hn

n∑
k=0

(−1)n−k
(nk)∑
t=0

F(W1,...,Wn)(x + ρk
t )

=

∞∑
x1=h1

· · ·
∞∑

xn=hn

n∑
k=0

(−1)n−k+1

(nk)∑
t=0

S(W1,...,Wn)(x + ρk
t )

=
∞∑

x2=h2

· · ·
∞∑

xn=hn

∞∑
x1=h1

(−1)n+1S(x1 + 1, x2 + 1, . . . , xn + 1) (13)

+ (−1)nS(W1,...,Wn)(x1, x2 + 1, . . . , xn + 1)

+ (−1)nS(W1,...,Wn)(x1 + 1, x2, x3 + 1, . . . , xn + 1) (14)

+ (−1)n−1S(W1,...,Wn)(x1, x2, x3 + 1, . . . , xn + 1)

+ · · ·+ S(W1,...,Wn)(x1, . . . , xn)

=

∞∑
x2=h2

· · ·
∞∑

xn=hn

S(W1,...,Wn)(h1, x2 + 1, . . . , xn + 1)

− S(W1,...,Wn)(h1, x2, x3 + 1, . . . , xn + 1)

+ · · ·+ S(W1,...,Wn)(h1, . . . , xn)

...

= S(W1,...,Wn)(h1, . . . , hn) (15)

From the first property we may simply derive the marginal properties as
follows:

SXi(h) = S(X1,...,Xn)(0, . . . , h, . . . , 0) = S(W1,...,Wn)(0, . . . , h, . . . , 0) = SWi
(h)
(16)

Proposition 4. Let Wi for i = 1, . . . , n be the marginal components of the
continuous n-variate random variable (W1, . . . ,Wn) then Xi the marginal com-
ponents of the discrete n-variate S-type random variable (X1, . . . , Xn) are the
discrete analogues for all i = 1, . . . , n.

Proof. For all i = 1, . . . , n the proof follows analogously:

pXi(h) = S(Xi(h)− SXi(h+ 1) = SWi(h)− SWi(h+ 1). (17)
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Based on Barbiero (univariate result 2.2 [1]) this indicates that the marginal
discrete distribution of Xi is the discrete analogue of the continuous parent
distribution of the marginal random variable Wi, for all i = 1, . . . , n. Similarly
we derive for the marginal CDF:

FXi = 1− P[X ≥ x+ 1] = 1− SXi(x+ 1)
Prop. 3

= 1− SWi
(x+ 1) = FWi

(x+ 1)
(18)

for all i = 1, . . . , n.

Based on the previous result we may derive the next property of the n-variate
discrete analogue.

Proposition 5. Let the n-variate conitnuous random variable (W1, . . . ,Wn)
have the copula C, then the S-type n-variate discrete analogue (X1 . . . , Xn)
possess the same copula C on the same range Range(FX1)× · · · ×Range(FXn).

Proof. By [2] it holds that:

F(W1,...,Wn)(w1, . . . , wn) = C(FW1
(w1), . . . , FWn

(wn)) (19)

We may then follow for (h1 . . . , hn) ∈ Nn:
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F(X1...,Xn)(h1, . . . , hn) =

n∑
i=1

P[Xi ≤ hi]−
n∑
i<j

P [Xi ≤ hi, Xj < hj ]

+

n∑
i<j<k

P[Xi ≤ hi, Xj ≤ hj , Xk ≤ hk]

+ · · ·+ (−1)nP[X1 ≤ h1, . . . , Xn ≤ hn]

=

n∑
i=1

SXi(hi + 1)−
n∑
i<j

SXi,Xj (hi + 1, hj + 1)

+

n∑
i<j<k

S(Xi,Xj ,Xk)()

+ · · ·+ (−1)nS(X1,...,Xn)(h1 + 1, . . . , hn + 1)

=

n∑
i=1

SWi
(hi + 1)−

n∑
i<j

SWi,Wj
(hi + 1, hj + 1)

+

n∑
i<j<k

S(Wi,Wj ,Wk)()

+ · · ·+ (−1)nS(W1,...,Wn)(h1 + 1, . . . , hn + 1)

= F(W1,...,Wn
(h1 + 1, . . . , hn + 1)

Eq.19
= C(FW1

(h1 + 1), . . . , FWn
(hn + 1))

Prop.4
= C(FX1(h1), . . . , FXn(hn)) (20)

With the previous Propositions 3 - 5 in place, we may derive the final prop-
erty. The main results of this proposition is the identity of the discrete analogue
rv (X1, . . . , Xn) of the continuous n-variate random variable (W1, . . . ,Wn) and
it’s rounded counterpart (bW1c, . . . , bWnc)
Proposition 6. Let (W1, . . . ,Wn) be an n-variate continuous random variable.
Then its S-type n-variate discrete analogue random variable (X1, . . . , Xn) is of
the same distribution as (bW1c, . . . , bWnc)
Proof. We know that (bW1c, . . . , bWnc) ∈ Nn. We may use Proposition 3 to
derive the following for (h1, . . . , hn) ∈ Nn.

P[bW1c = h1, . . . , bWnc = hn] = P[h1 ≤W1 < h1 + 1, . . . , hn ≤Wn < hn + 1]

Prop.3
=

n∑
k=0

(−1)n−k+1

(nk)∑
t=0

S(W1,...,Wn)(x + ρk
t )

= p(X1,...,Xn)(h1, . . . , hn) (21)
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3 Applications

To illustrate the applications of the results in the previous section we provide
some examples.

Example 3.1. Let (W1, . . . ,Wn) be of n-variate normal distribution, with pa-
rameters µ = (µ1, . . . , µn) ∈ Rn and a positive semi-definite matrix Σ ∈ Rn×n on
its support Rn. The pmf of the discrete analogue random variable (X1, . . . , Xn)
can then be written by the first method presented as:

p(X1,...,Xn) =
(2π)−n/2det(Σ)−1/2e−1/2(x−µ)

TΣ−1(x−µ)∑∞
i1=0 · · ·

∑∞
in=0(2π)−n/2det(Σ)−1/2e−1/2(i−µ)TΣ−1(i−µ)

=
e−1/2(x−µ)

TΣ−1(x−µ)∑∞
i1=0 · · ·

∑∞
in=0 e

−1/2(i−µ)TΣ−1(i−µ)

=
1∑∞

i1=0 · · ·
∑∞
in=0 e

1/2((x−µ)TΣ−1(x−µ)−(i−µ)TΣ−1(i−µ)) (22)

where i = (i1, . . . , in) ∈ Nn
0

A second example can easily be derived by the second discretisation ap-
proach.

Example 3.2. Consider (W1. . . . ,Wn) to be of n-variate Pareto distribution
type II, with parameters σi, α > 0 and µi = 0 for all i = 1, . . . , n for wi > 0 for
all i = 1, . . . , n. The pmf of the discrete analogue random variable (X1, . . . , Xn)
is in accordance with the second method constructed as follows:

p(X1,...,Xn)(x1, . . . , xn) =

n∑
k=0

(−1)n−k+1

(nk)∑
t=0

S(W1,...,Wn)(x + ρk
t )

=

n∑
k=0

(−1)n−k+1

(nk)∑
t=0

(
1 +

∑n
i=1(xi + ρki,t)∑n

i=1 σi

)−α

=

n∑
k=0

(−1)n−k+1

(nk)∑
t=0

(
1 +

∑n
i=1 xi + k∑n
i=1 σi

)−α
= 2n

n∑
k=0

(−1)n−k+1

(
1 +

∑n
i=1 xi + k∑n
i=1 σi

)−α
(23)
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Lastly we close this with an example of the second method in its variation
utilising the CDF rather than the survival function of the continuous parent
random variable.

Example 3.3. Let (W1, . . . ,Wn) be of the modified Clayton’s copula distribu-
tion with parameter α > 0 on the support (w1, dots, wn) ∈ Rn,+. The corre-
sponding CDF F is the following:

F (w1, . . . , wn) =

[
n∑
i=1

exp(−αwi)− n+ 1

]− 1
α

We may then follow the pmf of the discrete analogoue random variable
(X1, . . . , Xn) by the CDF formulation of the second discretisation approach.

p(X1,...,Xn)(x1, . . . , xn) =

n∑
k=0

(−1)n−k
(nk)∑
t=0

F(W1,...,Wn)(x + ρk
t )

=

n∑
k=0

(−1)n−k
(nk)∑
t=0

[
n∑
i=1

exp(−αxi + ρki,t)− n+ 1

]− 1
α

(24)

4 Conclusion

In this note we have extended the original bivariate results of Barbiero to their
multivariate formulation. Starting from the original proofs we were able the
derive the same properties of the discrete analogue for arbitrary dimensions.
We close this paper by providing application examples.
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