Skip to main content

Advertisement

Log in

Optimal treatment of chronic kidney disease with uncertainty in obtaining a transplantable kidney: an MDP based approach

  • S.I. : Scalable Optimization and Decision Making in OR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is one of the most serious and prevalent health issues all over the world. The evolution of CKD can last for many years until the death of patients, and the method of treatment mainly includes medication, dialysis, and transplantation with the evolution of the disease. It has been validated by many empirical studies that for severe CKD patients, the optimal treatment is transplantation if a suitable kidney is available, otherwise the patients should initiate dialysis at a suitable time. It has also been validated that the initiation time of dialysis significantly impacts not only the direct treatment results, but also the success of a future possible kidney transplantation. Motivated by this consideration, we investigate the decision-making problem of the optimal treatment approach to maximize the patient’s total reward including pre-transplant reward and post-transplant reward (if applicable), considering the possibility of having a suitable kidney transplantation in the future. A Markov decision process model is established in which the status of the process is described by the patient health status. We present some structural properties of the decision-making problem, which are used to choose the optimal treatment approach in different health status of patients. We collect the clinical data in the simulation experiments to obtain the fitted curves of the evolution process of different CKD patients, and compare the simulation results with the actual clinical data to demonstrate the advantage of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2004). The optimal timing of living-donor liver transplantation. Management Science, 50(10), 1420–1430.

    Google Scholar 

  • Batun, S., Schaefer, A. J., Bhandari, A., & Roberts, M. S. (2018). Optimal liver acceptance for risk-sensitive patients. Service Science, 10(3), 320–333.

    Google Scholar 

  • Beddhu, S., Samore, M. H., Roberts, M. S., Stoddard, G. J., Ramkumar, N., Pappas, L. M., et al. (2003). Impact of timing of initiation of dialysis on mortality. Journal of the American Society of Nephrology, 14(9), 2305–2312.

    Google Scholar 

  • Bennett, C. C., & Hauser, K. (2013). Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Artificial Intelligence in Medicine, 57(1), 9–19.

    Google Scholar 

  • Chugh, K. S., Jha, V., & Chugh, S. (1999). Economics of dialysis and renal transplantation in the developing world. Transplantation Proceedings, 31(8), 3275–3277.

    Google Scholar 

  • Churchill, D. N. (1997). An evidence-based approach to earlier initiation of dialysis. American Journal of Kidney Diseases, 30(6), 899–906.

    Google Scholar 

  • Connaughton, D. M., Kennedy, C., Shril, S., Mann, N., Murray, S. L., Williams, P. A., et al. (2019). Monogenic causes of chronic kidney disease in adults. Kidney International, 95(4), 914–928.

    Google Scholar 

  • Donor, A. P., & Analysis, K. (2002). Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes. Transplantation, 74(10), 1377–1381.

    Google Scholar 

  • Erkin, Z., Bailey, M. D., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2010). Eliciting patients’ revealed preferences: An inverse Markov decision process approach. Decision Analysis, 7(4), 358–365.

    Google Scholar 

  • Formica, R. N., Friedewald, J. J., & Aeder, M. (2016). Changing the kidney allocation system: A 20-year history. Current Transplantation Reports, 3(1), 39–44.

    Google Scholar 

  • Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., & Hsu, C. (2004). Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New England Journal of Medicine, 351(13), 1296–1305.

    Google Scholar 

  • Hernández, D., González, A., Rufino, M., Laynez, I., de la Rosa, A., Porrini, E., et al. (2007). Time-dependent changes in cardiac growth after kidney transplantation: The impact of pre-dialysis ventricular mass. Nephrology, Dialysis, Transplantation, 22(9), 2678–2685.

    Google Scholar 

  • Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., et al. (2013). Chronic kidney disease: Global dimension and perspectives. The Lancet, 382(9888), 260–272.

    Google Scholar 

  • Kalantar-Zadeh, K., Unruh, M., Zager, P. G., Kovesdy, C. P., Bargman, J. M., Chen, J., et al. (2014). Twice-weekly and incremental hemodialysis treatment for initiation of kidney replacement therapy. American Journal of Kidney Diseases, 64(2), 181–186.

    Google Scholar 

  • Korevaar, J. C., Jansen, M. A. M., Dekker, F. W., Jager, K. J., Boeschoten, E. W., Krediet, R. T., et al. (2001). When to initiate dialysis: Effect of proposed US guidelines on survival. Lancet, 358(9287), 1046–1050.

    Google Scholar 

  • Kyle, J. V. A., Eric, K. H. C., Nathan, T. J., Babak, J. O., & Trevor, A. E. (2014). Choosing the order of deceased donor and living donor kidney transplantation in pediatric recipients: A Markov decision process model. NIH Public Access, 99(2), 360–366.

    Google Scholar 

  • Ledebo, I., Kessler, M., Van Biesen, W., Wanner, C., Wiecek, A., Prichard, S., et al. (2001). Initiation of dialysis—Opinions from an international survey: Report on the dialysis opinion symposium at the ERA-EDTA Congress, 18 September 2000, nice. Nephrology, Dialysis, Transplantation, 16(6), 1132–1138.

    Google Scholar 

  • Lee, C. P., Chertow, G. M., & Zenios, S. A. (2006). A simulation model to estimate the cost and effectiveness of alternative dialysis initiation strategies. Medical Decision Making, 26(5), 535–549.

    Google Scholar 

  • Lee, C. P., Chertow, G. M., & Zenios, S. A. (2009). Optimal initiation and management of dialysis therapy. Operations Research, 56, 1428–1449.

    Google Scholar 

  • Liu, K. D., Himmelfarb, J., Paganini, E., Ikizler, T. A., Soroko, S. H., Mehta, R. L., et al. (2006). Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clinical Journal of the American Society of Nephrology: CJASN, 1(5), 915–919.

    Google Scholar 

  • Liu, X., Li, L., Wang, C., Wang, Z. C., Shi, C., & Tang, Y. (2009). Application of Markov model in studying graded prognosis of chronic kidney disease. Academid Journal of Second Military Medical University, 30(7), 804–807. (in Chinese).

    Google Scholar 

  • Manns, B. J., Taub, K., VanderStraeten, C., Jones, H., Mills, C., Visser, M., et al. (2005). The impact of education on chronic kidney disease patients’ plans to initiate dialysis with self-care dialysis: A randomized trial. Kidney International, 68(4), 1777–1783.

    Google Scholar 

  • Matsushita, K., van der Velde, M., Astor, B. C., Woodward, M., Levey, A. S., de Jong, P. E., et al. (2010). Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. The Lancet, 375(9731), 2073–2081.

    Google Scholar 

  • Meier-Kriesche, H. U., & Kaplan, B. (2002). Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: A paired donor kidney analysis. Transplantation, 74(10), 1377–1381.

    Google Scholar 

  • Mohan, S., Tanriover, B., Ali, N., Crew, R. J., Dube, G. K., Radhakrishnan, J., et al. (2012). Availability, utilization and outcomes of deceased diabetic donor kidneys: Analysis based on the UNOS registry. American Journal of Transplantation, 12(8), 2099–2105.

    Google Scholar 

  • Murphy, D., McCulloch, C. E., Lin, F., Banerjee, T., Bragg-Gresham, J. L., Eberhardt, M. S., et al. (2016). Trends in prevalence of chronic kidney disease in the United States. Annals of Internal Medicine, 165(7), 473–481.

    Google Scholar 

  • Negoescu, D. M., Bimpikis, K., Brandeau, M. L., & Iancu, D. A. (2018). Dynamic learning of patient response types: An application to treating chronic diseases. Management Science, 64(8), 3469–3488.

    Google Scholar 

  • Nelson, R. G., Grams, M. E., Ballew, S. H., Sang, Y., Azizi, F., Chadban, S. J., et al. (2019). Development of risk prediction equations for incident chronic kidney disease. JAMA, 322(21), 2104–2114.

    Google Scholar 

  • O’Hare, A. M., Bertenthal, D., Walter, L. C., Garg, A. X., Covinsky, K., Kaufman, J. S., et al. (2007). When to refer patients with chronic kidney disease for vascular access surgery: Should age be a consideration? Kidney International, 71(6), 555–561.

    Google Scholar 

  • O’Hare, A. M., Johansen, K. L., & Rodriguez, R. A. (2006). Dialysis and kidney transplantation among patients living in rural areas of the United States. Kidney International, 69(2), 343–349.

    Google Scholar 

  • Ogutmen, B., Yildirim, A., Sever, M. S., Bozfakioglu, S., Ataman, R., Erek, E., et al. (2006). Health-related quality of life after kidney transplantation in comparison intermittent hemodialysis, peritoneal dialysis, and normal controls. Transplantation Proceedings, 38(2), 419–421.

    Google Scholar 

  • Oniscu, G. C., Brown, H., & Forsythe, J. L. R. (2004). How great is the survival advantage of transplantation over dialysis in elderly patients? Nephrology, Dialysis, Transplantation, 19(4), 945–951.

    Google Scholar 

  • Rapisarda, F., Tarantino, A., De Vecchi, A., Baggio, G., Ghezzi, F., Nicodemo, D., et al. (2006). Dialysis and kidney transplantation: Similarities and differences in the psychological aspects of noncompliance. Transplantation Proceedings, 38(4), 1006–1009.

    Google Scholar 

  • Rocco, M. V., Sink, K. M., Lovato, L. C., Wolfgram, D. F., Wiegmann, T. B., Wall, B. M., et al. (2018). Effects of intensive blood pressure treatment on acute kidney injury events in the systolic blood pressure intervention trial (SPRINT). American Journal of Kidney Diseases, 71(3), 352–361.

    Google Scholar 

  • Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., et al. (2017). Chronic kidney disease. Nature Reviews Disease Primers, 3(1), 1–24.

    Google Scholar 

  • Rosansky, S. J., Clark, W. F., Eggers, P., & Glassock, R. J. (2009). Initiation of dialysis at higher GFRs: Is the apparent rising tide of early dialysis harmful or helpful. Kidney International, 76(3), 257–261.

    Google Scholar 

  • Satayathum, S., Pisoni, R. L., McCullough, K. P., Merion, R. M., Wikström, B., Levin, N., et al. (2005). Kidney transplantation and wait-listing rates from the international Dialysis Outcomes and Practice Patterns Study (DOPPS). Kidney International, 68(1), 330–337.

    Google Scholar 

  • Schold, J. D. (2006). Which renal transplant candidates should accept marginal kidneys in exchange for a shorter waiting time on dialysis? Clinical Journal of the American Society of Nephrology, 1(3), 532–538.

    Google Scholar 

  • Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., & Khovanova, N. (2019). Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomedical Signal Processing and Control, 52, 456–462.

    Google Scholar 

  • Shechter, S. M., Bailey, M. D., Schaefer, A. J., & Roberts, M. S. (2008). The optimal time to initiate HIV therapy under ordered health states. Operations Research, 56(1), 20–33.

    Google Scholar 

  • Traynor, J. P., Simpson, K., Geddes, C. C., Deighan, C. J., & Fox, J. G. (2002). Early initiation of dialysis fails to prolong survival in patients with end-stage renal failure. Journal of the American Society of Nephrology, 13(8), 2125–2132.

    Google Scholar 

  • Vincenti, F., Rostaing, L., Grinyo, J., Rice, K., Steinberg, S., Gaite, L., et al. (2016). Belatacept and long-term outcomes in kidney transplantation. New England Journal of Medicine, 374(4), 333–433.

    Google Scholar 

  • Webster, P., Lightstone, L., McKay, D. B., & Josephson, M. A. (2017a). Pregnancy in chronic kidney disease and kidney transplantation. Kidney International, 91(5), 1047–1056.

    Google Scholar 

  • Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017b). Chronic kidney disease. The Lancet, 389(10075), 1238–1252.

    Google Scholar 

  • Wyld, M., Morton, R. L., Hayen, A., Howard, K., & Webster, A. C. (2012). A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Medicine, 9(9), e1001307.

    Google Scholar 

  • Zenios, S. A., & Fuloria, P. C. (2003). Managing the delivery of dialysis therapy: A multiclass fluid model analysis. Management Science, 46(10), 1317–1336.

    Google Scholar 

  • Zenios, S. A., Wein, L. M., & Chertow, G. M. (1999). Evidence-based organ allocation. American Journal of Medicine, 107(1), 52–61.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 71601065, 71690235, and 71690230), the Key research and development projects in Anhui (1804b06020377), the Basic scientific research projects in central colleges and Universities (JZ2018HGTB0232), and Innovative Research Groups of the National Natural Science Foundation of China (71521001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodha Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Zong, Y. & Kumar, S. Optimal treatment of chronic kidney disease with uncertainty in obtaining a transplantable kidney: an MDP based approach. Ann Oper Res 316, 269–302 (2022). https://doi.org/10.1007/s10479-020-03779-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03779-2

Keywords

Navigation