Skip to main content
Log in

On two dominances of fuzzy variables based on a parametrized fuzzy measure and application to portfolio selection with fuzzy return

  • S.I. : Integrated Uncertainty in Knowledge Modelling & Decision Making 2018
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Yang and Iwamura (Appl Math Sci 46:2271–2288, 2008) introduced a new fuzzy measure as a convex linear combination of possibility and necessity measures. This measure generalizes the credibility measure and the real parameter associated to the possibility measure is considered as the decision making’s optimism level. In this paper, we introduce by means of that measure, two new dominances as binary relations on fuzzy variables. The first one generalizes the first order dominance based on credibility measure and introduced recently by Tassak et al. (J Oper Res Soc 68:1491–1502, 2017) and the second one, based on the investor’s optimism level, is more stronger than the other. Moreover, we study some properties of those dominances and characterize them on the particular family of trapezoidal fuzzy numbers. We implement the second dominance in a numerical example to illustrate the impact of the investor’s attitude through the set of best portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is worth noting that \(\textit{Supp}(A)\) is a closed subset of X relatively to the usual topology defined on X.

References

  • Anderson, R. (1978). An elementary core equivalence theorem. Econometrica, 46, 1483–1487.

    Article  Google Scholar 

  • Asady, B., & Zendehnam, M. (2007). Ranking of fuzzy numbers by minimize distance. Applied Mathematical Modelling, 31, 2589–2598.

    Article  Google Scholar 

  • Carlsson, C., Fullér, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131, 13–21.

    Article  Google Scholar 

  • Dzuche, J., Tassak, C. D., Sadefo, J. K., & Fono, L. A. (2017). On the first moments and semi-moments of a fuzzy variable based on a new measure and application for portfolio selection with fuzzy returns. Working paper.

  • Ezzati, R., Allahviranloo, T., Khezerloo, S., & Khezerloo, M. (2012). An approach for ranking of fuzzy numbers. Experts Systems with Applications, 39, 690–695.

    Article  Google Scholar 

  • Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217, 1–8.

    Article  Google Scholar 

  • Li, X., Qin, Z., & Kar, S. (2010). Mean-variance-skewness model for portfolio selection with fuzzy returns. European Journal of Operationnal Research, 202, 239–247.

    Article  Google Scholar 

  • Liu, B. (2004). Uncertainty theory: An introduction to its axiomatics foundations. Berlin: Springer.

    Book  Google Scholar 

  • Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10, 445–450.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portofolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Peng, J., Jiang, Q., & Rao, C. (2007). Fuzzy dominance: A new approach for ranking fuzzy variables via credibility measure. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15, 29–41.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczynski, A. (1999). From stochastic dominance to mean-risk models: Semideviations as risk measures. European Journal of Operational Research, 116, 33–50.

    Article  Google Scholar 

  • Sadefo, J. K., Tassak, C. D., & Fono, L. A. (2012). Moments and semi-moments for fuzzy portfolio selection. In Insurance: mathematics and economics (vol. 51, pp. 517–530).

  • Sharpe, W. (1971). A linear programming approximation for the general portfolio analysis problem. Journal of Financial and Quantitative Analysis, 6, 1263–1275.

    Article  Google Scholar 

  • Stone, B. (1973). A linear programming formulation of the general portfolio selection problem. Journal of Financial and Quantitative Analysis, 8, 621–636.

    Article  Google Scholar 

  • Tassak, C. D., Sadefo, K. J., Fono, L. A., & Andjiga, N. G. (2017). Characterization of order dominances on fuzzy variables for portfolio selection with fuzzy returns. Journal of the Operational Research Society, 68, 1491–1502.

  • Wang, X., & Kerre, E. (2001). Reasonable properties for the ordering of fuzzy quantities. Fuzzy Sets and Systems, 118, 375–385.

    Article  Google Scholar 

  • Yang, L., & Iwamura, K. (2008). Fuzzy chance-constrained programming with linear combination of possibility measure and necessity measure. Applied Mathematical Sciences, 46, 2271–2288.

    Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy set as a basis of theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Sadefo Kamdem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof of Proposition 2

Let be \(\lambda \in [0,1]\), \(\xi _1=(a_1,b_1,c_1,d_1)\) and \(\xi _2=(a_2,b_2,c_2,d_2)\) be two trapezoidal fuzzy variables whose respective distribution functions with respect to \(M_{\lambda }\) are \(\phi _{\lambda }^1\) and \(\phi _{\lambda }^2\).

Let us assume that there exist \( \alpha ,\beta \in [0,1]\) such that

$$\begin{aligned} \phi _{\alpha }^1(x)=\phi _{\beta }^2(x),\quad \forall x \in \mathbb {R} \end{aligned}$$
(9)

and let us prove that:

$$\begin{aligned} \phi ^1(x)=\phi ^2(x),\quad \forall x \in \mathbb {R}. \end{aligned}$$
  1. (1)

    First step

    Let us prove that \( \left\{ \begin{array}{l} a_1=a_2,\\ b_1=b_2,\\ c_1=c_2,\\ d_1=d_2\\ \end{array} \right. \)

    1. (i)

      If \(a_1\ne a_2\) (without loss of generality, we assume that \(a_1 < a_2\)).

      For x \(\in ]a_1,a_2[\), according to (1) we have: \(\phi _{\alpha }^1(x)\ne 0\) and \(\phi _{\beta }^2(x)=0,\) that contradicts (9).

    2. (ii)

      If \(b_1\ne b_2\) (without loss of generality, we assume that \(b_2 < b_1\)).

      For \(x_1,x_2\in ]b_2,b_1[\) such that \(x_1\ne x_2\) and \(x_1< c_1\), \(x_2< c_2\), according to (1) we have: \(\phi _{\alpha }^1(x_1)=0\) or \(\phi _{\beta }^2(x_2)=0\) or \(\phi _{\alpha }^1(x_1)= \phi _{\beta }^2(x_2)=\beta .\) The first two cases are obvious and we focus only on the third case: \(\phi _{\alpha }^1(x_1)= \phi _{\beta }^2(x_2)=\beta \Longrightarrow \frac{\alpha (x_1-a_1)}{b_1-a_1}=\frac{\alpha (x_2-a_1)}{b_1-a_1}=\beta ,\) according to (1) and (9). We have: \((\frac{\alpha (x_1-a_1)}{b_1-a_1}=\frac{\alpha (x_2-a_1)}{b_1-a_1}=\beta ) \Rightarrow x_1=x_2\), which contradicts \(x_1\ne x_2.\)

    3. (iii)

      If \(c_1\ne c_2\) (without loss of generality, we assume that \(c_2 < c_1\)).

      For \(x_1,x_2\in ]c_2,c_1[\) such that \(x_1\ne x_2\) and \(x_1> b_1\) , \(x_2> b_2\), according to (1) we have: \(\phi _{\alpha }^1(x_1)=1\) or \(\phi _{\beta }^2(x_2)=1\) or \(\phi _{\alpha }^1(x_1)= \phi _{\beta }^2(x_2)=\alpha .\) The first two cases are obvious and we focus only on the third case: \(\phi _{\alpha }^1(x_1)= \phi _{\beta }^2(x_2)=\alpha \Longrightarrow \frac{\beta (d_2-x_1)+ x_1-c_2}{d_2-c_2}=\frac{\beta (d_2-x_2)+ x_2-c_2}{d_2-c_2}= \alpha \) according to (1) and (9). We have: (\(\frac{\beta (d_2-x_1)+ x_1-c_2}{d_2-c_2}=\frac{\beta (d_2-x_2)+ x_2-c_2}{d_2-c_2}= \alpha ) \Longrightarrow x_1=x_2,\) that contradicts \(x_1\ne x_2.\)

    4. (iv)

      If \(d_1\ne d_2\) (without loss of generality, we assume that \(d_1 < d_2\)).

      For \(x\in ]d_1,d_2[\), according to (1) we have: \(\phi _{\alpha }^1(x_1)=1\) and \(\phi _{\beta }^2(x)< 1,\) that contradicts (9).

      Finally, we have \(a_1=a_2,b_1=b_2,c_1=c_2,d_1=d_2.\)

  2. (2)

    Second step

    Let us prove that \(\alpha =\beta \).

    According to the first step, we have \([b_2,c_2]=[b_1,c_1]\). Moreover, \(x \in [b_1,c_1]\Longrightarrow \phi _{\alpha }^1(x_1)=\alpha \) and \(x \in [b_2,c_2]\Longrightarrow \phi _{\beta }^2(x)=\beta \).

    Thus: (\(x \in [b_1,c_1]\Longleftrightarrow x \in [b_2,c_2])\) and \( \phi _{\alpha }^1(x_1) =\phi _{\beta }^2(x),\) that is, \(\alpha =\beta \).

  3. (3)

    Third step

    Let us prove that \(\phi ^1(x)=\phi ^2(x),\forall x \in \mathbb {R}.\)

    By the fact that,

    \(\phi _{\alpha }^1(x)=\phi _{\beta }^2(x),\forall x \in \mathbb {R}, \alpha =\beta \) and

    $$\begin{aligned} \left\{ \begin{array}{l} a_1=a_2,\\ b_1=b_2,\\ c_1=c_2,\\ d_1=d_2 \end{array} \right. \end{aligned}$$

    we can conclude according to (1) that: \(\phi _{\alpha }^1(x_1)=\phi _{\lambda }^2(x),\forall x \in \mathbb {R},\forall \lambda \in [0,1]\), that means in the particular case where \(\lambda =\frac{1}{2}\) (Liu 2004), \(\phi ^1(x)=\phi ^2(x),\forall x \in \mathbb {R}.\) \(\square \)

Proof of Proposition 3

Proof of Theorem 1

Let be \(\xi _1=(a_1,b_1,c_1,d_1)\) and \(\xi _2=(a_2,b_2,c_2,d_)\) be two trapezoidal fuzzy variables with respective distribution functions \(\phi _{\lambda _1}\) and \(\phi _{\lambda _2}\) where \(\lambda \in [0,1]\). \((\Rightarrow )\) We assume that \(a_1< a_2\) or \(a_1< b_2\) or \(b_1< b_2\) or \(c_1< c_2\) or \(c_1< d_2\) or \(d_1< d_2\) we prove that \(\xi _1 \nsucceq _{d^{\lambda }_1} \xi _2,\) that is, there exists some \(r_0\in \mathbb {R}\) such that \(\phi _{\lambda _1}(x)(r_0)> \phi _{\lambda _2}(x)(r_0).\) We distinguish four cases:

  • First case: \(a_1< a_2\). Let consider \(r\in ]a_1,a_2[;\) we have: \(r> a_1\Rightarrow \phi _{\lambda _1}(r)> \phi _{\lambda _1}(a_1)=0\) and \(r< a_2\Rightarrow \phi _{\lambda _2}(r)=0\), Thus \(\phi _{\lambda _1}(r)>\phi _{\lambda _2}(r)\).

  • Second case: \(b_1< b_2\). Let consider \(r\in ]b_1,b_2[,\) we have: \(\phi _{\lambda _1}(r)>\phi _{\lambda _2}(r)\).

  • Third case: \(c_1< c_2\). Let consider \(r\in ]c_1,c_2[,\) we have: \(\phi _{\lambda _1}(r)>\phi _{\lambda _2}(r)\).

  • Fourth case: \(d_1< d_2\). Let consider \(r\in ]d_1,d_2[,\) we have: \(\phi _{\lambda _1}(r)>\phi _{\lambda _2}(r)\).

    Hence, we obtain: \(\xi _1 \nsucceq _{d^{\lambda }_1} \xi _2\).

\((\Leftarrow )\) We assume that \(a_1\ge a_2\),\(b_1 \ge b_2\),\(c_1\ge c_2\) and \(d_1\ge d_2\) and we prove that \(\xi _2\) is dominated by \(\xi _1,\) that is, \(\forall r \in \mathbb {R},\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

For that purpose, we have to study eight cases and conclude according to relation (1):

  • First case: if \( r\in ]-\infty , a_2]\), then: \(\phi _{\lambda _2}(r)=\phi _{\lambda _1}(r)=0\) since \(r\le a_2\le a_1\). Thus, \(\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

  • Second case: if \( r\in [a_2, a_1]\), then: \(\phi _{\lambda _2}(r)=\frac{r-a_2}{2(b_2-a_2)}\ge 0\) and \(\phi _{\lambda _1}(r)=0\). Thus, \(\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

  • Third case: if \( r \in [b_2, a_1]\) (with \(a_1 \ge b_2\),) then we have: either \(\phi _{\lambda _1}(r)=0\) and \(\phi _{\lambda _2}(r)=\frac{1}{2}\) that is \(\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

In the same way, if \( r\in [a_1, b_2]\) (with \(a_1 < b_2\),) then we have: \(\phi _{\lambda _1}(r)=\frac{r-a_1}{2(b_1-a_1)}\) and \(\phi _{\lambda _2}(r)=\frac{r-a_2}{2(b_2-a_2)}\).

Let us prove that \(\frac{r-a_1}{(b_1-a_1)}\le \frac{r-a_2}{2(b_2-a_2)}, \forall r\in [a_1, b_2] \).

Let us consider two functions f, g, respectively defined by: \(f(r)=\frac{r-a_1}{(b_1-a_1)}\) and \(g(r)=\frac{r-a_2}{(b_2-a_2)}\).

Let \(r_0 \in ]a_1, b_2[\). \(f(r_0)=g(r_0)\Leftrightarrow r_0=\frac{a_2(b_1-a_1)-a_1(b_2-a_2)}{(b_1-a_1)-(b_2-a_2)}\). \(r_0-a_1=\frac{(b_1-a_1)(a_2-a_1)}{(b_1-a_1)-(b_2-a_2)}\) and \(r_0-b_2=\frac{(b_2-b_1)(b_2-a_2)}{(b_1-a_1)-(b_2-a_2)}\) have the same sign because \(a_1\ge a_2\) and \(b_1\ge b_2\). This contradicts the fact that \(r_0 \in ]a_1, b_2[\). On the other hand, \(f(a_1)\le g(a_1)\), \(f(b_2)\le g(b_2)\), f and g are strictly non-decreasing on \(]a_1, b_2[\) and \(f(r)\ne g(r), \forall r \in ]a_1, b_2[ \), so \(f(r)\le g(r), \forall r \in [a_1, b_2] \), that is \(\frac{r-a_1}{(b_1-a_1)}\le \frac{r-a_2}{2(b_2-a_2)} \).

  • Fourth case: if \( r\in [\max (a_1,b_2), b_1]\), then we have: \(\phi _{\lambda _2}(r)=\frac{1}{2}\) and \(\phi _{\lambda _1}(r)=\frac{r-a_1}{2(b_1-a_1)}\le \frac{1}{2}\). Hence, \(\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

  • Fifth case: if \( r\in [b_1, c_2]\), then we have: \( \phi _{\lambda _2}(r)=\phi _{\lambda _1}(r)=\frac{1}{2}\) since \( b_2\le r\le b_1\) and \( c_2\le r\le c_1.\) Hence, \(\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

  • Sixth case: if \( r\in [c_2,\min (c_1,d_2)]\), then we have: \(\phi _{\lambda _2}(r)=1-\frac{r-d_2}{2(c_2-d_2)}\ge \frac{1}{2}\) and and \(\phi _{\lambda _1}(r)=\frac{1}{2}\). Hence, \(\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

  • Seventh case: if \( r\in [\min (c_1,d_2), d_1]\), then by using a similar proof as presented in the third case, we get \( \phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\).

  • Eighth case: \(\forall r\in [d_1, +\infty [, \phi _{\lambda _2}(r)=\phi _{\lambda _1}(r)=1.\) Hence, \(\phi _{\lambda _1}(r)\le \phi _{\lambda _2}(r)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzuche, J., Tassak, C.D., Sadefo Kamdem, J. et al. On two dominances of fuzzy variables based on a parametrized fuzzy measure and application to portfolio selection with fuzzy return. Ann Oper Res 300, 355–368 (2021). https://doi.org/10.1007/s10479-020-03873-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03873-5

Keywords

Navigation