Skip to main content
Log in

Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The environmental issue has attracted ever-increasing attention from governments and academics in recent years. Environmental performance analysis is widely considered a crucial and useful tool for effectively protecting the environment and developing a sustainable society. Many analytical techniques have been used to assess carbon emission performance, among which data envelopment analysis (DEA) is prominent. However, few previous DEA-related carbon emission performance studies recognize that the total amount of carbon dioxide emissions is limited to a specific level by authorities; ignoring this fixed-sum requirement may lead to distortions and deviations in empirical results. This paper proposes an alternative Malmquist DEA approach for evaluating the carbon emission performance while considering fixed-sum undesirable outputs. For this purpose, we develop a generalized equilibrium efficient frontier DEA model with fixed-sum undesirable outputs and combine the model with the Malmquist productivity index (MPI). The proposed approach is applied to assess the carbon emission performance of 30 provincial regions in China from 2009 to 2015. Then we provide analytical results and policy suggestions regarding the provincial carbon emission performance in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arcos-Vargas, A., Núñez-Hernández, F., & Villa-Caro, G. (2017). A DEA analysis of electricity distribution in Spain: An industrial policy recommendation. Energy Policy, 102, 583–592.

    Article  Google Scholar 

  • An, Q., Wang, P., Emrouznejad, A., & Hu, J. (2020). Fixed cost allocation based on the principle of efficiency invariance in two-stage systems. European Journal of Operational Research, 283(2), 662–675.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Bian, Y., Lv, K., & Yu, A. (2017). China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: An interval slacks-based measure approach. Annals of Operations Research, 255, 301–321.

    Article  Google Scholar 

  • Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica Journal of the Econometric Society, 50(6), 1393–1414.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9, 181–186.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  • Chen, C.-M., & Delmas, M. A. (2012). Measuring eco-inefficiency: A new frontier approach. Operations Research, 60, 1064–1079.

    Article  Google Scholar 

  • Chen, L., Guo, M., Li, Y., Liang, L., & Salo, A. (2020). Efficiency intervals, rank intervals and dominance relations of decision-making units with fixed-sum outputs. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2020.10.024.

    Article  Google Scholar 

  • Chu, J., Wu, J., Chu, C., & Liu, M. (2020). A new DEA common-weight multi-criteria decision-making approach for technology selection. International Journal of Production Research, 58, 3686–3700.

    Article  Google Scholar 

  • Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51, 229–240.

    Article  Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Data envelopment analysis: History, models, and interpretations. (pp. 1–39). Springer.

    Book  Google Scholar 

  • Dai, X., & Kuosmanen, T. (2014). Best-practice benchmarking using clustering methods: Application to energy regulation. Omega, 42, 179–188.

    Article  Google Scholar 

  • Fang, L. (2016). A new approach for achievement of the equilibrium efficient frontier with fixed-sum outputs. Journal of the Operational Research Society, 67, 412–420.

    Article  Google Scholar 

  • Färe, R., & Grosskopf, S. (2003). Nonparametric productivity analysis with undesirable outputs: Comment. American Journal of Agricultural Economics, 85, 1070–1074.

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1992). Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach. Journal of Productivity Analysis, 3, 85–101.

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., Lovell, C. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 84(1), 66–83.

    Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society Series A (General), 120, 253–281.

    Article  Google Scholar 

  • Gomes, E., & Lins, M. P. E. (2008). Modelling undesirable outputs with zero sum gains data envelopment analysis models. Journal of the Operational Research Society, 59, 616–623.

    Article  Google Scholar 

  • Guo, X. D., Zhu, L., Fan, Y., & Xie, B. C. (2011). Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy, 39, 2352–2360.

    Article  Google Scholar 

  • Hailu, A., & Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: An application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83, 605–616.

    Article  Google Scholar 

  • Halkos, G., & Petrou, K. N. (2019). Treating undesirable outputs in DEA: A critical review. Economic Analysis and Policy, 62, 97–104.

    Article  Google Scholar 

  • Kao, C. (2010). Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization. Omega, 38, 484–491.

    Article  Google Scholar 

  • Lei, X., Li, Y., Xie, Q., & Liang, L. (2015). Measuring Olympics achievements based on a parallel DEA approach. Annals of Operations Research, 226, 379–396.

    Article  Google Scholar 

  • Li, F., Emrouznejad, A., Yang, G. L., & Li, Y. (2020). Carbon emission abatement quota allocation in Chinese manufacturing industries: An integrated cooperative game data envelopment analysis approach. Journal of the Operational Research Society, 71(8), 1259–1288.

    Article  Google Scholar 

  • Li, F., Yan, Z., Zhu, Q., Yin, M., & Kou, G. (2020). Allocating a fixed cost across decision making units with explicitly considering efficiency rankings. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2020.1718561.

    Article  Google Scholar 

  • Li, F., Zhu, Q., & Liang, L. (2019). A new data envelopment analysis based approach for fixed cost allocation. Annals of Operations Research, 274(1–2), 347–372.

    Article  Google Scholar 

  • Li, J., & Lin, B. (2017). Does energy and CO2 emissions performance of China benefit from regional integration? Energy Policy, 101, 366–378.

    Article  Google Scholar 

  • Li, X., Li, F., Zhao, N., & Zhu, Q. (2020). Measuring environmental sustainability performance of freight transportation seaports in China: A data envelopment analysis approach based on the closest targets. Expert Systems, 37(4), e12334.

    Google Scholar 

  • Li, Y., Li, F., Emrouznejad, A., Liang, L., & Xie, Q. (2019). Allocating the fixed cost: An approach based on data envelopment analysis and cooperative game. Annals of Operations Research, 274(1–2), 373–394.

    Article  Google Scholar 

  • Li, Y., Liu, J., Ang, S., & Yang, F. (2020). Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018 winter Olympic Games. Omega. https://doi.org/10.1016/j.omega.2020.102342.

    Article  Google Scholar 

  • Li, Y., Wang, L., & Li, F. (2021). A data-driven prediction approach for sports team performance and its application to National Basketball Association. Omega, 98, 102123.

    Article  Google Scholar 

  • Lins, M. P. E., Gomes, E. G., de Mello, J. C. C. S., & de Mello, A. J. R. S. (2003). Olympic ranking based on a zero sum gains DEA model. European Journal of Operational Research, 148, 312–322.

    Article  Google Scholar 

  • Lozano, S. (2017). Technical and environmental efficiency of a two-stage production and abatement system. Annals of Operations Research, 255, 199–219.

    Article  Google Scholar 

  • Lozano, S., Villa, G., & Eguía, I. (2017). Data envelopment analysis with multiple modes of functioning. Application to reconfigurable manufacturing systems. International Journal of Production Research, 55, 7566–7583.

    Article  Google Scholar 

  • Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estadistica y de Investigacion Operativa, 4, 209–242.

    Article  Google Scholar 

  • Miao, Z., Geng, Y., & Sheng, J. C. (2016). Efficient allocation of CO2 emissions in China: A zero sum gains data envelopment model. Journal of Cleaner Production, 112, 4144–4150.

    Article  Google Scholar 

  • Pastor, J. T., & Lovell, C. K. (2005). A global Malmquist productivity index. Economics Letters, 88, 266–271.

    Article  Google Scholar 

  • Seiford, L. M., & Thrall, R. M. (1990). Recent developments in DEA: The mathematical programming approach to frontier analysis. Journal of Econometrics, 46, 7–38.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142, 16–20.

    Article  Google Scholar 

  • Sueyoshi, T., & Goto, M. (2010). Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis. Energy Policy, 38, 5902–5911.

    Article  Google Scholar 

  • Sueyoshi, T., & Goto, M. (2011). DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation. Energy Economics, 33, 292–303.

    Article  Google Scholar 

  • Suzuki, S., & Nijkamp, P. (2016). An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a target-oriented DFM model with fixed factors in data envelopment analysis. Energy Policy, 88, 100–112.

    Article  Google Scholar 

  • Tavana, M., Khalili-Damghani, K., Santos Arteaga, F. J., & Hashemi, A. (2020). A Malmquist productivity index for network production systems in the energy sector. Annals of Operations Research, 284, 415–445.

    Article  Google Scholar 

  • Wang, K., Wu, M., Sun, Y., Shi, X., Sun, A., & Zhang, P. (2019). Resource abundance, industrial structure, and regional carbon emissions efficiency in China. Resources Policy, 60, 203–214.

    Article  Google Scholar 

  • Wang, K., Zhang, X., Wei, Y. M., & Yu, S. W. (2013). Regional allocation of CO2 emissions allowance over provinces in China by 2020. Energy Policy, 54, 214–229.

    Article  Google Scholar 

  • Wang, Y. M., & Lan, Y. X. (2011). Measuring Malmquist productivity index: A new approach based on double frontiers data envelopment analysis. Mathematical and Computer Modelling, 54, 2760–2771.

    Article  Google Scholar 

  • Wu, F., Fan, L., Zhou, P., & Zhou, D. (2012). Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energy Policy, 49, 164–172.

    Article  Google Scholar 

  • Wu, J., An, Q., Yao, X., & Wang, B. (2014). Environmental efficiency evaluation of industry in China based on a new fixed sum undesirable output data envelopment analysis. Journal of Cleaner Production, 74, 96–104.

    Article  Google Scholar 

  • Wu, J., Xia, P., Zhu, Q., & Chu, J. (2019). Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output. Annals of Operations Research, 275(2), 731–749.

    Article  Google Scholar 

  • Xie, Q., Hu, P., Jiang, A., & Li, Y. (2019). Carbon emissions allocation based on satisfaction perspective and data envelopment analysis. Energy Policy, 132, 254–264.

    Article  Google Scholar 

  • Yang, F., Wu, D. D., Liang, L., & O’Neill, L. (2011). Competition strategy and efficiency evaluation for decision making units with fixed-sum outputs. European Journal of Operational Research, 212, 560–569.

    Article  Google Scholar 

  • Yang, M., Li, Y., Chen, Y., & Liang, L. (2014). An equilibrium efficiency frontier data envelopment analysis approach for evaluating decision-making units with fixed-sum outputs. European Journal of Operational Research, 239, 479–489.

    Article  Google Scholar 

  • Yang, M., Li, Y. J., & Liang, L. (2015). A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs. European Journal of Operational Research, 246, 209–217.

    Article  Google Scholar 

  • Yu, S., Wei, Y. M., & Wang, K. (2014). Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition. Energy Policy, 66, 630–644.

    Article  Google Scholar 

  • Zhang, J., Zeng, W., Wang, J., Yang, F., & Jiang, H. (2017). Regional low-carbon economy efficiency in China: Analysis based on the Super-SBM model with CO2 emissions. Journal of Cleaner Production, 163, 202–211.

    Article  Google Scholar 

  • Zhang, Y. J., & Da, Y. B. (2015). The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renewable and Sustainable Energy Reviews, 41, 1255–1266.

    Article  Google Scholar 

  • Zhang, Y., & Hao, J. (2017). Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles. Annals of Operations Research, 255, 117–140.

    Article  Google Scholar 

  • Zhang, Y. J., Sun, Y. F., & Huang, J. (2018). Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment. Energy Policy, 115, 119–130.

    Article  Google Scholar 

  • Zhang, Y. J., Wang, A. D., & Da, Y. B. (2014). Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method. Energy Policy, 74, 454–464.

    Article  Google Scholar 

  • Zhou, P., Ang, B., & Han, J. (2010). Total factor carbon emission performance: A Malmquist index analysis. Energy Economics, 32, 194–201.

    Article  Google Scholar 

  • Zhou, P., Sun, Z., & Zhou, D. (2014). Optimal path for controlling CO2 emissions in China: a perspective of efficiency analysis. Energy Economics, 45, 99–110.

    Article  Google Scholar 

  • Zhu, Q., Li, X., Li, F., Wu, J., & Sun, J. (2021). Analyzing the sustainability of China’s industrial sectors: A data-driven approach with total energy consumption constraint. Ecological Indicators, 122, 107235.

  • Zhu, Q., Li, X., Li, F., Wu, J., & Zhou, D. (2020). Energy and environmental efficiency of China’s transportation sectors under the constraints of energy consumption and environmental pollutions. Energy Economics, 89, 104817.

    Article  Google Scholar 

  • Zhu, Q., Wu, J., Song, M., & Liang, L. (2017). A unique equilibrium efficient frontier with fixed-sum outputs in data envelopment analysis. Journal of the Operational Research Society, 68, 1483–1490.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and two anonymous reviewers for their kind work and insightful comments and suggestions. This research was financially supported by the National Natural Science Foundation of China (Nos. 72071192, 71901178, 71910107002, 71771126, 71671172, and 71631006) and the Fundamental Research Funds for the Central Universities (Nos. JBK2003021, and JBK190504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Model (3) is a nonlinear model that needs to be transformed into a linear model. The first step is to convert model (3) into model (A1):

$$ \begin{array}{*{20}l} {Min\;\sum\nolimits_{j = 1}^{n} {\sum\nolimits_{a = 1}^{l} {w_{a} \left| {\delta_{aj}^{u} } \right|} } } \hfill & {} \hfill \\ {s.t.\;\frac{{\sum\nolimits_{r = 1}^{s} {u_{r} y_{rj} + \mu_{0} } }}{{\sum\nolimits_{i = 1}^{m} {v_{i} x_{ij} + \sum\nolimits_{a = 1}^{l} {w_{a} (f_{aj}^{u} + \delta_{aj}^{u} )} } }} = 1} \hfill & {\forall j} \hfill \\ {\sum\nolimits_{j = 1}^{n} {\delta_{aj}^{u} = 0} } \hfill & {\forall a} \hfill \\ {f_{aj}^{u} + \delta_{aj}^{u} \ge 0} \hfill & {\forall a,j} \hfill \\ {u_{r} ,v_{i} ,w_{a} \ge 0} \hfill & {\forall r,i,a} \hfill \\ {{\kern 1pt} \delta_{aj}^{u} \;{\text{and}}\;\mu_{0} \;are\;free} \hfill & {} \hfill \\ \end{array} $$
(A1)

For model (A1), although \(\left| {\delta_{aj}^{u} } \right|\) represents both positive and negative adjustments, the second constraint of model (3) shows that for \(\forall a\), the sum of the positive adjustment and the negative adjustment is zero. Therefore, we have \(\sum\nolimits_{j = 1}^{n} {\left| {\delta_{aj}^{u} } \right|} { = 2}\sum\nolimits_{j = 1}^{n} {\alpha_{aj}^{u} }\) for models (3) and (A1). Further, it is easy to demonstrate that the objective function of model (A1) is twice that of model (3), as \(\sum\nolimits_{j = 1}^{n} {\sum\nolimits_{a = 1}^{l} {w_{a} \left| {\delta_{aj}^{u} } \right|} } { = }\sum\nolimits_{a = 1}^{l} {\sum\nolimits_{j = 1}^{n} {w_{a} \left| {\delta_{aj}^{u} } \right|} } = 2\sum\nolimits_{a = 1}^{l} {\sum\nolimits_{j = 1}^{n} {w_{a} \alpha_{aj}^{u} } } { = 2}\sum\nolimits_{j = 1}^{n} {\sum\nolimits_{a = 1}^{l} {w_{a} \alpha_{aj}^{u} } }\). Under the premise that the constraints remain unchanged (the feasible region remains unchanged), if the objective function has a proportional transformation, the optimal solution does not change.

Letting \(\delta_{aj}^{^{\prime}u} = w_{a} \delta_{aj}^{u}\), the constraints of model (A1) change into linear constraints as in model (A2):

$$ \begin{array}{*{20}l} {Min\;\sum\nolimits_{j = 1}^{n} {\sum\nolimits_{a = 1}^{l} {\left| {\delta_{aj}^{^{\prime}u} } \right|} } } \hfill & {} \hfill \\ {s.t.\;\sum\nolimits_{r = 1}^{s} {u_{r} y_{rj} - \sum\nolimits_{i = 1}^{m} {v_{i} x_{ij} - \sum\nolimits_{a = 1}^{l} {(w_{a} f_{aj}^{u} + \delta_{aj}^{^{\prime}u} )} } + \mu_{0} } = 0} \hfill & {\forall j} \hfill \\ {\sum\nolimits_{j = 1}^{n} {\delta_{aj}^{^{\prime}u} = 0} } \hfill & {\forall a} \hfill \\ {\sum\nolimits_{i = 1}^{m} {v_{i} x_{ij} { + }\sum\nolimits_{a = 1}^{l} {(w_{a} f_{aj}^{u} + \delta_{aj}^{^{\prime}u} )} } \ge C} \hfill & {\forall j} \hfill \\ {w_{a} f_{aj}^{u} + \delta_{aj}^{^{\prime}u} \ge 0} \hfill & {\forall a,j} \hfill \\ {u_{r} ,v_{i} ,w_{a} \ge 0} \hfill & {\forall r,i,a} \hfill \\ {\delta_{aj}^{^{\prime}u} \;and\;\mu_{0} \;are\;free} \hfill & {} \hfill \\ \end{array} {\kern 1pt} $$
(A2)

In model (A2), C is a prespecified constant that ensures the \(\sum\nolimits_{i = 1}^{m} {v_{i} x_{ij} + \sum\nolimits_{a = 1}^{l} {w_{a} (f_{aj}^{u} + \delta_{aj}^{u} )} }\) in model (A1) is a positive number (it is used in a denominator). The following Proposition 1 shows that the value of C will not affect the optimal solution of \(\delta_{aj}^{^{\prime}u}\) in model (A2).

Proposition 1.

If \(\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is an optimal solution to the model (A2) with one given positive constant C, then, \(\frac{{C^{\prime}}}{C}\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is also an optimal solution of the model (A2) with any other positive constant \(C^{\prime}\) in the same round optimization.

Proof.

First, we prove that \(\frac{{C^{\prime}}}{C}\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is a feasible solution for model (A2) with a given random positive constant \(C^{\prime}\). For the convenience of writing, we set \({{\varphi }} = \frac{{C^{\prime}}}{C}\) \(\left( {{{\varphi }} > 0} \right)\). Then, according to this optimal solution \(\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\), we bring \(\left( {{{\varphi }}u_{r}^{*} ,{{ \varphi }}v_{i}^{*} ,{{ \varphi }}w_{a}^{*} ,{{ \varphi }}\delta_{aj}^{{^{\prime}u^{*} }} ,{{ \varphi }}\mu_{0}^{*} } \right)\) into all the constraints when the model (A2) has any positive constant C' as follows.

$$ \begin{aligned} & \sum\limits_{r = 1}^{s} {\varphi u_{r}^{*} y_{rj} - \sum\limits_{i = 1}^{m} {\varphi v_{i}^{*} x_{ij} - \sum\limits_{a = 1}^{l} {(\varphi w_{a}^{*} f_{aj}^{u} + \varphi \delta_{aj}^{{{\prime }u^{*} }} )} } + \varphi \mu_{0}^{*} } \\ & \quad = \varphi \left( {\sum\limits_{r = 1}^{s} {u_{r}^{*} y_{rj} - \sum\limits_{i = 1}^{m} {v_{i}^{*} x_{ij} - \sum\limits_{a = 1}^{l} {(w_{a}^{*} f_{aj}^{u} + \delta_{aj}^{{{\prime }u^{*} }} )} } + \mu_{0}^{*} } } \right) = 0 \\ & \sum\limits_{j = 1}^{n} {\varphi \delta_{aj}^{{{\prime }u^{*} }} } = \varphi \sum\limits_{j = 1}^{n} {\delta_{aj}^{{^{\prime}u^{*} }} } = 0{\kern 1pt} \\ & \sum\limits_{i = 1}^{m} {\varphi v_{i}^{*} x_{ij} { + }\sum\limits_{a = 1}^{l} {\left( {\varphi w_{a}^{*} f_{aj}^{u} + \varphi \delta_{aj}^{{{\prime }u^{*} }} } \right)} } \\ & \quad = \varphi \left( {\sum\limits_{i = 1}^{m} {v_{i}^{*} x_{ij} { + }\sum\limits_{a = 1}^{l} {(w_{a}^{*} f_{aj}^{u} + \delta_{aj}^{{{\prime }u^{*} }} )} } } \right) \ge \varphi C = C^{{\prime }} \\ & \varphi w_{a}^{*} f_{aj}^{u} {\kern 1pt} + \varphi \delta_{aj}^{{{\prime }u^{*} }} = \varphi (w_{a}^{*} f_{aj}^{u} + \delta_{aj}^{{{\prime }u^{*} }} ) \ge 0 \\ {\kern 1pt} & \varphi u_{r}^{*} ,\varphi v_{i}^{*} ,\varphi w_{a}^{*} \ge 0 \\ & \varphi \delta_{aj}^{{{\prime }u^{*} }} ,\;\varphi \mu_{0}^{*} \;are\;free \\ \end{aligned} $$

It is clear that \(\frac{{C^{\prime}}}{C}\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) satisfies all the constraints of model (A2) with a given random positive constant \(C^{\prime}\), therefore, the feasibility of the solution is proved.

Next, we prove that \(\frac{{C^{\prime}}}{C}\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is an optimal solution for model (A2) with \(C^{\prime} > 0\). Assuming that the above feasible solution is not the optimal solution, then we can find at least a feasible \(\left( {{{\varphi }}u_{r} ,{{ \varphi }}v_{i} ,{{ \varphi }}w_{a} ,{{ \varphi }}\delta_{aj}^{^{\prime}u} ,{{ \varphi }}\mu_{0} } \right)\) for model (A2) with \(C^{\prime} > 0\) such that \(\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{^{\prime}u} } \right|} } < \sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } \right|} }\). Accordingly, it is easy to verify that \(\left( {u_{r} ,{ }v_{i} ,{ }w_{a} ,{ }\delta_{aj}^{^{\prime}u} ,{ }\mu_{0} } \right)\) is also a feasible solution for model (A2) with C.

For \(\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{^{\prime}u} } \right|} }\), we have \(\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{^{\prime}u} } \right|} } { = }\left\{ \begin{gathered} {2}\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{^{\prime}u} } {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (\delta_{aj}^{^{\prime}u} \ge 0)} \hfill \\ { - 2}\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{^{\prime}u} } {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (\delta_{aj}^{^{\prime}u} < 0)} \hfill \\ \end{gathered} \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}\). Similarly, for \(\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } \right|} }\), we have \(\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } \right|} } { = }\left\{ \begin{gathered} {2}\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (\delta_{aj}^{{^{\prime}u^{*} }} \ge 0)} \hfill \\ { - 2}\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (\delta_{aj}^{{^{\prime}u^{*} }} < 0)} \hfill \\ \end{gathered} \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}\). According to the first constraint of model (A2), we have \(\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{^{\prime}u} } { = }\sum\limits_{r = 1}^{s} {\varphi u_{r} y_{rj} - \sum\limits_{i = 1}^{m} {\varphi v_{i} x_{ij} - \sum\limits_{a = 1}^{l} {\varphi w_{a} f_{aj}^{u} } } + \varphi \mu_{0} }\) and \(\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } { = }\sum\limits_{r = 1}^{s} {\varphi u_{r}^{*} y_{rj} - \sum\limits_{i = 1}^{m} {\varphi v_{i}^{*} x_{ij} - \sum\limits_{a = 1}^{l} {\varphi w_{a}^{*} f_{aj}^{u} } } + \varphi \mu_{0}^{*} }\). We then take all \(DMU_{j}\) with \(\delta_{aj}^{^{\prime}u} \ge 0\) and all \(DMU_{j}\) with \(\delta_{aj}^{{^{\prime}u^{*} }} \ge 0\), and we have \(\begin{gathered} \sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{^{\prime}u} } \right|} } { = 2}\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{^{\prime}u} } } { = 2}\varphi \sum\limits_{j = 1}^{n} {{(}\sum\limits_{r = 1}^{s} {u_{r} y_{rj} - \sum\limits_{i = 1}^{m} {v_{i} x_{ij} - \sum\limits_{a = 1}^{l} {w_{a} f_{aj}^{u} } } + \mu_{0} } ){\kern 1pt} } \hfill \\ < \sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } \right|} } = 2\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } } { = 2}\varphi \sum\limits_{j = 1}^{n} {(\sum\limits_{r = 1}^{s} {u_{r}^{*} y_{rj} - \sum\limits_{i = 1}^{m} {v_{i}^{*} x_{ij} - \sum\limits_{a = 1}^{l} {w_{a}^{*} f_{aj}^{u} } } + \mu_{0}^{*} } )} \hfill \\ \end{gathered}\). However, \(\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is an optimal solution of model (A2) with C, so taking all \(DMU_{j}\) with \(\delta_{aj}^{^{\prime}u} \ge\) and all \(DMU_{j}\) with \(\delta_{aj}^{{^{\prime}u^{*} }} \ge 0\) we have \(\begin{gathered} \sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\delta_{aj}^{{^{\prime}u^{*} }} } \right|} } = 2\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\delta_{aj}^{{^{\prime}u^{*} }} } } { = 2}\sum\limits_{j = 1}^{n} {(\sum\limits_{r = 1}^{s} {u_{r}^{*} y_{rj} - \sum\limits_{i = 1}^{m} {v_{i}^{*} x_{ij} - \sum\limits_{a = 1}^{l} {w_{a}^{*} f_{aj}^{u} } } + \mu_{0}^{*} } )} \hfill \\ < \sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\delta_{aj}^{^{\prime}u} } \right|} } { = 2}\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\delta_{aj}^{^{\prime}u} } } { = 2}\sum\limits_{j = 1}^{n} {{(}\sum\limits_{r = 1}^{s} {u_{r} y_{rj} - \sum\limits_{i = 1}^{m} {v_{i} x_{ij} - \sum\limits_{a = 1}^{l} {w_{a} f_{aj}^{u} } } + \mu_{0} } ){\kern 1pt} } \hfill \\ \end{gathered}\). This contradicts our previous assumption \(\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{^{\prime}u} } \right|} } < \sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left| {\varphi \delta_{aj}^{{^{\prime}u^{*} }} } \right|} }\). Therefore, \(\frac{{C^{\prime}}}{C}\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is an optimal solution for model (A2) with \(C^{\prime} > 0\).

The above Proposition 1 shows that the value of C does not affect the optimal solution of \(\delta_{aj}^{^{\prime}u}\) in model (A2). Besides, it shows that under the condition of any given constant C, the \(\delta_{aj}^{{u^{*} }}\) obtained by solving model (A2) is also the optimal solution for model (A1). Assume that \(\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is an optimal solution of model (A2) based on an arbitrary positive number C. Then, according to Proposition 1, \(\frac{{C^{\prime}}}{C}\left( {u_{r}^{*} ,{ }v_{i}^{*} ,{ }w_{a}^{*} ,{ }\delta_{aj}^{{^{\prime}u^{*} }} ,{ }\mu_{0}^{*} } \right)\) is also an optimal solution for model (A2) based on C'. Therefore, we can get \(\delta_{aj}^{{u^{*} }} { = }\frac{{\delta_{aj}^{{^{\prime}u^{*} }} }}{{w_{a}^{*} }} = \frac{{\frac{{C^{^{\prime}} }}{C}\delta_{aj}^{{^{\prime}u^{*} }} }}{{\frac{{C^{^{\prime}} }}{C}w_{a}^{*} }}\). That is to say, \(\delta_{aj}^{{u^{*} }}\) is the optimal value of model (A1) and is not affected by the value of the positive number C.

To facilitate the solution, let \(a_{aj} = \frac{1}{2}\left( {\left| {\delta_{aj}^{^{\prime}u} } \right| + \delta_{aj}^{^{\prime}u} } \right),b_{aj} = \frac{1}{2}\left( {\left| {\delta_{aj}^{^{\prime}u} } \right| - \delta_{aj}^{^{\prime}u} } \right)\). It is obvious that \(a_{aj} \ge 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} b_{aj} \ge 0\), and we have \(\left| {\delta_{aj}^{^{\prime}u} } \right| = a_{aj} + b_{aj} ,\delta_{aj}^{^{\prime}u} = a_{aj} - b_{aj} \left( {\forall a,j} \right)\). Therefore, model (A2) can be transformed into the following model (A3):

$$ \begin{array}{*{20}l} {Min\;\sum\limits_{j = 1}^{n} {\sum\limits_{a = 1}^{l} {\left( {a_{aj} + b_{aj} } \right)} } } \hfill & {} \hfill \\ {s.t.\;\sum\limits_{r = 1}^{s} {u_{r} y_{rj} - \sum\limits_{i = 1}^{m} {v_{i} x_{ij} - \sum\limits_{a = 1}^{l} {(w_{a} f_{aj}^{u} + a_{aj} - b_{aj} )} } } + \mu_{0} = 0} \hfill & {\forall j} \hfill \\ {\sum\limits_{j = 1}^{n} {(a_{tj} - b_{tj} ) = 0} } \hfill & {\forall a} \hfill \\ {\sum\limits_{i = 1}^{m} {v_{i} x_{ij} + \sum\limits_{a = 1}^{l} {(w_{a} f_{aj}^{u} + a_{aj} - b_{aj} )} } \ge C} \hfill & {\forall j} \hfill \\ {w_{a} f_{aj}^{u} + a_{aj} - b_{aj} \ge 0} \hfill & {\forall a,j} \hfill \\ {u_{r} ,v_{i} ,w_{a} ,a_{aj} ,b_{aj} \ge 0} \hfill & {\forall r,i,a,j} \hfill \\ {\mu_{0} \;is\;free} \hfill & {} \hfill \\ \end{array} {\kern 1pt} $$
(A3)

Thus, model (3) is translated into a linear programming problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hou, W., Zhu, W. et al. Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs. Ann Oper Res 304, 233–261 (2021). https://doi.org/10.1007/s10479-021-04062-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04062-8

Keywords

Navigation