Skip to main content
Log in

Retailer’s ordering policies for time-varying deteriorating items with partial backlogging and permissible delay in payments in a two-warehouse environment

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

With the convergence of innovation, technology, and supply chain, the world has been shrinking, and the retail industry is one of the largest spread across the globe in the past few decades. Consumer expectations are on priority for the retailers. Most of the retail sector deals with the items whose usefulness declines with time and reaches the expiration date, resulting in a decrease in sales and eventually diminishing revenues for the retailers. In such cases, effective replenishment decisions and ordering policies may yield a significant increase in revenues. Further, with emerging retail trends, providing trade credit is considered a price reduction tool and an alternative to price discounts. Motivated by this, an inventory model developed and analyzed for items exhibiting time-varying deterioration with partially backlogged shortages and permissible delay in payment in the two-warehouse environment. The primary objective is to obtain the optimal ordering and backlogging policies for the retailer by minimizing the relevant cost. The optimal solution is obtained, solved analytically, and the inventory model validated with the help of numerical illustrations. The sensitivity analysis of the optimal solution with respect to key parameters and the managerial implications are also provided. The model is applicable to perishable items such as baked products, fruits, vegetables, groceries, meat, and seafood, where the deterioration is time-dependent and is perceived by its expiration date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46(5), 658–662.

    Google Scholar 

  • Agrawal, S., Banerjee, S., & Papachristos, S. (2013). Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two-warehouse system. Applied Mathematical Modelling, 37(20), 8912–8929.

    Google Scholar 

  • Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275–284.

    Google Scholar 

  • Banerjee, S., & Agrawal, S. (2008). A two warehouse inventory model for items with three parameter Weibull distribution deterioration, shortages and linear trend in demand. International Transactions in Operational Research, 15(6), 755–775.

    Google Scholar 

  • Cambini, A., & Martein, L. (2009). Convex functions (pp. 1–21). Berlin Heidelberg: Springer.

    Google Scholar 

  • Cárdenas-Barrón, L. E., Shaikh, A. A., Tiwari, S., & Treviño-Garza, G. (2018). An EOQ inventory model with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit. Computers and Industrial Engineering. https://doi.org/10.1016/j.cie.2018.12.004.

    Article  Google Scholar 

  • Chang, C. T., Ouyang, L. Y., Teng, J. T., Lai, K. K., & Cárdenas-Barrón, L. E. (2019). Manufacturer's pricing and lot-sizing decisions for perishable goods under various payment terms by a discounted cash flow analysis. International Journal of Production Economics, 218, 83–95.

    Google Scholar 

  • Chen, S. C., Cárdenas-Barrón, L. E., & Teng, J. T. (2014). Retailer’s economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity. International Journal of Production Economics, 155, 284–291.

    Google Scholar 

  • Chen, S.-C., & Teng, J.-T. (2015). Inventory and credit decisions for time-varying deteriorating items with up-stream and down-stream trade credit fnancing by discounted cash fow analysis. European Journal of Operational Research, 243(2), 566–575.

    Google Scholar 

  • Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5(4), 323–326.

    Google Scholar 

  • Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of Industrial Engineering, 14(5), 238–243.

    Google Scholar 

  • Goswami, A., & Chaudhuri, K. (1991). EOQ model for an inventory with a linear trend in demand and finite rate of replenishment considering shortages. International Journal of Systems Science, 22(1), 181–187.

    Google Scholar 

  • Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(4), 335–338.

    Google Scholar 

  • Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1–16.

    Google Scholar 

  • Hsieh, T. P., Chang, H. J., Dye, C. Y., & Weng, M. W. (2009). Optimal lot size under trade credit financing when demand and deterioration are fluctuating with time. International Journal of Information and Management Sciences, 20(2), 191–204.

    Google Scholar 

  • Jaggi, C. K., Cárdenas-Barrón, L. E., Tiwari, S., & Shafi, A. A. (2017a). Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments. Scientia Iranica. Transaction E, Industrial Engineering, 24(1), 390.

    Google Scholar 

  • Jaggi, C. K., Gupta, M., Kausar, A., & Tiwari, S. (2019). Inventory and credit decisions for deteriorating items with displayed stock dependent demand in two-echelon supply chain using Stackelberg and Nash equilibrium solution. Annals of Operations Research, 274(1–2), 309–329.

    Google Scholar 

  • Jaggi, C. K., Tiwari, S., & Goel, S. K. (2017b). Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Annals of Operations Research, 248(1–2), 253–280.

    Google Scholar 

  • Jaggi, C. K., Tiwari, S., & Gupta, M. (2018). Impact of trade credit on inventory models for Weibull distribution deteriorating items with partial backlogging in two-warehouse environment. International Journal of Logistics Systems and Management, 30(4), 503–520.

    Google Scholar 

  • Jaggi, C. K., Yadavalli, V. S. S., Sharma, A., & Tiwari, S. (2016). A fuzzy EOQ model with allowable shortage under different trade credit terms. Applied Mathematics and Information Sciences, 10(2), 785–805.

    Google Scholar 

  • Kaya, O., & Polat, A. L. (2017). Coordinated pricing and inventory decisions for perishable products. OR Spectrum, 39(2), 589–606.

    Google Scholar 

  • Khakzad, A., & Gholamian, M. R. (2020). The effect of inspection on deterioration rate: An inventory model for deteriorating items with advanced payment. Journal of Cleaner Production, 120117.

  • Khan, M. A. A., Shaikh, A. A., Panda, G. C., Bhunia, A. K., & Konstantaras, I. (2020). Non-instantaneous deterioration effect in ordering decisions for a two-warehouse inventory system under advance payment and backlogging. Annals of Operations Research, 289, 243–275.

    Google Scholar 

  • Li, R., & Teng, J. T. (2018). Pricing and lot-sizing decisions for perishable goods when demand depends on selling price, reference price, product freshness, and displayed stocks. European Journal of Operational Research, 270(3), 1099–1108.

    Google Scholar 

  • Lin, F., Jia, T., Wu, F., & Yang, Z. (2019). Impacts of two-stage deterioration on an integrated inventory model under trade credit and variable capacity utilization. European Journal of Operational Research, 272(1), 219–234.

    Google Scholar 

  • Mishra, U., Tijerina-Aguilera, J., Tiwari, S., & Cárdenas-Barrón, L. E. (2018). Retailer’s joint ordering, pricing, and preservation technology investment policies for a deteriorating item under permissible delay in payments. Mathematical Problems in Engineering. https://doi.org/10.1155/2018/6962417.

    Article  Google Scholar 

  • Pentico, D. W., & Drake, M. J. (2011). A survey of deterministic models for the EOQ and EPQ with partial backordering. European Journal of Operational Research, 214(2), 179–198.

    Google Scholar 

  • Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research Society, 42(1), 27–37.

    Google Scholar 

  • Seifert, D., Seifert, R. W., & Protopappa-Sieke, M. (2013). A review of trade credit literature: Opportunities for research in operations. European Journal of Operational Research, 231(2), 245–256.

    Google Scholar 

  • Shaikh, A. A., Cárdenas-Barrón, L. E., & Tiwari, S. (2020a). Economic production quantity (EPQ) inventory model for a deteriorating item with a two-level trade credit policy and allowable shortages. In Optimization and inventory management (pp. 1–19). Singapore: Springer.

  • Shaikh, A. A., Tiwari, S., & Cárdenas-Barrón, L. E. (2020b). An economic order quantity (EOQ) inventory model for a deteriorating item with interval-valued inventory costs, price-dependent demand, two-level credit policy, and shortages. In Optimization and inventory management (pp. 21–53). Singapore: Springer.

  • Shi, Y., Zhang, Z., Chen, S. C., Cárdenas-Barrón, L. E., & Skouri, K. (2019). Optimal replenishment decisions for perishable products under cash, advance, and credit payments considering carbon tax regulations. International Journal of Production Economics, 107514.

  • Taleizadeh, A. A., Tavassoli, S., & Bhattacharya, A. (2020). Inventory ordering policies for mixed sale of products under inspection policy, multiple prepayment, partial trade credit, payments linked to order quantity and full backordering. Annals of Operations Research, 287(1), 403–437.

    Google Scholar 

  • Tavakoli, S., & Taleizadeh, A. A. (2017). An EOQ model for decaying item with full advanced payment and conditional discount. Annals of Operations Research, 259(1–2), 415–436.

    Google Scholar 

  • Teng, J. T. (2002). On the economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 53(8), 915–918.

    Google Scholar 

  • Teng, J. T., Yang, H. L., & Chern, M. S. (2013). An inventory model for increasing demand under two levels of trade credit linked to order quantity. Applied Mathematical Modelling, 37(14), 7624–7632.

    Google Scholar 

  • Tiwari, S., Cárdenas-Barrón, L. E., Goh, M., & Shaikh, A. A. (2018a). Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. International Journal of Production Economics, 200, 16–36.

    Google Scholar 

  • Tiwari, S., Cárdenas-Barrón, L. E., Khanna, A., & Jaggi, C. K. (2016). Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment. International Journal of Production Economics, 176, 154–169.

    Google Scholar 

  • Tiwari, S., Cárdenas-Barrón, L. E., Shaikh, A. A., & Goh, M. (2018b). Retailer’s optimal ordering policy for deteriorating items under order-size dependent trade credit and complete backlogging. Computers and Industrial Engineering. https://doi.org/10.1016/j.cie.2018.12.006.

    Article  Google Scholar 

  • Tiwari, S., Jaggi, C. K., Bhunia, A. K., Shaikh, A. A., & Goh, M. (2017). Two-warehouse inventory model for non-instantaneous deteriorating items with stock-dependent demand and inflation using particle swarm optimization. Annals of Operations Research, 254, 401–423.

    Google Scholar 

  • Tiwari, S., Jaggi, C. K., Gupta, M., & Cárdenas-Barrón, L. E. (2018c). Optimal pricing and lot-sizing policy for supply chain system with deteriorating items under limited storage capacity. International Journal of Production Economics, 200, 278–290.

    Google Scholar 

  • Wang, W. C., Teng, J. T., & Lou, K. R. (2014). Seller’s optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime. European Journal of Operational Research, 232(2), 315–321.

    Google Scholar 

  • Wu, J., Al-Khateeb, F. B., Teng, J. T., & Cárdenas-Barrón, L. E. (2016). Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash-flow analysis. International Journal of Production Economics, 171, 105–115.

    Google Scholar 

  • Wu, J., Ouyang, L. Y., Cárdenas-Barrón, L. E., & Goyal, S. K. (2014). Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing. European Journal of Operational Research, 237(3), 898–908.

    Google Scholar 

  • Yang, H. L. (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research, 157(2), 344–356.

    Google Scholar 

  • Yang, H. L. (2006). Two-warehouse partial backlogging inventory models for deteriorating items under inflation. International Journal of Production Economics, 103(1), 362–370.

    Google Scholar 

  • Yang, H. L. (2012). Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation. International Journal of Production Economics, 138(1), 107–116.

    Google Scholar 

  • Yang, H. L., & Chang, C. T. (2013). A two-warehouse partial backlogging inventory model for deteriorating items with permissible delay in payment under inflation. Applied Mathematical Modelling, 37(5), 2717–2726.

    Google Scholar 

Download references

Acknowledgements

The research of the second author has been supported by NRF Singapore (Grant NRF-RSS2016-004). The authors are grateful to the editor-in-chief and reviewer for their constructive comments and invaluable contributions to enhance the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of Theorem 1 Let \(g_{1} (T) = A + HC_{rw} + HC_{ow} + BC + LC + PC - IE_{1} + IP_{1}\) and \(h\left( T \right) = T > 0\).

Therefore,

$$ q_{1} (T) = \frac{{g_{1} (T)}}{h(T)} = TC_{1} (t_{r} ,\;T) $$

For the given value of \(t_{r}\), the first order derivative of \(g_{1} (T)\) is obtained as

$$ g_{1}^{^{\prime}} (T) = \left\{ {c_{b} \delta (T - t_{w} ) - c_{o} - c - pI_{e} M} \right\}De^{{ - \delta (T - t_{w} )}} + c_{o} D $$
(36)

A derivative of (36) is further obtained as,

$$ g_{1}^{^{\prime\prime}} (T) = \left\{ {c_{o} + c + pI_{e} M + c_{b} - c_{b} (T - t_{w} )} \right\}D\delta e^{{ - \delta (T - t_{w} )}} $$

This implies, if \(J > 0\), then \(g_{1}^{^{\prime\prime}} (T) > 0\) and hence \(g_{1} (T)\) is non-negative, differentiable and strictly convex.

It has been calculated and verified that \(g_{2}^{^{\prime}} (T)\) and \(g_{3}^{^{\prime}} (T)\) is the same as \(g_{1}^{^{\prime}} (T)\), where

$$ g_{2} (T) = A + HC_{rw} + HC_{ow} + BC + LC + PC - IE_{2} + IP_{2} $$
$$ g_{3} (T) = A + HC_{rw} + HC_{ow} + BC + LC + PC - IE_{3} $$

Thus, if \(J > 0\) then the total cost \(TC(t_{r} ,\;T)\) in Eq. (28) is a strictly pseudo-convex function in T, and there exists a unique optimal solution.

Appendix 2

It is observed that \(\frac{{g_{i} (T)}}{h(T)} = TC_{i} (t_{r} ,\;T),\;\;i = 1,2,3\). Hence given \(t_{r}\), taking the first order derivative of \(TC_{1} (t_{r} ,\;T)\) with respect to T, and setting the result to zero, the necessary and sufficient condition to find \(T^{*}\), is obtained as follows:

$$ \begin{aligned} & \frac{{dTC_{1} (t_{r} ,\;T)}}{dT} = \frac{{g_{1}^{^{\prime}} (T)}}{T} - \frac{{g_{1} (T)}}{{T^{2} }} = 0 \\ & \quad \Rightarrow g_{1}^{^{\prime}} (T)T - g_{1} (T) = 0 \\ \end{aligned} $$

Thus from Eqs. (29) and (36), if \(J > 0\) then the necessary and sufficient condition for \(T^{*}\) is

$$ \begin{aligned} & \left[ {\left\{ {c_{b} \delta \left( {T - t_{w} } \right) - c_{o} - c - pI_{e} M} \right\}De^{{ - \delta \left( {T - t_{w} } \right)}} + c_{o} D} \right]T \\ & \quad = A + c\left\{ {W + D\int\limits_{0}^{{t_{r} }} {e^{{Z_{r} \left( u \right)}} du} + \frac{D}{\delta }\left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} + FD\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } \int\limits_{t}^{{t_{r} }} {e^{{Z_{r} \left( u \right)}} du} dt \\ & \quad \quad + H\left\{ {W\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{0} \left( t \right)}} dt} + D\int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} \int\limits_{t}^{{t_{w} }} {e^{{Z_{0} \left( u \right)}} du} dt} } \right\} + \frac{{c_{b} D}}{{\delta^{2} }}\left\{ {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} \left\{ {1 + \delta \left( {T - t_{w} } \right)} \right\}} \right\}\quad \quad 0 < M \le t_{r} \\ & \quad \quad + \frac{{c_{o} D}}{\delta }\left\{ {\delta \left( {T - t_{w} } \right) - \left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} - \left\{ {\frac{1}{2}pI_{e} DM^{2} + pI_{e} \frac{D}{\delta }M\left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} \\ & \quad \quad + cI_{p} \left\{ {\int\limits_{M}^{{t_{r} }} {De^{{ - Z_{r} \left( t \right)}} \int\limits_{t}^{{t_{r} }} {e^{{Z_{r} \left( u \right)}} du} dt} + \int\limits_{M}^{{t_{r} }} {We^{{ - Z_{0} \left( t \right)}} dt} + \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} D\int\limits_{t}^{{t_{w} }} {e^{{Z_{0} \left( u \right)}} du} dt} } \right\} \\ \end{aligned} $$

Similarly, the necessary and sufficient conditions for \(TC_{2} \left( {t_{r} ,T} \right)\), \(TC_{3} \left( {t_{r} ,T} \right)\) with respect to T are obtained as follows:

$$ \begin{aligned} & \left[ {\left\{ {c_{b} \delta \left( {T - t_{w} } \right) - c_{o} - c - pI_{e} M} \right\}De^{{ - \delta \left( {T - t_{w} } \right)}} + c_{o} D} \right]T \\ & \quad = A + c\left\{ {W + D\int\limits_{0}^{{t_{r} }} {e^{{Z_{r} \left( u \right)}} du} + \frac{D}{\delta }\left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} + FD\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } \int\limits_{t}^{{t_{r} }} {e^{{Z_{r} \left( u \right)}} du} dt \\ & \quad \quad + H\left\{ {W\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{0} \left( t \right)}} dt} + D\int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} \int\limits_{t}^{{t_{w} }} {e^{{Z_{0} \left( u \right)}} du} dt} } \right\} \\ & \quad \quad + \frac{{c_{b} D}}{{\delta^{2} }}\left\{ {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} \left\{ {1 + \delta \left( {T - t_{w} } \right)} \right\}} \right\} + \frac{{c_{o} D}}{\delta }\left\{ {\delta \left( {T - t_{w} } \right) - \left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} \\ & \quad \quad - \left\{ {\frac{1}{2}pI_{e} DM^{2} + pI_{e} \frac{D}{\delta }M\left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} + cI_{p} D\int\limits_{M}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} \int\limits_{t}^{{t_{w} }} {e^{{Z_{0} \left( u \right)}} du} dt} \\ & \quad \quad t_{r} < M \le t_{w} \\ \end{aligned} $$
$$ \begin{aligned} & \left[ {\left\{ {c_{b} \delta \left( {T - t_{w} } \right) - c_{o} - c - pI_{e} M} \right\}De^{{ - \delta \left( {T - t_{w} } \right)}} + c_{o} D} \right]T \\ & \quad = A + c\left\{ {W + D\int\limits_{0}^{{t_{r} }} {e^{{Z_{r} \left( u \right)}} du} + \frac{D}{\delta }\left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} + FD\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } \int\limits_{t}^{{t_{r} }} {e^{{Z_{r} \left( u \right)}} du} dt \\ & \quad \quad + H\left\{ {W\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{0} \left( t \right)}} dt} + D\int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} \int\limits_{t}^{{t_{w} }} {e^{{Z_{0} \left( u \right)}} du} dt} } \right\}\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \begin{array}{*{20}c} {t_{w} < M \le T} \\ {{\text{or }}T < M} \\ \end{array} \\ & \quad \quad + \frac{{c_{b} D}}{{\delta^{2} }}\left\{ {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} \left\{ {1 + \delta \left( {T - t_{w} } \right)} \right\}} \right\} + \frac{{c_{o} D}}{\delta }\left\{ {\delta \left( {T - t_{w} } \right) - \left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} \\ & \quad \quad - \left\{ {\frac{1}{2}pI_{e} Dt_{w}^{2} + pI_{e} D\left( {M - t_{w} } \right)t_{w} + pI_{e} \frac{D}{\delta }M\left( {1 - e^{{ - \delta \left( {T - t_{w} } \right)}} } \right)} \right\} \\ \end{aligned} $$

Appendix 3

Proof of Theorem 2 For any given T, the first and second order derivatives of \(TC_{1} \left( {t_{r} ,T} \right)\) with respect to \(t_{r}\) are obtained as:

$$ \frac{{dTC_{1} \left( {t_{r} ,T} \right)}}{dt} = \frac{1}{T}\left[ \begin{gathered} FDe^{{Z_{r} \left( {t_{r} } \right)}} \int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt + cDe^{{Z_{r} \left( {t_{r} } \right)}} + cI_{p} De^{{Z_{r} \left( {t_{r} } \right)}} \int\limits_{M}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt \hfill \\ + \left\{ \begin{gathered} \left( {H + cI_{p} } \right)De^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} - c_{b} De^{{ - \delta \left( {T - t_{w} } \right)}} \left( {T - t_{w} } \right) \hfill \\ + c_{o} D\left( {e^{{ - \delta \left( {T - t_{w} } \right)}} - 1} \right) - cDe^{{ - \delta \left( {T - t_{w} } \right)}} + pI_{e} DMe^{{ - \delta \left( {T - t_{w} } \right)}} \hfill \\ \end{gathered} \right\}\frac{{dt_{w} }}{{dt_{r} }} \hfill \\ \end{gathered} \right];\quad 0 < M \le t_{r} $$
$$ \frac{{d^{2} TC_{1} \left( {t_{r} ,T} \right)}}{{dt^{2} }} = \frac{1}{T}\left[ \begin{gathered} FD\left\{ {e^{{Z_{r} \left( {t_{r} } \right)}} \theta_{r} \left( {t_{r} } \right)\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt + 1} \right\} + cDe^{{Z_{r} \left( {t_{r} } \right)}} \theta_{r} \left( {t_{r} } \right) + cI_{p} De^{{Z_{r} \left( {t_{r} } \right)}} \theta_{r} \left( {t_{r} } \right)\int\limits_{M}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt \hfill \\ + \left\{ {HDe^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + \left( {c_{o} - c_{b} \left( {T - t_{w} } \right) - c} \right)De^{{ - \delta \left( {T - t_{w} } \right)}} - c_{o} D} \right\}\frac{{d^{2} t_{w} }}{{dt_{r}^{2} }} \hfill \\ + \left\{ {HDe^{{Z_{0} \left( {t_{w} } \right)}} \theta_{o} \left( {t_{w} } \right)\int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + \left( {c_{o} - c_{b} \left( {T - t_{w} } \right) - c} \right)D\delta e^{{ - \delta \left( {T - t_{w} } \right)}} + c_{b} De^{{ - \delta \left( {T - t_{w} } \right)}} } \right\}\left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} \hfill \\ cI_{p} D\left\{ {\left( {e^{{Z_{0} \left( {t_{w} } \right)}} \theta_{o} \left( {t_{w} } \right)\int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + 1} \right)\left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} - 1 + e^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} \frac{{d^{2} t_{w} }}{{dt_{r}^{2} }}} \right\} \hfill \\ + pI_{e} DMe^{{ - \delta \left( {T - t_{w} } \right)}} \left\{ {\delta \left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} + \frac{{d^{2} t_{w} }}{{dt_{r}^{2} }}} \right\}^{2} \hfill \\ \end{gathered} \right];\quad 0 < M \le t_{r} $$
$$ \frac{{dTC_{2} \left( {t_{r} ,T} \right)}}{dt} = \frac{1}{T}\left[ \begin{gathered} FDe^{{Z_{r} \left( {t_{r} } \right)}} \int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt + cDe^{{Z_{r} \left( {t_{r} } \right)}} + \hfill \\ + \left\{ \begin{gathered} HDe^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} - c_{b} De^{{ - \delta \left( {T - t_{w} } \right)}} \left( {T - t_{w} } \right) \hfill \\ + c_{o} D\left( {e^{{ - \delta \left( {T - t_{w} } \right)}} - 1} \right) - cDe^{{ - \delta \left( {T - t_{w} } \right)}} + pI_{e} DMe^{{ - \delta \left( {T - t_{w} } \right)}} \hfill \\ + cI_{p} De^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{M}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} \hfill \\ \end{gathered} \right\}\frac{{dt_{w} }}{{dt_{r} }} \hfill \\ \end{gathered} \right];\quad t_{r} < M \le t_{w} $$
$$ \frac{{d^{2} TC_{2} \left( {t_{r} ,T} \right)}}{{dt^{2} }} = \frac{1}{T}\left[ \begin{gathered} FD\left\{ {e^{{Z_{r} \left( {t_{r} } \right)}} \theta_{r} \left( {t_{r} } \right)\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt + 1} \right\} + cDe^{{Z_{r} \left( {t_{r} } \right)}} \theta_{r} \left( {t_{r} } \right) \hfill \\ + \left\{ {HDe^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + \left( {c_{o} - c_{b} \left( {T - t_{w} } \right) - c} \right)De^{{ - \delta \left( {T - t_{w} } \right)}} - c_{o} D} \right\}\frac{{d^{2} t_{w} }}{{dt_{r}^{2} }} \hfill \\ + \left\{ {HDe^{{Z_{0} \left( {t_{w} } \right)}} \theta_{o} \left( {t_{w} } \right)\int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + D\delta e^{{ - \delta \left( {T - t_{w} } \right)}} \left( {c_{o} - c_{b} \left( {T - t_{w} } \right) - c} \right) + c_{b} De^{{ - \delta \left( {T - t_{w} } \right)}} } \right\}\left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} \hfill \\ cI_{p} D\left\{ {\left( {e^{{Z_{0} \left( {t_{w} } \right)}} \theta_{o} \left( {t_{w} } \right)\int\limits_{M}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + 1} \right)\left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} + e^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{M}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} \frac{{d^{2} t_{w} }}{{dt_{r}^{2} }}} \right\} \hfill \\ + pI_{e} DMe^{{ - \delta \left( {T - t_{w} } \right)}} \left\{ {\delta \left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} + \frac{{d^{2} t_{w} }}{{dt_{r}^{2} }}} \right\}^{2} \hfill \\ \end{gathered} \right]; \, \quad \, t_{r} < M \le t_{w} $$
$$ \frac{{dTC_{3} \left( {t_{r} ,T} \right)}}{dt} = \frac{1}{T}\left[ \begin{gathered} FDe^{{Z_{r} \left( {t_{r} } \right)}} \int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt + cDe^{{Z_{r} \left( {t_{r} } \right)}} + \hfill \\ + \left\{ \begin{gathered} HDe^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} - c_{b} De^{{ - \delta \left( {T - t_{w} } \right)}} \left( {T - t_{w} } \right) \hfill \\ + c_{o} D\left( {e^{{ - \delta \left( {T - t_{w} } \right)}} - 1} \right) - cDe^{{ - \delta \left( {T - t_{w} } \right)}} \hfill \\ + pI_{e} D\left( {M - t_{w} - Me^{{ - \delta \left( {T - t_{w} } \right)}} } \right) \hfill \\ \end{gathered} \right\}\frac{{dt_{w} }}{{dt_{r} }} \hfill \\ \end{gathered} \right]; \, \quad \, t_{w} < M \le T\;{\text{ or}}\; \, T < M $$
$$ \frac{{d^{2} TC_{3} \left( {t_{r} ,T} \right)}}{{dt^{2} }} = \frac{1}{T}\left[ \begin{gathered} FD\left\{ {e^{{Z_{r} \left( {t_{r} } \right)}} \theta_{r} \left( {t_{r} } \right)\int\limits_{0}^{{t_{r} }} {e^{{ - Z_{r} \left( t \right)}} } dt + 1} \right\} + cDe^{{Z_{r} \left( {t_{r} } \right)}} \theta_{r} \left( {t_{r} } \right) \hfill \\ + \left\{ {HDe^{{Z_{0} \left( {t_{w} } \right)}} \int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + \left( {c_{o} - c_{b} \left( {T - t_{w} } \right) - c} \right)De^{{ - \delta \left( {T - t_{w} } \right)}} - c_{o} D} \right\}\frac{{d^{2} t_{w} }}{{dt_{r}^{2} }} \hfill \\ + \left\{ {HDe^{{Z_{0} \left( {t_{w} } \right)}} \theta_{o} \left( {t_{w} } \right)\int\limits_{{t_{r} }}^{{t_{w} }} {e^{{ - Z_{0} \left( t \right)}} dt} + D\delta e^{{ - \delta \left( {T - t_{w} } \right)}} \left( {c_{o} - c_{b} \left( {T - t_{w} } \right) - c} \right) + c_{b} De^{{ - \delta \left( {T - t_{w} } \right)}} } \right\}\left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} \hfill \\ + pI_{e} D\left\{ {\left( {M\delta e^{{ - \delta \left( {T - t_{w} } \right)}} + 1} \right)\left( {\frac{{dt_{w} }}{{dt_{r} }}} \right)^{2} + \left( {M\left( {e^{{ - \delta \left( {T - t_{w} } \right)}} - 1} \right) + t_{w} } \right)\frac{{d^{2} t_{w} }}{{dt_{r}^{2} }}} \right\} \hfill \\ \end{gathered} \right];\quad t_{w} < M \le T \, \;{\text{or }}\;T < M $$

Let \((c_{o} - c_{b} (T - t_{w} ) - c) = L\), then for any given T, if \(L > 0\), then \(TC_{1} (t_{r} ,\;T)\), \(TC_{2} (t_{r} ,\;T)\) and \(TC_{3} (t_{r} ,\;T)\) given in Eqs. (29), (30) and (31) respectively are a strictly convex function of \(t_{r}\). Consequently, there exists a unique optimal solution for a total cost \(TC(t_{r} ,\;T)\) in Eq. (28).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Tiwari, S. & Jaggi, C.K. Retailer’s ordering policies for time-varying deteriorating items with partial backlogging and permissible delay in payments in a two-warehouse environment. Ann Oper Res 295, 139–161 (2020). https://doi.org/10.1007/s10479-020-03673-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03673-x

Keywords

Navigation