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Abstract: This paper aims to analyze the green efficiency performance of the 

logistics industry in China’s 30 provinces from 2008 to 2017. We first evaluate the 

green efficiency of the logistics industry through the non-directional distance function 

(NDDF) method. Then, we use the functional clustering method funHDDC, which is 

one of the popular machine learning methods, to divide 30 provinces into 4 clusters 

and analyze the similarities and differences in green efficiency performance patterns 

among different groups. Further, we explore the driving factors of dynamic changes in 

green efficiency through the decomposition method. The main conclusions of this 

paper are as follows: (1) In general, the level of green efficiency is closely related to 

the geographical location. From the clustering results, we can find that most of the 

eastern regions belong to the cluster with higher green efficiency, while most of the 

western regions belong to the cluster with lower green efficiency. However, the green 

efficiency performance in several regions with high economic levels, such as Beijing 

and Shanghai, is not satisfactory. (2) Based on the analysis of decomposition results, 

the innovation effect of China’s logistics industry is the most obvious, but the 

efficiency change still needs to be improved, and technical leadership should be 

strengthened. Based on these conclusions, we further propose some policy 

recommendations for the green development of the logistics industry in China. 

Keywords: logistics industry; green efficiency; non-directional distance function; 

functional clustering; machine learning 
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1. Introduction

1.1 Background 

The logistics, which is a pillar industry, plays a pivotal role in the social 

production, but the huge energy consumption and environmental pollution it brings 

are also prominent (Oberhofer and Dieplinger 2013; Dai and Gao 2016; 

Sureeyatanapas et al. 2018). Specifically, according to the statistics of the 

International Energy Agency (IEA), the energy consumption of the transportation 

sector, which is an important part of the logistics, is 2808.15 Mtoe in 2017 and 

accounts for 28.90% of global energy consumption. And the CO2 emissions of the 

transportation sector reach 8040 million tones in 2017, accounting for 24.48% of the 

world’s total. As for China, the huge demand for logistics services has made the 

energy consumption and environmental pollution problems of the logistics industry 

increasingly serious. In 2017, the energy consumption of the transportation sector is 

313 Mtoe in China, and the CO2 emissions of the transportation sector are 889 million 

tones. Besides, the packaging in the Chinese logistics industry also leads to a lot of 

resource waste. For example, Double 11 shopping carnival of China generated 25 

billion US dollars sales in 2017, but at the same time, it also brought 1.5 billion 

packaging parcels most of which were not recycle (Kuo et al. 2019). 

With increasing attention to the energy-saving and environmental protection, 

many emerging conceptions in the logistics have been proposed to seek sustainable 

development patterns, such as reverse logistics (Zarbakhshnia et al. 2019; Chen et al. 

2019; Suzanne et al. 2020; Dev et al. 2020), green coal logistics (Li et al. 2020), green 

maritime logistics (Davarzani et al. 2016), and green supply chain (Dekker et al. 2012; 

Khor and Udin 2013; Ameknassi et al. 2016; Ahmed et al. 2019). Green logistics aims 

to realize the economic profits as well as environmental benefits for the whole 

operation and management in the logistics industry (Sbihi and Eglese 2010; Chhabra 

et al. 2017). To better achieve the green and sustainable development of the logistics 

industry, the consumption of resources and the impact on the environment should be 

reduced as much as possible. Therefore, it is of great significance to analyze the green 

efficiency performance of the logistics industry. 

1.2 Contribution 

In this paper, we aim to comprehensively analyze the green efficiency 

performance of China’s logistics industry. Therefore, three questions are explored: (1) 
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What is the specific green efficiency performance of the logistics industry in different 

provinces of China? (2) What are the differences in the green efficiency development 

patterns of the logistics industry in different provinces? (3) What are the driving 

factors that affect the dynamic changes in the green efficiency of the logistics industry? 

Based on the data from the logistics industry of 30 provinces in China from 2008 to 

2017, we have done the following works for our analysis. For the first question, we 

calculate the green efficiency scores of the logistics industry in different regions based 

on the non-directional distance function (NDDF) method. For the second question, we 

use the functional clustering method (funHDDC) to divide the 30 provinces into 4 

clusters and study the similarities of the green efficiency development patterns of each 

cluster and the differences among different groups. For the third question, we further 

obtain three different indexes through decomposing the dynamic changes in green 

efficiency. And we analyze the influencing factors of changes in green efficiency of 

the logistics industry from three perspectives: catch-up effect, innovation effect, and 

technology leadership. 

1.2.1 Contribution for research 

Firstly, this paper measures the green efficiency performance of the logistics 

industry in different provinces of China through specific values, which can reflect the 

green efficiency of China’s logistics industry more clearly. Secondly, this paper 

applies cluster analysis to the green efficiency of the logistics industry, thereby more 

objectively summarizing the different development patterns of the green efficiency in 

the logistics industry. Thirdly, this paper studies the influencing factors of the 

dynamic changes in green efficiency through the decomposition method, which can 

better show the characteristics of green efficiency changes. 

1.2.2 Contribution for practice 

Based on the analysis of results in this paper, we put forward relevant policy 

recommendations from three aspects. The first is how to further improve the green 

efficiency performance of logistics in the regions with high economic levels, such as 

Beijing and Shanghai. The second is how to promote the coordinated development of 

the logistics industry in adjacent areas. The third is how to improve the green 

efficiency of the logistics industry through technological innovation. 

The remainder of this paper is organized as follows. Section 2 is about the 

literature review. In Section 3, we explain the methods and data used in this paper. 
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Section 4 and 5 focus on specific results. In Section 6, we further discuss the related 

results. Section 7 is about conclusion and policy implications. 

2. Literature review

2.1 Green development of the logistics 

The emphasis of green development is the coordinated development of economy, 

environment, and resources (Lin and Zhu 2019a; Yi and Liu 2015). And it has 

received the concerns of many studies (Yi and Liu 2015; Bagheri et al. 2018; Jin et al. 

2019; Lin and Zhu 2019b; Zhu et al. 2020). Among them, the green development of 

the industry is the hot topic that many researchers pay attention to (Berry et al. 2013; 

Yuan and Xiang 2018; Shen et al. 2018; Jiahuey et al. 2019; Hou et al. 2019; Li et al. 

2019). Due to the outstanding problems of energy consumption and environmental 

pollution in the logistics, the green development of the logistics industry has received 

more and more attention. Some scholars have carried out related research on the 

overall green development of the logistics industry. For example, Yang et al. (2019) 

investigates the carbon emissions performance of the logistics in sixteen Chinese 

cities and finds that the economic development has a positive effect on improving 

carbon emissions performance in the logistics. Similarly, Aldakhil et al. (2018) 

analyzes the green development performance of the logistics industry in the BRICS 

countries, the findings indicate that there exists a positive correlation between the 

green logistics index and national per capita income. Based on the LMDI 

decomposition method, Dai and Gao (2016) calculates the energy consumption of the 

logistics industry in China and further analyzes the changes in the energy 

consumption structure as well as the ways to improve the energy efficiency. Through 

the data envelopment analysis, Rashidi and Cullinane (2019) evaluates the sustainable 

development performance of the logistics industry in OECD countries and further 

shows the comparative analysis results of this efficiency score and the Logistics 

Performance Index (LPI). 

Some scholars are mainly concerned about the sustainable development of 

transportation. Yao et al. (2019) discusses the role of collaboration in city logistics 

and the simulation results verify that collaboration between the two carriers can 

increase profits while reducing carbon emissions during transportation. Similarly, the 

research of Demir et al. (2019) shows that the economic and environmental benefits 
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of cargo transportation can achieve coordinated development. Based on the 

mathematical programming model constructed, Hong et al. (2019) analyzes the 

problem of transportation costs minimization and takes into account the carbon 

emissions as well as PM2.5. Goswami et al. (2020) finds that the environmental 

performance of freight transport can be improved by effective transport plans and 

distribution network strategy. Garza-Reyes et al. (2016) proposes a new methodology 

to improve the efficiency and environmental benefits in the transport and logistics 

sector. What’s more, the last mile logistics is also one of the key points. Melkonyan et 

al. (2020) proposes three new distribution channel options and explores the 

sustainable development of the last mile logistics in food transportation. Ji et al. (2019) 

uses the integer programming model and the surrogate model to optimize the 

assignment problems of express cabinets and tries to reduce the energy consumption 

and costs of the last mile logistics in the cities. 

Reverse logistics plays an important role in promoting the development of a 

circular economy. Based on the evolutionary game model and different reverse 

logistics strategies, Gu et al. (2019) analyzes the role of cooperation between firms in 

the energy-intensive industries on the improvement of environmental performance. In 

the context of carbon cap-and-trade emissions, Zhang et al. (2018) analyzes the 

effects of carbon policies on carbon emissions reduction in reverse logistics. Some 

other aspects have also been discussed by the researchers. For example, Graham et al. 

(2018) studies the positive impacts of downstream environmental logistics practices 

on both the environment and profits of firms, and the positive effects will increase 

when the firms cooperate with customers to solve environmental issues. Focusing on 

the inventory control systems, Tang et al. (2015) evaluates the potential of CO2 

emissions reduction and the influences on total cost in logistics by reducing shipment 

frequency. 

2.2 Green efficiency evaluation 

The data envelopment analysis (DEA) is a powerful methodology to estimate 

environmental and energy efficiency (Lin and Du 2015) and has been widely adopted 

in prior studies to measure green development performance. As a kind of 

nonparametric methods, the DEA method usually adopts the linear programming 

models to estimate the best-performance frontiers, and the distance from the frontiers 

is recognized as the inefficiency (Lin and Zhu 2019a). The conventional DEA 
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methods usually base on the Shephard distance function with an unreasonable 

assumption that the input and outputs are changed in the same proportion, which leads 

to certain limitations (Zhang and Choi 2014). The directional distance function (DDF) 

method proposed by Chung et al. (1997) can solve this issue properly. However, the 

DDF method assumes that the inputs and outputs change proportionally. Specifically, 

it assumes that the reduction in inputs and undesirable outputs, as well as the growth 

of the desirable outputs, should change at the same rate. Therefore, the DDF method 

may underestimate the efficiency. Different from the DDF method, the NDDF method 

proposed by Zhou et al. (2012) has a relaxed assumption that the input and output 

factors can have disproportional adjustments. Therefore, the NDDF method exhibits 

higher discriminating power (Lin and Du 2015). In this paper, we adopt the NDDF 

method to evaluate the green development efficiency of the logistics industry. 

2.3 Clustering analysis 

Clustering is a well-known unsupervised machine learning method that can group 

a large number of observations into several clusters. The features of different clusters 

have discrepancies, while the individuals in each subset are similar as much as 

possible. Clustering analysis can be applied in many fields such as biomedical, 

marketing, behavioral science, and social sciences (Marinakis et al. 2011; Rajabi et al. 

2020). So far, many clustering methods have been proposed due to different merits, 

such as K-means, hierarchical classification, and model-based clustering method 

(Hartigan and Wong 1979; Celeux and Govaert 1995; Jacques and Preda 2014). In 

this paper, we try to identify the heterogeneity and similarity of green efficiency 

patterns of the logistics industry among different Chinese provinces with the 

clustering method. The clustering analysis in this paper is conducted with a recently 

popular method, namely the functional high dimensional data clustering (funHDDC) 

proposed by Bouveyron and Jacques (2011). The funHDDC method, which is based 

on the model-based clustering, can cluster the time series data (or more generally 

functional data) in group-specific subspaces of low dimensionality. The comparative 

results in the research of Bouveyron and Jacques (2011) show that the funHDDC 

method performs better than the functional clustering method fclust proposed by 

James and Sugar (2003), and appears to be more stable than the two-step clustering 

methods such as HDDC (Bouveyron et al. 2007) and MixtPPCA (Tipping and Bishop 

1999). The funHDDC method has already been applied in some previous studies. For 
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example, to forecast electricity demand accurately, Martínez-Álvarez et al. (2019) 

adopts the funHDDC method to find the patterns of the historical data, and then 

predict the future electricity demand based on the assumption of pattern sequence 

similarity. Based on the funHDDC method, Leroy et al. (2018) focuses on the 

improvement patterns of promising young swimmers, and the results show that the 

fastest progress of young swimmers usually occurs before the age of 16. And 

Bouveyron et al. (2015) tries to figure out the operating patterns in the bike-sharing 

systems based on several functional clustering methods such as funFEM, fclust, and 

funHDDC. 

2.4 Innovation of this study 

Evaluating the changes in the green efficiency of the logistics industry is crucial, 

and most of the literature does not discuss this topic from the aspect of heterogeneity 

and similarity of green efficiency patterns in different regions. Therefore, this study 

attempts to fill the literature gap. Specifically, based on the NDDF method, we first 

evaluate the green efficiency performance in the logistics industry of different 

Chinese provinces, then we adopt the functional clustering method funHDDC to 

reveal the regional heterogeneity and similarity of the green efficiency patterns among 

different provinces. We further analyze the driving factors of dynamic changes in 

green efficiency of the logistics industry. 

3. Methods and data

3.1 Non-directional distance function 

Suppose that in the production process, each province is regarded as a 

Decision-Making Unit (DMU). The provinces use the inputs include capital (K), labor 

(L) and energy (E) to produce desirable output (Y) and undesirable output CO2

emissions (C). Thus, the production technology can be specified as: 

𝑇 = {(𝐾, 𝐿, 𝐸, 𝑌, 𝐶): 𝐾, 𝐿, 𝐸 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑌 𝑎𝑛𝑑 𝐶} 

𝑇 =

{
  
 

  
 (𝐾, 𝐿, 𝐸, 𝑌, 𝐶): ∑∑𝜏𝑖𝑡𝐿𝑖𝑡

𝑇

𝑡=1

≤ 𝐿

𝑁

𝑖=1

,∑∑𝜏𝑖𝑡𝐾𝑖𝑡

𝑇

𝑡=1

≤ 𝐾

𝑁

𝑖=1

,

∑∑𝜏𝑖𝑡𝐸𝑖𝑡

𝑇

𝑡=1

≤ 𝐸

𝑁

𝑖=1

,∑∑𝜏𝑖𝑡𝑌𝑖𝑡

𝑇

𝑡=1

≥ 𝑌

𝑁

𝑖=1

,∑∑𝜏𝑖𝑡𝐶𝑖𝑡

𝑇

𝑡=1

= 𝐶.

𝑁

𝑖=1

𝜏𝑖𝑡 ≥ 0;  𝑖 = 1, 2, … ,𝑁;   𝑡 = 1, 2, … , 𝑇. }
  
 

  
 

 (1) 

T is assumed as a close and bounded technology set in the production theory, 
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which means that only finite outputs can be generated by finite inputs. Besides, the 

following two standard axioms are also assumed to be satisfied: (1) Inputs and 

desirable outputs supposed to be strongly or freely disposable; (2) There exists the 

possibility of inactivity. Furthermore, the weak-disposability and null-jointness 

assumptions proposed by Färe et al. (1989) need to be imposed. To be specific, the 

weak-disposability assumption implies that the reduction in undesirable outputs will 

lead to the opportunity cost calculated by the proportional decrease in desirable 

outputs. That is to say, for any 𝜂 ∈ [0, 1] , if (𝐾, 𝐿, 𝐸, 𝑌, 𝐶) ∈ 𝑇 , then 

(𝐾, 𝐿, 𝐸, 𝜂𝑌, 𝜂𝐶) ∈ 𝑇. The null-jointness assumption implies that some undesirable 

outputs will be generated during the process of producing some desirable outputs. 

That is, if 𝐶 = 0, and (𝐾, 𝐿, 𝐸, 𝑌, 𝐶) ∈ 𝑇, then 𝑌 = 0. Following Zhou et al. (2012), 

Lin and Du (2015), and Lin and Zhu (2019a), the NDDF can be defined as:  

𝑁𝐷⃗⃗⃗⃗⃗⃗ (𝐾, 𝐿, 𝐸, 𝑌, 𝐶; 𝑔) = 𝑠𝑢𝑝{𝑤𝑇𝛽: [(𝐾, 𝐿, 𝐸, 𝑌, 𝐶) + 𝑑𝑖𝑎𝑔(𝛽) ∙ 𝑔] ∈ 𝑇}              (2)  

The slack vector  𝛽 = (𝛽𝐾, 𝛽𝐿 , 𝛽𝐸 , 𝛽𝑌, 𝛽𝐶  )
𝑇 ≥ 0 measures the individual 

inefficiency for inputs and outputs. 𝑑𝑖𝑎𝑔 is the diagonal matrix. The normalized 

weight vector  𝑤 = (𝑤𝐾, 𝑤𝐿 , 𝑤𝐸 , 𝑤𝑌, 𝑤𝐶  )
𝑇is assigned to input and output variables 

respectively. The directional vector 𝑔 = (𝑔𝐾, 𝑔𝐿 , 𝑔𝐸 , 𝑔𝑌, 𝑔𝐶  )
𝑇determines the scaled 

directions for the input and output variables. Therefore, Eq. (2) can be specified as the 

total-factors NDDF function: 

𝑁𝐷⃗⃗⃗⃗⃗⃗ 𝑇(𝐾, 𝐿, 𝐸, 𝑌, 𝐶; 𝑔) = max𝑤𝑘𝛽𝑘 + 𝑤𝐿𝛽𝐿 + 𝑤𝐸𝛽𝐸 + 𝑤𝑌𝛽𝑌 +𝑤𝐶𝛽𝐶   

          s.t. ∑ 𝜏𝑖
𝑁
𝑖=1 𝐾𝑖 ≤ 𝐾 − 𝛽𝐾𝑔𝐾 

             ∑ 𝜏𝑖
𝑁
𝑖=1 𝐿𝑖 ≤ 𝐿 − 𝛽𝐿𝑔𝐿 

             ∑ 𝜏𝑖
𝑁
𝑖=1 𝐸𝑖 ≤ 𝐸 − 𝛽𝐸𝑔𝐸 

             ∑ 𝜏𝑖
𝑁
𝑖=1 𝑌𝑖 ≥ 𝑌 + 𝛽𝑌𝑔𝑌 

             ∑ 𝜏𝑖
𝑁
𝑖=1 𝐶𝑖 = 𝐶 − 𝛽𝐶𝑔𝐶 

             𝜏𝑖𝑡 ≥ 0;  𝑖 = 1, 2, … ,𝑁. 

𝛽𝐾, 𝛽𝐿 , 𝛽𝐸 , 𝛽𝑌, 𝛽𝐶 ≥ 0                               (3) 

The vector w and g can be set differently according to requirements. To calculate 

the total-factor unified efficiency (TFUE) of the logistics industry, we assume an 

equal weight to inputs, desirable outputs, and undesirable outputs, respectively. Thus, 

the weight vector is defined as 𝑤 = (
1

9
,
1

9
,
1

9
,
1

3
,
1

3
 )
𝑇

. Besides, to decrease inputs and 

undesirable output as well as increase desirable output simultaneously, we define the 
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directional vector as 𝑔 = (−𝐾,−𝐿,−𝐸, 𝑌,−𝐶 )𝑇. Then the TFUE can be formulated 

as: 

𝑇𝐹𝑈𝐸 =

1
4
[(1 − 𝛽𝐾

∗ ) + (1 − 𝛽𝐿
∗) + (1 − 𝛽𝐸

∗) + (1 − 𝛽𝐶
∗)]

1 + 𝛽𝑌
∗                             (4) 

Using global environmental DEA to optimize Eq. (3) can obtain the optimal 

solutions 𝛽∗ = (𝛽𝐾
∗ , 𝛽𝐿

∗, 𝛽𝐸
∗ , 𝛽𝑌

∗ , 𝛽𝐶
∗)𝑇 . The TFUE considers all the changes in 

production efficiency, energy utilization and environmental improvement. Therefore, 

it is a good indicator to reflect the green performance of the logistics industry (Lin 

and Zhu 2019b). The TFUE lies between zero and unity and a higher TFUE 

corresponds to a better performance in the logistics industry. 

3.2 Functional clustering approach 

In this paper, we try to make clustering analysis on different Chinese provinces 

based on the time series of efficiency scores in the logistics industry. The clustering 

approach funHDDC proposed by Bouveyron and Jacques (2011) can group functional 

data into different clusters based on the model-based clustering method. By 

employing this approach, the discrete observations can be expanded by the basis 

functions, and the mixture of Gaussian distribution assumption can be applied to the 

associated coefficient vectors to get the final clustering results. 

Step 1: Basis expansion. 

Suppose that the observed curves {𝑥1, … , 𝑥𝑛}  belong to 𝐿2[0, 𝑇] , and the 

functional forms of them are difficult to know. To construct the functional forms 

based on the discrete observations, the observed curves are usually expanded by some 

basis functions under the assumption that they belong to finite-dimensional space: 

𝑋(𝑡) = ∑ 𝛾𝑗(𝑋)𝜓𝑗(𝑡)
𝑝
𝑗=1                        (5) 

Where, 𝑥𝑖𝑗 = 𝑥𝑖(𝑡𝑖𝑗)  is the finite discrete observation on original curves. 

{𝜓1, … , 𝜓𝑗 , … , 𝜓𝑝}  is a basis of functions and {𝛾1, … , 𝛾𝑗 , … , 𝛾𝑝}  are random 

coefficient vectors. 

Step 2: Coefficient vectors modeling. 

Coefficient vectors are modeling by a latent mixture model. Suppose that a set of 

𝑛𝑘 observed curves are combined into the 𝑘th cluster, and the coefficient vectors 

{𝛾1, … , 𝛾𝑛𝑘} are independent realizations of vector Γ. Besides, the actual stochastic 

process related to the 𝑘th cluster is reflected on the low-dimensional functional latent 
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subspace Ε𝑘[0, 𝑇] of 𝐿2[0, 𝑇], which has 𝑑𝑘 dimensions. Let Ε𝑘[0, 𝑇] be spanned 

by the first 𝑑𝑘 elements of the 𝑘th basis of functions {𝜑𝑘1, … , 𝜑𝑘𝑑𝑘}, and 𝜑𝑘𝑗 =

∑ 𝑞𝑘,𝑗𝑙𝜓𝑙
𝑝
𝑙=1 . 𝑄𝑘 = (𝑞𝑘,𝑗𝑙) = [𝑈𝑘, 𝑉𝑘]  is an orthogonal 𝑝 × 𝑝  matrix. Let 

{𝜆1, … , 𝜆𝑛𝑘} be the latent expansion curve coefficients with basis {𝜑𝑘1, … , 𝜑𝑘𝑑𝑘}, 

which are independent realizations of the latent vector Λ. And we can find that: 

Γ = 𝑈𝑘Λ + 𝜀                           (6) 

Where 𝜀 is the independent random noise. Suppose that Λ and 𝜀 both follow 

the multivariate Gaussian distribution. Therefore, we have: 

Γ~𝒩(𝜇𝑘, Σ𝑘)                           (7) 

Let the unobserved random variable 𝑍 = (𝑍1, … , 𝑍𝑘) be the indicator variable of 

the group membership. 𝑍𝑘 equals to 1 if 𝑋 is in the 𝑘th cluster and 0 otherwise. 

And suppose 𝜋𝑘 = 𝑃(𝑍𝑘 = 1). 

The coefficient vectors 𝛾 follow the mixture of Gaussian distribution and the 

density function is: 

𝑝(𝛾) = ∑ 𝜋𝑘𝜙(𝛾; 𝜇𝑘, Σ𝑘)
𝐾
𝑘=1                     (8) 

Where 𝜙 is the density function of standard Gaussian distribution. 

Step 3: Model parameters estimation. 

Bouveyron and Jacques (2011) estimates parameters 𝜃 by MLE through the EM 

algorithm. The log-likelihood of the data under the functional latent mixture (FLM) 

model is: 

𝑙𝑐(𝜃; 𝛾1, … , 𝛾𝑛; 𝑧1, … , 𝑧𝑛)

= −
1

2
∑𝜂𝑘 [∑(log(𝑎𝑘𝑗) +

𝑞𝑘𝑗
𝑡 𝐶𝑘𝑞𝑘𝑗

𝑎𝑘𝑗
)

𝑑𝑘

𝑗=1

𝐾

𝑘=1

+ ∑ (log(𝑏𝑘) +
𝑞𝑘𝑗
𝑡 𝐶𝑘𝑞𝑘𝑗

𝑏𝑘
)

𝑝

𝑗=𝑑𝑘+1

− 2 log(𝜋𝑘)] + 𝜉 

                                   (9) 

The hyper-parameters 𝑑𝑘 and 𝐾 cannot be estimated by MLE. Actually, the 

class specific dimension 𝑑𝑘 is estimated by the scree-test (Cattell 1966) and the 

number of clusters 𝐾 is chosen by BIC. 

3.3 Data description 

3.3.1 Input variables 
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(1) Labor (L). In this paper, the labor factor is represented by the total employees 

of the logistics industry. The data is collected from the China National Bureau of 

Statistics. 

(2) Capital (K). Usually, there are two indicators to measure the capital factors, 

namely fixed asset investment in each year and capital stock calculated by the 

perpetual inventory method. Following Yang et al. (2019), this paper adopts the fixed 

asset investment of the logistics industry to represent the capital input. The data is 

collected from the China National Bureau of Statistics. 

(3) Energy (E). The different types of energy consumption in the logistics industry 

are collected from the CEIC. 

3.3.2 Output variables 

(1) Desirable output (Y). This paper uses the added value of the logistics industry 

to represent the desirable output. Relevant data is collected from the China National 

Bureau of Statistics. 

(2) Undesirable output (C). Taking into account the environmental issue, this 

paper uses the CO2 emissions of the logistics industry to represent the undesirable 

output. The total CO2 emissions are calculated based on the energy consumption of 

the logistics industry and the emission coefficients provided by IPCC (2006). 

Considering that the major production of the logistics industry is concentrated in 

transportation, storage, and postal industries, this paper uses the data of these three 

sub-industries to represent the logistics industry (Yang et al. 2019). The dataset only 

includes 30 provinces of China over the period of 2008 to 2017 because of data 

limitation, and the raw data is deflated in the 2008 constant price in the analysis. 

 

4. Results 

4.1 Total-factor unified efficiency 

The specific TFUE results of the logistics industry in different Chinese provinces 

are shown in Table 1. According to the definition of the TFUE, the closer the value is 

to 1, the better the performance of green efficiency. Moreover, when the value of 

TFUE equals to 1, the unit is suggested to display the best performance of green 

efficiency and locate on the frontier. Overall, we can find that the TFUE scores 

fluctuated in the study period and all the provinces obtain relatively high green 

efficiency values, with values large than 0.65. The worst performing region is Yunnan, 
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which gets the lowest efficiency scores among 30 regions, with values less than 0.70. 

By calculating the average value of the TFUE for all provinces in different years, we 

can observe that the mean values of the TFUE are relatively stable, and seem to be 

close to 0.85 in these ten years. We also find that the average value in 2017 is only 

slightly higher than the value in 2016 and even lower than the mean in 2008, which 

shows that the TFUE scores have not been effectively improved from the perspective 

of the whole of China. Therefore, how to better improve the green efficiency of 

China’s logistics industry is an issue worthy of attention. 

 [Insert Table 1 here] 

To more clearly show the changes in the green efficiency performance of different 

provinces over the past decade, we display the TFUE scores in 2008 and 2017 

respectively in Fig.1. Fig.1 indicates that half of the provinces have witnessed an 

increase in the TFUE scores. In specific, Hebei appears to be the best performing 

province with the efficiency score to be 1 in 2008 and 2017 respectively, suggesting 

that Hebei lies in the frontier in these two years. And Yunnan appears to be the worst 

performing province among these regions. Besides, we also find that in some 

provinces, the green efficiency value has dropped significantly, such as Gansu and 

Qinghai. Therefore, it is very meaningful to study the similarities and differences of 

the green efficiency patterns in the logistics industry of different provinces. 

[Insert Fig. 1 here] 

4.2 Functional clustering results 

 Firstly, we should choose the suitable cluster number K and the appropriate FLM 

model. The funHDDC algorithm is allowed to test one partition or multiple partitions 

at the same time, and we initially let K equal to 2, 3, and 4 respectively. Besides, there 

are six FLM models (AkjBkQkDk, AkjBQkDk, AkBkQkDk, ABkQkDk, AkBQkDk, 

ABQkDk) can be chosen, and we can also test multiple models simultaneously. So we 

have 18 options and we use the kmeans to initialize the E-M algorithm. According to 

the results of BIC, we finally select the model ABQkDk with 4 clusters, and the 

specific result of each combination can be seen in Table 2. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

 

[Insert Table 2 here] 

Fig.2 shows that the green efficiency TFUE scores in the logistics industry of 30 

provinces are eventually divided into 4 groups due to the method of funHDDC. In 

general, the TFUE of group 1 (black solid curves) shows a rapid downward trend, the 

TFUE of group 2 (red dashed curves) is at a medium level, the TFUE of group 3 

(green dotted curves) is at a low level, and the TFUE of group 4 (blue dot-dashed 

curves) is at a high level. Compared with the original discretized time series data, the 

curves in Fig.2 have become smoother after clustering. This is because the discrete 

time series data of each province is approximated as a smooth functional curve 

through the FLM model. 

[Insert Fig. 2 here] 

To analyze the different clusters’ change characteristics of green efficiency values 

more intuitively, we further obtain the estimated mean function of each cluster which 

can be seen in Fig.3. From Fig.3 we can find that the average green efficiency values 

in the logistics industry of these four groups show obvious differences. The mean 

function of group 1 (black solid curves) decreases rapidly, from about 0.95 at the 

beginning to less than 0.8. However, the mean function of group 2 (red dashed curves) 

fluctuates in the range of 0.85-0.95 and shows a rapid growth trend recently. Similar 

to group 2, the mean function of group 3 (green dotted curves) are also steadily 

increasing. But the mean function of group 3 is much lower than that of group 2, 

which fluctuates in the range of 0.75-0.85. Besides, the mean function of group 4 

(blue dot-dashed curves) is relatively stable, with mean values change in the range of 

0.95-1. 

[Insert Fig. 3 and Table 3 here] 

From Table 3, we can know the specific clustering results of 30 provinces in 

China. For the three provinces (Anhui, Gansu, and Qinghai) in group 1, the decline in 

the green efficiency scores of the logistics industry is very large from 2008 to 2017. In 

2008, the green efficiency value of these three provinces played a leading role. But 

the green efficiency of these three provinces is at a relatively low level in 2017 from 
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the perspective of the whole of China. As shown in Fig.4, the green efficiency of the 

logistics industry in the 13 regions of group 2 is steadily increasing, and among them, 

the green efficiency of three regions is growing particularly fast. Besides, the increase 

in the green efficiency of these 13 regions tends to converge. There are 11 regions in 

group 3. Compared with the other three groups, the green efficiency of group 3 is at a 

lower level, but there is still a slight upward trend recently. Group 4 consists of two 

eastern provinces (Tianjin and Hebei) and one western province (Ningxia). It can be 

seen from Fig.4 that the green efficiency of these three provinces is at a relatively 

high level compared to other regions in China, although the green efficiency values 

fluctuate greatly. 

From the results of clustering, we can find that the patterns of green efficiency 

change in the logistics industry are closely related to the geographical location of the 

region. Generally speaking, the green efficiency values of the second and fourth 

groups are relatively high, and most of these regions are concentrated in eastern China. 

However, the regions with lower green efficiency values of group 3 are mainly 

distributed in western China. Therefore, we can conclude that the average green 

efficiency performance of the eastern region is better than that of other regions, while 

the green efficiency of the western region performs poorly. But it can also be found 

that some of the eastern regions like Beijing and Shanghai belong to the third group, 

although the green efficiency of these regions plays a leading role in group 3. In the 

following section, we are going to analyze the dynamic changes in green efficiency 

performance and the influencing factors after decomposition. 

[Insert Fig. 4 here] 

5. Further analysis: dynamic changes in green efficiency performance 

5.1 Metafrontier non-radial Malmquist CO2 emission performance index 

The TFUE constructed in Section 3.1 is a static index that aims to describe the 

green efficiency performance in the logistics industry. Zhang and Choi (2013) further 

proposes the construction and decomposition of the Metafrontier non-radial 

Malmquist CO2 emission performance index (MNMCPI) to study the dynamic 

changes in efficiency performance over time. Following Zhang and Choi (2013), we 

make further analysis of the dynamic changes in the green efficiency performance of 
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the logistics industry. 

To construct and decompose MNMCPI, three production technology sets (the 

contemporaneous production technology 𝑇ℎ
𝐶 , the intertemporal production 

technology 𝑇ℎ
𝐼, and the global production technology 𝑇ℎ

𝐺) are first to be defined. 𝑇ℎ
𝐶 

represents the production technology for a particular group h at a specific period t. 

𝑇ℎ
𝐶 = {(𝐾𝑡, 𝐿𝑡 , 𝐸𝑡 , 𝑌𝑡, 𝐶𝑡): 𝐾𝑡, 𝐿𝑡, 𝐸𝑡  𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑌𝑡 𝑎𝑛𝑑 𝐶𝑡; 𝑡 = 1,… , 𝑇}   (10) 

Correspondingly, the NDDF described in Eq. (2) can be rewritten as: 

𝑁𝐷⃗⃗⃗⃗⃗⃗ 𝐶(𝐾, 𝐿, 𝐸, 𝑌, 𝐶; 𝑔) = 𝑠𝑢𝑝{𝑤𝑇𝛽𝑐: [(𝐾, 𝐿, 𝐸, 𝑌, 𝐶) + 𝑑𝑖𝑎𝑔(𝛽𝑐) ∙ 𝑔] ∈ 𝑇ℎ
𝐶}    (11) 

What’s more, the intertemporal production technology 𝑇ℎ
𝐼 are defined as 𝑇ℎ

𝐼 =

𝑇ℎ
1 ∪ 𝑇ℎ

2 ∪ …∪ 𝑇ℎ
𝑇, which means the technology constructed from group h in the 

whole period. The global production technology 𝑇ℎ
𝐺  represents the technology 

constructed from all groups in the whole period, and 𝑇𝐺 = 𝑇1
𝐼 ∪ 𝑇2

𝐼 ∪ …∪ 𝑇𝐻
𝐼 . 

And we can solve the NDDFs under different production technologies with the 

following model: 

𝑁𝐷⃗⃗⃗⃗⃗⃗ 𝑇
𝑑
(𝐾𝑠, 𝐿𝑠, 𝐸𝑠 , 𝑌𝑠, 𝐶𝑠; 𝑔) = max𝑤𝑘𝛽𝑘

𝑑 + 𝑤𝐿𝛽𝐿
𝑑 + 𝑤𝐸𝛽𝐸

𝑑 + 𝑤𝑌𝛽𝑌
𝑑 + 𝑤𝐶𝛽𝐶

𝑑 

          s.t. ∑ 𝜏𝑖
𝑠𝐾𝑖

𝑠
𝑠𝑒𝑡 ≤ 𝐾 − 𝛽𝑘

𝑑𝑔𝐾 

             ∑ 𝜏𝑖
𝑠𝐿𝑖
𝑠

𝑠𝑒𝑡 ≤ 𝐿 − 𝛽𝐿
𝑑𝑔𝐿 

             ∑ 𝜏𝑖
𝑠𝐸𝑖

𝑠
𝑠𝑒𝑡 ≤ 𝐸 − 𝛽𝐸

𝑑𝑔𝐸 

             ∑ 𝜏𝑖
𝑠𝑌𝑖

𝑠
𝑠𝑒𝑡 ≥ 𝑌 + 𝛽𝑌

𝑑𝑔𝑌 

             ∑ 𝜏𝑖
𝑠𝐶𝑖

𝑠
𝑠𝑒𝑡 = 𝐶 − 𝛽𝐶

𝑑𝑔𝐶 

             𝜏𝑖
𝑠 ≥ 0 

𝛽𝑘
𝑑, 𝛽𝐿

𝑑 , 𝛽𝐸
𝑑, 𝛽𝑌

𝑑 , 𝛽𝐶
𝑑 ≥ 0                               (12) 

Where, according to different production technologies, we have: 

𝑇ℎ
𝐶: 𝑑 ≡ 𝐶, 𝑠𝑒𝑡 ≡ {𝑖 ∈ ℎ}  

𝑇ℎ
𝐼: 𝑑 ≡ 𝐼, 𝑠𝑒𝑡 ≡ {𝑖 ∈ ℎ, 𝑠 ∈ [1,2, . . , 𝑇]}  

𝑇ℎ
𝐺: 𝑑 ≡ 𝐺, 𝑠𝑒𝑡 ≡ {𝑖 ∈ [1,2, … ,𝐻], 𝑠 ∈ [1,2, . . , 𝑇]}          (13) 

Therefore, the definition of MNMCPI is shown as follows: 

𝑀𝑁𝑀𝐶𝑃𝐼(𝐾𝑠, 𝐿𝑠 , 𝐸𝑠, 𝑌𝑠 , 𝐶𝑠) =
𝑇𝐹𝑈𝐸𝐺(𝐾𝑡+1,𝐿𝑡+1,𝐸𝑡+1,𝑌𝑡+1,𝐶𝑡+1)

𝑇𝐹𝑈𝐸𝐺(𝐾𝑡,𝐿𝑡,𝐸𝑡,𝑌𝑡,𝐶𝑡)
       (14) 

Therefore, the changes of the TFUE from time t to t+1 can be captured by the 

MNMCPI index. Furthermore, to analyze the driving factors of changes in green 

efficiency, the MNMCPI index is decomposed into three parts. And the 
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decomposition of MNMCPI is shown as follows: 

𝑀𝑁𝑀𝐶𝑃𝐼(𝐾𝑠, 𝐿𝑠 , 𝐸𝑠, 𝑌𝑠 , 𝐶𝑠) =
𝑇𝐹𝑈𝐸𝐺(.𝑡+1)

𝑇𝐹𝑈𝐸𝐺(.𝑡)
  

= [
𝑇𝐹𝑈𝐸𝐶(.𝑡+1)

𝑇𝐹𝑈𝐸𝐶(.𝑡)
] × [

𝑇𝐹𝑈𝐸𝐼(.𝑡+1)/𝑇𝐹𝑈𝐸𝐶(.𝑡+1)

𝑇𝐹𝑈𝐸𝐼(.𝑡)/𝑇𝐹𝑈𝐸𝐶(.𝑡)
] × [

𝑇𝐹𝑈𝐸𝐺(.𝑡+1)/𝑇𝐹𝑈𝐸𝐼(.𝑡+1)

𝑇𝐹𝑈𝐸𝐺(.𝑡)/𝑇𝐹𝑈𝐸𝐼(.𝑡)
]  

= [
𝑇𝐸𝑡+1

𝑇𝐸𝑡
] × [

𝐵𝑃𝑅𝑡+1

𝐵𝑃𝑅𝑡
] × [

𝑇𝐺𝑅𝑡+1

𝑇𝐺𝑅𝑡
]  

= 𝐸𝐶 × 𝐵𝑃𝐶 × 𝑇𝐺𝐶                                         (15) 

Where the efficiency change (EC) term shows the catch-up effect under the 

contemporaneous production technology for group h from t to t+1. The best-practice 

gap change (BPC) term reflects the innovation effect between the contemporaneous 

and the intertemporal production technology during two periods. And the technology 

leadership change has been illustrated in the technology gap change (TGC) term 

because it measures the ratio change of the technology gap between the intertemporal 

and the global frontier from t to t+1. 

5.2 Clustering results of the three decomposition components 

5.2.1 Catch-up effect: clustering analysis of the EC term 

When the value of the EC is bigger than 1, it indicates a fact of green efficiency 

improvement. And conversely, efficiency decreases. From Fig.5, we can find that the 

values of the EC term fluctuate greatly in the whole period, which means that the 

green efficiency performance of the logistics industry is not always in a better state. 

The specific clustering results are shown in Fig.6. According to the clustering results, 

30 provinces can be divided into two groups. The first group (black solid curves) has 

a wavy shape, and the second group (red dashed curves) performs much more stable 

than the first group, with values going above or below 1. We can further divide the 

changing trend of the EC term in group 1 into four stages based on whether the 

average EC value is greater than 1. It shows that in the first and third stages, the seven 

provinces in group 1 move toward the contemporaneously green efficiency 

technology frontier, which suggests the existence of the positive catch-up effect in 

group 1. However, in the second and the fourth stage, these provinces perform poorly. 

In addition, we find that Beijing and Shanghai belong to group 1, which shows that 

the green efficiency improvement of the logistics industry in Beijing and Shanghai 

shows fluctuations, and has a downward trend in recent years. This may be the reason 

why the green efficiency values of the logistics industry in Beijing and Shanghai are 

not high. 
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[Insert Fig. 5, Fig. 6 and Table 4 here] 

5.2.2 Innovation effect: clustering analysis of the BPC term 

When the value of the BPC term is larger than 1, the contemporaneous technology 

frontier is closer to the intertemporal technology frontier, and the innovation effect 

exists. Instead, the contemporaneous technology frontier is farther away from the 

intertemporal technology frontier. From Fig.7 we can know that, similar to the EC 

term, the value of the BPC term also varies greatly. And it shows an overall upward 

trend which reflects the technological innovation improvement in the green efficiency 

performance of the logistics industry. Fig.8 shows that there are four clusters based on 

the results of funHDDC. Among them, both the BPC terms of group 1 (black solid 

curves) and group 2 (red dashed curves) show a clear upward trend. The average 

value of the BPC term in group 1 rises rapidly, and then gradually rises after a period 

of decline. And the average value of the BPC term in group 2 starts to rise rapidly 

after a period of fluctuations. From Table 5 we can know that Beijing and Shanghai 

belong to the second group, which indicates that these two cities have made more 

efforts to promote technological innovation in the logistics industry in recent years. 

Besides, the average values of the BPC term in group 3 (green dotted curves) and 

group 4 (blue dot-dashed curves) are slowly rising as well as fluctuating, and the 

changes in these two groups always show opposite trends. 

[Insert Fig. 7, Fig. 8 and Table 5 here] 

5.2.3 Technology leadership change: clustering analysis of the TGC term 

If the value of the TGC term is larger than 1, the technology gap between 

intertemporal technology and global technology will be narrowing. Otherwise, the 

technology gap will widen. From Fig.9 we can find that the value of TGC does not 

change much compared to the variations of EC and BPC. Besides, from the results of 

clustering, we can see that the value changes of the TGC term in 30 provinces can be 

divided into two groups. There exists obvious volatility in the average value of the 

TGC term in group 1 (black solid curves). However, the average value of the TGC 

term in group 2 (red dashed curves) has smaller changes, which almost equals to 1. 

Furthermore, from Table 6 we can know that Beijing and Shanghai belong to the 

second group, which suggests that these two regions don’t achieve the target of 
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becoming the technical leadership in the logistics industry, even though their 

economic levels are high. From 2008 to 2017, the mean values of the TGC term have 

increased slightly, which means that the gap between the intertemporal and the global 

frontier still exists. 

[Insert Fig. 9, Fig. 10 and Table 6 here] 

6. Discussion 

From 2008 to 2017, the green efficiency performance of the logistics industry in 

most Chinese provinces has been steadily improving. Based on the green efficiency 

scores calculated by the NDDF method and the clustering results of the funHDDC 

method, we can conclude that there exists a certain correlation between the green 

efficiency of the logistics industry and the geographical location. On the whole, the 

green efficiency values of most provinces in the eastern, northeastern and central 

regions are at the middle-upper level in China, while the green efficiency values of 

most provinces in the western regions are at the lower level. Moreover, the clustering 

results show that the green efficiency performance of the logistics industry varies 

greatly in different regions. The 30 provinces can be divided into 4 clusters, namely a 

high level of green efficiency, a medium level of green efficiency, a low level of green 

efficiency, and a downward trend of green efficiency. Specifically, the green 

efficiency performance of the logistics industry in Tianjin, Hebei, and Ningxia plays a 

leading role in China, while the green efficiency performance of Anhui, Gansu, and 

Qinghai shows a significant downward trend comparing to other regions. 

The development of the logistics industry needs the support of economic 

development. On the one hand, the regions with high economic levels usually show a 

higher demand for logistics services, which can stimulate the growth and expansion of 

the logistics industry. On the other hand, the expansion of the logistics industry can 

effectively promote the output growth of other industries. However, the green 

efficiency calculated by the NDDF method in this paper is a comprehensive 

consideration of desirable and undesirable output, which indicates that the impact on 

the environment should also be considered. Therefore, we cannot completely 

conclude that the higher the regional economic level, the higher the efficiency of the 

logistics industry. Similar results can be found in other industries, such as the 
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construction industry (Zhou et al. 2019) and the iron and steel industry (Lin and Wu 

2020). In the clustering results of this paper, we find that the green efficiency 

performance of the logistics industry in Beijing and Shanghai belongs to the third 

group, which is at a low level comparing to the green efficiency performance of the 

logistics industry in other regions. The poor green performance of the logistics 

industry in Beijing and Shanghai may be caused by various problems in city logistics 

development. For example, large demands for the logistics services may have a 

negative impact on efficiency due to the high population density and congested traffic 

(Shao et al. 2019; Firdausiyah et al. 2019). Therefore, queuing and congestion will 

lead to increased energy consumption and carbon dioxide emissions, and reduce the 

green efficiency in the logistics. Moreover, based on the further analysis of the 

decomposition of dynamic changes in green efficiency, we find that the efficiency 

improvements of the logistics industry in Beijing and Shanghai are not obvious, and 

these two cities lack technical leadership even though the technological innovation 

has been promoted in recent years. Therefore, the green efficiency performance of the 

logistics industry in Beijing and Shanghai is not satisfying. 

 

7. Conclusion and policy recommendations 

The logistics industry is an indispensable part of the social economy. At the same 

time, it also leads to large amounts of resource consumption and environmental 

pollution. Therefore, the high-quality development of the logistics industry needs to 

achieve the goal of green transformation. This article attempts to analyze the changing 

patterns and influencing factors of green efficiency in the Chinese logistics industry. 

We first use the NDDF method to calculate the green efficiency scores (TFUE) of the 

logistics industry in China’s 30 provinces from 2008 to 2017. Then, based on the 

functional clustering method funHDDC, we conduct the clustering analysis on the 

green efficiency performance of the 30 provinces. Finally, the dynamic changes of 

green efficiency performance have been divided into three driving factors: the EC 

term, the BPC term, and the TGC term. The clustering results show that the green 

efficiency of China’s logistics industry can be divided into four clusters, which are 

high level, medium level, low level, and downward trend respectively. By analyzing 

the similarities and differences of different clusters, we have proposed the following 

policy recommendations. 
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(1) The green efficiency evaluation of the logistics industry is not only related to 

the level of economic development, but also to environmental performance. Although 

the green efficiency of the logistics industry in eastern China is generally better than 

that in other regions, we still find that the green efficiency performance of some 

developed regions is not satisfactory, such as Beijing and Shanghai. Therefore, to 

achieve the goal of sustainable development in the regions with high economic level, 

the government should make more efforts to promote the level of management in the 

logistics and improve green efficiency. From the perspective of transportation, 

transportation vehicles with high pollution emissions should be phased out gradually, 

and transportation routes should be rationally planned. And promoting the 

development of sharing economy in the logistics can improve the efficiency of 

transportation. From the perspective of warehousing, the construction of urban and 

rural logistics warehousing centers should be accelerated to reduce the logistics 

pressure in the central cities. 

(2) According to the clustering results, it can be seen that the logistics industry’s 

green efficiency of most regions in adjacent geographical locations has a similar 

development pattern. Therefore, when the government formulates the policy for the 

logistics industry, it is important to carry out unified strategic planning for these 

adjacent areas. Considering the overall development requirements of these regions 

can not only stimulate the development potential of the logistics industry in each 

province, but also promote the coordinated development level among different 

provinces. 

(3) From the results of the decomposition, we can see that technology innovation 

can be promising to stimulate the green efficiency performance of China’s logistics 

industry. Therefore, the government should focus on promoting the transformation of 

logistics to the high-tech industry and effectively improving the innovation level of 

the logistics. For example, the government should stimulate the R&D activities in the 

logistics industry, strengthen the application of artificial intelligence and big data in 

the logistics. Moreover, the optimal operation management and allocation of 

resources should also be stressed. 

Due to the data limitation, this paper analyzes the green efficiency performance of 

the logistics industry from the provincial level in China. And the study of city 

logistics can better reflect the development characteristics of the logistics industry in 
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different areas. Therefore, how to analyze the green efficiency performance of the 

logistics industry and its dynamic changes from the perspective of city logistics is an 

issue worthy of attention in future research. 
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Table 1 Total-factor unified efficiency of the logistics industry in different provinces 

Region 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Beijing 0.777 0.786 0.809 0.823 0.807 0.813 0.810 0.814 0.813 0.811 

Tianjin 0.931 0.928 0.943 0.952 0.935 0.980 1.000 0.978 0.976 1.000 

Hebei 1.000 0.985 0.970 0.979 0.946 0.982 1.000 1.000 0.974 1.000 

Shanxi 0.946 0.830 0.844 0.849 0.803 0.840 0.852 0.871 0.874 1.000 

Inner 

Mongolia 

0.866 0.852 0.848 0.860 0.846 0.871 0.890 0.871 0.920 0.941 

Liaoning 0.772 0.774 0.777 0.797 0.802 0.810 0.808 0.837 0.879 1.000 

Jilin 0.808 0.809 0.805 0.815 0.823 0.786 0.783 0.785 0.786 0.788 

Heilongjiang 0.839 0.820 0.828 0.799 0.803 0.800 0.811 0.826 0.835 0.851 

Shanghai 0.768 0.745 0.787 0.798 0.828 0.817 0.874 0.804 0.796 0.800 

Jiangsu 0.911 0.892 0.900 0.923 0.885 0.891 0.882 0.880 0.876 0.873 

Zhejiang 0.849 0.845 0.854 0.851 0.848 0.856 0.858 0.852 0.855 0.857 

Anhui 0.876 0.877 0.875 0.863 0.836 0.822 0.814 0.809 0.800 0.796 

Fujian 0.920 0.903 0.893 0.886 0.892 0.889 0.894 0.905 0.904 0.905 

Jiangxi 0.891 0.876 0.850 0.847 0.885 0.859 0.847 0.839 0.842 0.866 

Shandong 0.912 0.875 0.869 0.882 0.876 0.866 0.879 0.884 0.888 0.898 

Henan 0.888 0.880 0.860 0.856 0.872 0.887 0.896 0.893 0.898 0.899 

Hubei 0.775 0.782 0.788 0.781 0.782 0.784 0.791 0.791 0.776 0.785 

Hunan 0.881 0.853 0.845 0.846 0.873 0.859 0.854 0.846 0.851 0.857 

Guangdong 0.848 0.829 0.832 0.845 0.861 0.845 0.853 0.853 0.852 0.853 

Guangxi 0.770 0.769 0.782 0.799 0.772 0.821 0.807 0.818 0.819 0.830 

Hainan 0.751 0.731 0.738 0.770 0.736 0.748 0.776 0.764 0.774 0.787 

Chongqing 0.798 0.819 0.810 0.810 0.807 0.816 0.823 0.812 0.814 0.817 

Sichuan 0.797 0.754 0.749 0.754 0.761 0.795 0.813 0.839 0.831 0.835 

Guizhou 0.906 0.902 0.900 0.912 0.901 0.889 0.882 0.879 0.871 0.882 

Yunnan 0.679 0.677 0.655 0.658 0.671 0.664 0.655 0.664 0.662 0.669 

Shaanxi 0.801 0.767 0.783 0.789 0.805 0.802 0.812 0.819 0.843 0.836 

Gansu 1.000 0.860 0.831 0.844 0.850 0.752 0.739 0.753 0.743 0.758 

Qinghai 1.000 0.970 0.952 0.864 0.855 0.818 0.824 0.824 0.791 0.745 

Ningxia 1.000 1.000 1.000 1.000 1.000 0.970 0.941 0.929 0.924 0.914 

Xinjiang 0.741 0.758 0.732 0.738 0.780 0.754 0.778 0.787 0.805 0.793 

Average 0.857 0.838 0.837 0.840 0.838 0.836 0.841 0.841 0.842 0.855 
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Table 2 Results of Bayesian Information Criterion 

Order Model K Threshold Complexity BIC 

1 ABQkDk 4 0.2 41 -2,949.97 

2 AkjBQkDk 4 0.2 44 -2,957.95 

3 AkBQkDk 3 0.2 36 -3,927.08 

4 AkBQkDk 4 0.2 47 -3,984.82 

5 AkjBQkDk 2 0.2 26 -5,048.50 

6 ABQkDk 2 0.2 24 -5,048.64 

7 AkBQkDk 2 0.2 28 -7,349.12 

8 AkjBkQkDk 2 0.2 31 -7,664.58 

9 ABkQkDk 2 0.2 28 -7,666.82 

10 AkBkQkDk 2 0.2 29 -7,670.21 

11 AkBkQkDk 3 0.2 38 -7,775.86 

12 AkjBkQkDk 4 0.2 55 -9,100.29 

13 AkjBkQkDk 3 0.2 \ \ 

14 ABkQkDk 3 0.2 \ \ 

15 AkjBQkDk 3 0.2 \ \ 

16 ABQkDk 3 0.2 \ \ 

17 AkBkQkDk 4 0.2 \ \ 

18 ABkQkDk 4 0.2 \ \ 
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Table 3 Specific clustering results of 30 provinces 

Region Province Group Description 

Northeast Heilongjiang 2 Medium 

Jilin 3 Low 

Liaoning 2 Medium 

Central Shanxi 2 Medium 

Henan 2 Medium 

Hubei 3 Low 

Hunan 2 Medium 

Jiangxi 2 Medium 

Anhui 1 Decrease 

East Beijing 3 Low 

Tianjin 4 High 

Hebei 4 High 

Shandong 2 Medium 

Jiangsu 2 Medium 

Shanghai 3 Low 

Zhejiang 2 Medium 

Fujian 2 Medium 

Guangdong 2 Medium 

Hainan 3 Low 

West Chongqing 3 Low 

Sichuan 3 Low 

Guangxi 3 Low 

Guizhou 2 Medium 

Yunnan 3 Low 

Shaanxi 3 Low 

Gansu 1 Decrease 

Inner Mongolia 2 Medium 

Ningxia 4 High 

Xinjiang 3 Low 

Qinghai 1 Decrease 
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Table 4 Specific grouping results for EC 

Group Description Province 

1 Fluctuant Beijing, Liaoning, Shanghai, Jiangsu, Hunan, Guangdong, 

Xinjiang 

2 Stable Tianjin, Hebei, Shanxi, Inner Mongolia, Jilin, 

Heilongjiang, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, 

Henan, Hubei, Guangxi, Hainan, Chongqing, Sichuan, 

Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 

 

Table 5 Specific grouping results for BPC 

Group Description Province 

1 Rise rapidly→Decline→Rise 

gradually 

Shanxi, Inner Mongolia, Shandong, Gansu 

2 Fluctuate→Rise rapidly Beijing, Liaoning, Shanghai, Hunan, Xinjiang 

3 Fluctuate Heilongjiang, Anhui, Jiangxi, Henan, Hubei, 

Sichuan, Yunnan, Shaanxi, Qinghai, Ningxia 

4 Fluctuate (opposite) Tianjin, Hebei, Jilin, Jiangsu, Zhejiang, Fujian, 

Guangdong, Guangxi, Hainan, Chongqing, Guizhou 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



33 

 

Table 6 Specific grouping results for TGC 

Group Description Province 

1 Fluctuant Inner Mongolia, Anhui, Henan, Gansu 

2 Stable Beijing, Tianjin, Hebei, Shanxi, Liaoning, Jilin, 

Heilongjiang, Shanghai, Jiangsu, Zhejiang, Fujian, 

Jiangxi, Shandong, Hubei, Hunan, Guangdong, Guangxi, 

Hainan, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, 

Qinghai, Ningxia, Xinjiang 
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Fig.1 Total-factor unified efficiency of different provinces in 2008 and 2017 
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Fig.2 Clustering results of 30 provinces’ green efficiency in the logistics industry 
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Fig.3 Estimated mean function of each cluster 
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Fig.4 Four clusters of 30 provinces’ green efficiency in the logistics industry 
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Fig.5 Trends in the EC 
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Fig.6 Clustering results of the EC 
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Fig.7 Trends in the BPC 
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Fig.8 Clustering results of the BPC 
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Fig.9 Trends in the TGC 
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Fig.10 Clustering results of the TGC
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