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Abstract
The variation of and the interrelation between different energy markets significantly affect 
the competitiveness of various energy technologies, therefore complicate the decision-
making problem for a complex energy system consisting of multiple competing technolo-
gies, especially in a long-term time frame. The interrelations between these markets have 
not been accounted for in the existing energy system modelling efforts, leading to a distor-
tion of understanding of the market impact on the technological choices and operations in 
the real world. This study investigates the strategic and operational decision-making prob-
lem for such an energy system characterized by three competing technologies from crude 
oil, natural gas, and coal. A stochastic programming model is constructed by incorporating 
multiple volatile energy prices interrelated with each other. Oil price is modelled by the 
mean-reverting Ornstein–Uhlenbeck process and serves as the exogenous variable in the 
ARIMAX models for natural gas and downstream plastic prices. The K-means clustering 
method is employed to extract a handful of distinctive patterns from a large number of 
simulated price projections to enhance the computing efficiency without losing retaining 
critical information and insights from the price co-movement. The model results suggest 
that the high volatility of the energy market weakens the possibility of selecting the cor-
responding technology. The oil-based route, for example, gradually loses its market share 
to the coal approach, attributed to a higher volatile oil market. The proposed method is 
applicable to other problems of the same kind with high-dimensional stochastic variables.
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1  Introduction

Energy systems are subject to substantial market uncertainty. Some extreme events, such as 
the coronavirus crisis, caused a dramatic plunge in the global oil market in 2020. The com-
plexity of the energy supply chain is reflected by the fact that one product could be produced 
from a variety of technologies with various fuels and types of feedstock. For instance, down-
stream petrochemical products such as plastics may come from technologies fueled by oil, 
natural gas, or coal. As a result, fluctuation in one energy market would pass on its impacts 
to another. This raises the question of how these interrelations between energy markets affect 
capacity expansion and plant operations? Risks from prices and demands have been assessed 
in many supply chain decision-making exercises (Awudu & Zhang, 2013; Borodin et  al., 
2016). Some studies have also analyzed market uncertainty in particular energy system mod-
els (ESM) to examine the effects from energy market variation or price volatility (Kim et al., 
2019; Lund et al., 2018; McCollum et al., 2016). Risk measuring methods such as incorporat-
ing Conditional Value-at-Risk (CVaR) have been tested in the optimization models (Alonso-
Ayuso et al., 2018).

Most of the studies consider single price variables as uncertain or stochastic in the mod-
els, yet interactions between multiple markets in a supply chain network remain unaccounted 
for in the existing modelling efforts. Questions like what are the impacts from the interplay 
between energy markets on the operations of these technologies at a more granular timescale 
have not been answered, particularly for the energy systems that involve many competing tech-
nologies linking a range of commodities traded in separate but interrelated markets. Stochastic 
programming models prove an effective tool that enables planners to address uncertainties in 
some key parameters. However, modelling multiple stochastic variables would be computa-
tionally demanding, especially for large-scale energy system models (ESMs).

This study aims to address these problems by investigating how the interrelations across 
multiple volatile energy markets affect the strategic and operational decision-making in ESM 
and what consequences in carbon emissions would be. To this end, we construct a stochastic 
programming model for a petrochemical energy system. The targeted supply system network 
starts with upstream production technologies with different types of feedstock, namely, coal, 
crude oil, and natural gas, for downstream plastics production. These factors in the decision-
making problem are pretty common when energy firms are coping with production planning 
and scheduling, as energy commodities are becoming more internationally traded nowadays, 
and mutual effects are increasingly strong (BP, 2020).

The paper is structured as follows. After this introduction, Sect.  2 overviews the litera-
ture in addressing uncertainty in ESMs, and the interrelations between energy prices through 
econometric and statistical approaches. Section 3 describes the problems as well as the supply 
chain in the scope. Section 4 details model construction, focusing on how multiple stochastic 
variables are treated in the model. Section 5 summarizes the results and explores policy impli-
cations. Section 6 concludes and discusses possible research directions.

2 � Literature review

ESMs are essential methods used to generate a range of insights and analyses on the sup-
ply and demand system of energy (Pfenninger et  al., 2014). One of the ESM modeling 
approaches is conducted in the way of supply chain optimization, which minimizes the 
total cost of a multi-layer, intertwined energy supply system with a bunch of constraints. 
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Dealing with price uncertainty has long been a critical issue in energy system modelling. 
It lies in two crucial aspects, modelling price variation and incorporation of price varia-
tion into ESM. In many cases, these two aspects show disparate research domains. Differ-
ent price movement patterns have been modelled and analyzed by time-series techniques. 
However, accounting for the variation in ESM is focused on examining the effects of var-
ying price levels on the results of energy system planning. This section summarizes the 
existent studies in the literature and highlights how this study attempts to advance in this 
domain to improve the representation of the interplay between different energy markets in 
an intertwined energy system.

2.1 � Modelling price uncertainty in energy supply system optimization

Energy supply system optimization is focused on problems such as capacity configuration, 
investment planning, unit commitment, and electricity dispatch for power systems, among 
others (Kim & Poor, 2011; Soroudi et al., 2016; Wei et al., 2015). Many energy markets 
are emerging amid a trend of deregulation worldwide, leading to high-volatility price vari-
ation. Modelling the volatile price movements, as well as the associated demand response, 
has begun critical to ESM.

There have been various approaches to coping with price variation or other uncertain 
sources in ESM. Table  1 summarizes some examples of incorporating price uncertainty 
into different ESMs. Although there are many types of ESM, the majority of the selected 
studies fall into optimization, reflecting a variety of methods coping with price uncertainty. 
For example, stochastic programming (SP) models the uncertain data with an essential 
assumption that the true probability distributions need to be known or estimated. It deals 
with uncertainty in the way of optimizing the expected value over the possible realiza-
tions and is often regarded as a scenario-based approach for optimization under uncertainty 
(Grossmann et al., 2016). The range of price variation can also be approached by fitting 
time-series models or other methods to generate a set of representative price scenarios, 
termed as ‘alternative scenarios’ (Lund et al., 2018). This approach provides a straightfor-
ward representation of price movement along the modelling horizon; therefore, it could 
directly illustrate the effects on the outcome variables (Tables 2, 3, 4).

Robust optimization (RO) represents another paradigm that does not require known 
probability distributions. It instead assumes that the uncertain data resides in the so-called 
uncertainty set and is deemed more computationally tractable for many classes of uncer-
tainty sets and problem types (Gorissen et  al., 2015). Managing assets investment is an 
active area where RO is frequently applied to accounting for price uncertainty (Kim et al., 
2019). Chance constrained programming is regarded as another powerful tool to cope with 
fluctuating prices in energy system optimization problems (Ning & You, 2019). It aims to 
optimize an objective while ensuring constraints to be satisfied with a specified probability 
in an uncertain environment (Uryasev, 2000). A prominent feature of this approach lies in 
allowing decision-makers to choose their risk levels and therefore examine the improve-
ment in objectives (Ning & You, 2019). It thus has been employed in numerous applica-
tions, including process design and operations and supply chain optimization (Ye & You, 
2016; You and Grossmann, 2011).

Nevertheless, it generally has a disadvantage of computational inefficiency when the 
complexity of the problem increases. Other practices include introducing fuzzy numbers 
into a diffuse model to improve information capture and representativeness, accounting for 
uncertainty regarding concepts or linguistic nature (Cunico et al., 2017). It is noteworthy 
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that selecting the most appropriate method depends on the nature of the targeted problem 
and the uncertainty sources in the scope.

Table 1   Selected literature of accounting for price variation in ESM

References ESM type Uncertainty sources Uncertainty modelling method

Kim et al. (2019) Optimization Solar photovoltaic price Stochastic programming
Lund et al. (2018) Simulation Fuel prices, electricity 

price
Alternative scenarios

Soroudi et al. (2016) Optimization Electricity price Robust optimization
Wei et al. (2015) Optimization Electricity price Robust optimization
Ye and You (2016) Simulation + optimi-

zation
Inventory Chance-constrained

McCollum et al. (2016) Optimization Fossil fuel prices Alternative scenarios
Seljom and Tomasgard 

(2015)
Optimization Electricity price Stochastic programming

Babonneau and Haurie 
(2019)

Optimization Electricity price Robust optimization

Cunico et al. (2017) Optimization Fossil fuel prices, 
availability of fossil 
reserves, demands

Fuzzy number

Rout et al. (2008) Optimization Fossil fuel prices Alternative scenarios
Ren et al. (2019) Optimization Carbon price Stochastic programming
Kim and Poor (2011) Simulation + optimi-

zation
Electricity price Stochastic programming

Table 2   Parameters and data for the upstream technologies of the energy system

Parameter Unit Oil-based Coal-based Gas-based

Capacity Mton/yr 1.095 1.095 1.095
Life span years 25 25 25
Input
Naphtha Mton/yr 2.901 – –
Coal Mton/yr – 7.576 –
Ethane-propane Mton/yr – – 1.553
Output
Ethylene Mton/yr 0.986 0.986 0.986
Propylene Mton/yr 0.404 0.862 0.224
Capital investment Million yuan 4877 35,795 4268
Fixed O&M Million yuan 147 716 141
Variable O&M Million yuan 628 2219 526
Economic share of ethylene 0.41 0.53 0.66
CO2 emissions Ton/ton 1.13 5.79 1.58
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2.2 � Time‑series analysis of energy price variation

Time-series techniques have been employed in investigating the interrelationships across 
different energy markets. These studies, however, represent a separate research domain 
focusing on the stochasticity of energy markets without being incorporated into ESM. The 
targeted markets include crude oil, natural gas, and coal, among others, which are put in a 
relatively long-term scope to uncover their macro-economic impacts. A prevalent view is 
that oil prices are determined globally, while natural gas and coal prices are more deter-
mined regionally (Mohammadi, 2011). Although there is co-movement between the differ-
ent markets in the long run, the price transmission mechanism is not the same, and in many 
cases, it presents an asymmetric and nonlinear manner (Atil et al., 2014). Under some mar-
ket conditions, it is revealed that there exists short-run departures from the long-run equi-
librium price between natural gas and crude oil, with many voices have noted that the price 
series appear to have decoupled (Ramberg & Parsons, 2012). It is also argued that technol-
ogy is critical to the long-run relationship between fuel prices (Hartley et al., 2008). More-
over, significant cross-volatility spillover is found to exert persistent volatility effects for 
other markets such as agriculture and precious metals (Du et al., 2011; Kang et al., 2017).

Table 3   Key data and assumptions for the downstream supply chain

Unit Plastic plant 1 Plastic plant 2

Capacity for Product A Thousand tons Kton/yr 630 350
Capacity for Product B Kton/yr 820 750
Capital cost Million yuan 2375.82 2039.47
Fixed O&M Million yuan/yr 16.63 14.28
Variable O&M Million yuan/yr 2.85 2.45

Unit Customer 1 Customer 2 Customer 3 Customer 4

Demand for product A Kton/yr 72,163 48,503 83,993 70,980
Demand for product B Kton/yr 83,993 48,503 106,470 141,960

Table 4   Validation criteria for 
different numbers of clusters

Number of clusters CP SP Ratio of 
SP and CP

4 5631 66,088 11.74
5 5662 70,366 12.43
6 4738 60,475 12.76
7 6316 79,909 12.65
8 4633 57,313 12.37
9 6116 74,909 12.25
10 6521 73,110 11.21
11 6708 71,122 10.60
12 6521 70,896 10.87
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2.3 � Research goals

Energy market fluctuation is considered one of the most impactful factors in the energy 
system. To our knowledge, only a few studies are incorporating time-series analytical 
methods into energy system modeling (Kim et  al., 2019; Lima et  al., 2018), whereas a 
thorough and profound analysis is still absent regarding examining the mutual effect among 
multiple energy markets in ESM. Smaller-scale ESMs or single-period supply chain opti-
mization models allow for implementation with methods such as Monte Carlo simulation 
or SP to deal with price uncertainty (Ren et al., 2020; Rezaee et al., 2017; Waltho et al., 
2019). On the contrary, large-scale ESMs often build on relatively long timeframes; gener-
ating sufficient scenario trees for price over a long time horizon entails the curse of dimen-
sionality. As a result, methods depending on distribution simulation of uncertain variables, 
such as stochastic programming, are computationally demanding and in many cases not 
even solvable. On the other hand, price scenarios with similar movement patterns in a large 
scenario set would actually result in the same outcomes of concern, indicating that reduc-
ing the number of price scenarios while retaining its crucial information of uncertainty is 
a feasible solution to overcome the computing burden. In this case, generating the most 
representative price scenarios becomes essential.

Figure  1 illustrates the structure of the proposed integrated modelling framework for 
linking interrelated energy price simulation with the ESM. This new approach employs 
time-series modelling of interrelated energy price variables and obtains a relatively small 
number of distinct price scenarios from an iterative machine-learning clustering proce-
dure. These representative price scenarios are subsequently introduced into the constructed 
stochastic ESM to calculate the strategic and operational outcome variables consider-
ing intertwined energy price variations. This new framework could improve the calcula-
tion efficiency of traditional stochastic ESMs, which reply on simulating numerous sce-
narios regarding stochastic variables, and retain the critical information of uncertainty 
simultaneously.

The contribution reflected in the research goals of this study lies in three aspects. First, 
constructing an integrated modelling framework for a complicated energy system consist-
ing of three competing technologies subject to multiple intertwined energy markets. Sec-
ond, introducing machine-learning clustering into the framework to improve computation 
efficiency by generating the most representative price scenarios and while retaining the 
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Fig. 1   The integrated modelling framework for linking interrelated energy price simulation with a stochas-
tic energy system optimization model



561Annals of Operations Research (2022) 316:555–579	

1 3

varying price dynamics. Third, applying the modelling framework to advancing the under-
standing of how the price variation in these intertwined energy markets affects the configu-
ration and operation of the whole energy supply chain system.

3 � Problem description

This study aims to address the strategic and tactical decision-making problems of technol-
ogy choice and operation planning for the supply chain of an entire energy system from 
upstream fuel supply to downstream plastic consumption, taking into account the interrela-
tions of variations of different energy markets. Specifically, the energy supply system starts 
from three upstream technologies fueled by crude oil, natural gas, and coal to produce eth-
ylene, which is the dominant raw material to make plastics. In the downstream sector, vari-
ous demands of these products from four customers need to be satisfied.

Mutual relationships between the oil, gas, and coal market are considered in a manner 
that, stochasticity of price movement processes is simulated throughout the timespan of 
decisions, for which key parameters of these processes are estimated by statistical time 
series analytics with a long-term historical dataset. This section describes the entire energy 
system of interest and provides vital assumptions, parameters, and data employed in this 
study.

3.1 � The overall supply chain system

The plastic supply chain considered in this study involves feedstock supply from three fuel 
types, intermediate production (ethylene and polyethylene), manufacturing of two plastic 
products, and the end-use customers with various demands of the plastic products (Fig. 2). 
Ethylene is the dominant chemical feedstock for producing plastics worldwide. There are 
several approaches to produce ethylene, among which a conventional technology is oil-
based. Three technological processes within the scope of this study are briefly introduced 
as follows:

•	 In the oil-based approach, an ethylene plant is typically integrated with an oil refinery. 
Naphtha, an intermediate product distilled from oil, usually serves as the feedstock. 
Naphtha is converted into olefins (compounds mainly made up of ethylene, propane, 
and others) through steam cracking.

MTO
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cracking
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Polyethy
lene

Plastic
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Plastic
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Customer 1

Customer 2
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Fig. 2   Schematic of the overall plastic production supply chain
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•	 The natural gas approach is favored in some regions with cheap, abundant natural gas 
resources. The shale gas revolution in the United States has caused over a decade-long 
downturn of the natural gas market, giving rise to the boom of producing ethylene in 
this approach. The general principle of the natural gas route is similar to the oil-based 
route; that is, steam cracking is also the main process to obtain the olefins. The differ-
ence lies in that the feedstock in the gas route is primarily a mixture of ethane and pro-
pane, normally extracted from the light components in processing raw natural gas.

•	 Coal and methanol-based technology emerged in China as a responsive measure to 
address the concern of energy security. Crude oil and natural gas resources are much 
scarcer in China, in contrast with coal abundance. As a result, various coal-based tech-
nologies have been developed and commercialized to produce liquid fuels and chemi-
cals. This route uses coal to synthesize methanol, which serves as the feedstock to pro-
duce olefins through methanol-to-olefins (MTO).

Coal-based technology is contentious because it is carbon-intensive and loses economic 
competitiveness when oil price and nature price are low, as has been happening since the 
oil market slump in 2014. Even though this approach could ease the supply tension of oil 
and gas, the drawback is that its capital cost is extremely high compared to the other two 
alternatives, causing potential sunk costs. Therefore, a strategic analysis of the technologi-
cal route choice is required.

The subsequent process is similar for each of the three technological routes; that is, eth-
ylene is separated from the olefin mixture and then synthesized into polyethylene (PE). 
The solid PE resin is much easier for transportation. In real industrial practices, there are 
several types of PE, e.g., low-density polyethylene (LDPE) and high-density polyethylene 
(HDPE), among others. Numerous types of downstream plastics, in the forms of sheet, 
pipe, profile, etc., could be manufactured from PE resin. For the sake of brevity, we choose 
two types, namely, Plastic A and B, demanded by the four customers. Detailed specifica-
tions of technologies, cost parameters, installation setups, and other relevant data in the 
entire supply chain are provided in the next section.

3.2 � Parameters and data

Techno-economics of the three technologies determines to a large extent the configurations 
of the supply chain. To lay a common ground for this comparison, we assume that the three 
technological routes have the same ethylene production capacity, which is 1.095 million 
tons (Mton) per annum. We compiled specific data for each cost item incurred in the tech-
nologies, see Table 2. However, we couldn’t find data for all three technologies with the 
same capacity. As a result, we conduct a comprehensive analysis and calculate the capital 
cost from the reference case through the following formula:

where CI is the capital investment, CIref  is the capital investment of the reference case 
with the data compiled from literature (Xiang et al., 2014; Yang & You, 2017), CAP is the 
capacity scale, CAPref  is the capacity of the reference case from literature, � is the scaling 
factor measuring the scale effect of cost.

(1)CI = CIref ⋅
(
CAP

/
CAPref

)�
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It is noteworthy that there are many byproducts besides ethylene or propylene from 
the three technological processes. It is thus necessary to evaluate the costs solely attrib-
utable to ethylene. Different methods for cost allocation were proposed (Tayyari & Par-
saei, 1992), including the mass-based measurement, economic value-based method, etc. 
Each of these methods has its application pre-conditions. For example, the mass-based 
method requires all co-products are of approximately the same level of economic value. 
Given that the considerable difference of economic value across the co-products in the 
case of this study, the economic value-based method is employed to determine a set of 
cost allocation factors by calculating the fraction of economic value for each co-product 
(Tayyari & Parsaei, 1992; Yang & You, 2017).

Key data and assumptions for the downstream installations, i.e., the plastic manufactur-
ing plants and the customers, are summarized in Table 3. The initial demands of the four 
customers for the two products at year t= 1 are also provided in the table. The demands are 
assumed to follow a general growth trend with a rate of 5% per annum, which randomly 
varies at the monthly level. As such, at an early stage, when the total demand is low, it does 
not need to open full capacities of all the plants. However, with demand gradually increas-
ing, it would require more capacities to be added to the supply chain.

4 � Models

4.1 � System optimization

The problem of interest involves strategic and tactical decisions to be taken for a multi-
echelon, multi-product, multi-period energy supply system. Several sources of uncertainty 
are considered with regard to different energy markets. The strategic decision deals with 
the selection of upstream technologies facing uncertain energy prices over the whole life 
span (25  years for all the three technologies), along which multiple energy markets are 
highly volatile and correlated. The tactical decision is to be undertaken in monthly opera-
tions, that is, the production scheduling among the three technologies given uncertain feed-
stock prices, product prices, and demand variations. It, therefore, boils down to a stochastic 
optimization problem. As a result, the total amount of time steps for the decision-making is 
300 months in 25 years. Planning of plastic production and dispatch is optimized to maxi-
mize the expected profit along the horizon of these sub-periods for all the price scenarios.

•	 Sets
	 t ∈ T  , period in the time horizon for the strategic problem T =

{
1,… , LFf

}
 , where f  

stands for a certain fuel-based technology.
	 m ∈ M , month in one year, sub-annual time period for operations of the tactical 

problem,M = {1,… , 12}.
	 f  , index of fuel type or upstream technologies. As each of the three technolo-

gies corresponds with one fuel type, it therefore also represents technology 
type. f ∈ {oil, gas, coal}.

	 p , index of plastic product type. It represents two types of products with different 
economic values. p ∈ {A,B}.

	 pl , index of plastic manufacturing plant. pl ∈ {pl1, pl2}.
	 c , index of customer, c ∈ {c1, c2, c3, c4}.
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	 s , index of price scenario, s ∈ {PS1,PS2,PS3,PS4,PS5,PS6}.
•	 Parameters
	 dr , discount rate, constant scalar parameter.
	 ci

up

f ,t,m
 , amortized capital investment for technology f  at month m of year t  , million 

yuan.
	 cv

up

f ,t,m
 , cost of variable O&M for technology f  at month m of year t  , million yuan.

	 cf
up

f ,t,m
 , cost of fixed O&M for technology f  at month m of year t  , million yuan.

	 cr
up

f ,t,m
 , consumption rate of fuel f  at month m of year t  , Mton.

	 cima
pl,t,m

 , amortized capital investment for manufacturing plant pl at month m of year t  , 
million yuan.

	 cvma
pl,t,m

 , cost of variable O&M for manufacturing plant pl at month m of year t  , mil-
lion yuan.

	 cf ma
pl,t,m

 , cost of fixed O&M for manufacturing plant pl at month m of year t  , million 
yuan.

	 conv
up

f
 , conversion rate of technology f  from fuel f  to ethylene.

	 convma
pl,p

 , conversion rate of manufacturing plant pl from ethylene to product p.
	 erf  , CO2 emission rate of technology f  , ton CO2/ton.
	 cap

up

f
 , production capacity of technology f  , Mton/yr.

	 capma
pl,p

 , capacity of manufacturing plant pl for producing product p , Mton/yr.
	 pbs , probability of scenario s.
	 dmc,p,t,m , demand for plastic product p from customer c at month m of year t  , Mton.
•	 Stochastic parameters
	 prs,f ,t,m , price of fuel type f  at month m of year t in scenario s , yuan/ton.
	 prs,p,t,m , price of plastic product p at month m of year t in scenario s , yuan/ton.
•	 Decision variables
	 FD_PURC

up

s,f ,t,m
 , amount of feedstocks purchased by upstream technology f  at month m 

of year t in scenario s , Mton.
	 FD_PURCma

s,pl,t,m
 , amount of ethylene purchased by manufacturing plant pl at month m 

of year t in scenario s , Mton.
	 COM_PROD

up

s,f ,t,m
 , amount of ethylene produced from f  at month m of year t in sce-

nario s , Mton.
	 COM_PRODma

s,pl,p,t,m
 , amount of product p produced from manufacturing plant pl at 

month m of year t in scenario s , Mton.
	 SEL

up

s,f ,t,m
 , binary variable, when upstream technology f  is selected at a certain point, 

SEL
up

s,f ,t,m
= 1 for all the subsequent time-step at month m of year t in scenario s , 

SEL
up

s,f ,t,m
= 0 otherwise.

	 SELma
s,pl,t,m

 , binary variable, when manufacturing plant pl is selected at a certain point, 
SELma

s,pl,t,m
= 1 for all the subsequent time-step at month m of year t in scenario s , 

SELma
s,pl,t,m

= 0 otherwise.
	 OPEN

up

s,f ,t,m
 , binary variable, OPENup

s,f ,t,m
= 1 when upstream technology f  is open at 

month m of year t in scenario s , OPENup

s,f ,t,m
= 0 otherwise.

	 OPENma
s,pl,t,m

 , binary variable, OPENma
s,pl,t,m

= 1 when manufacturing plant pl is open at 
month m of year t in scenario s , OPENma

s,pl,t,m
= 0 otherwise.

•	 Outcome variables

REVp,t,m , total revenue for sales of product p at month m of year t , million yuan.
COST

up

t,m , total cost of upstream production at month m of year t , million yuan.
COSTma

t,m
 , total cost of the manufacturing stage at month m of year t , million yuan.

EMt,m , total CO2 emissions at month m of year t , Mton.
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The objective of the strategic decision-making problem is to maximize the total profit 
over the whole technology lifetime, as formulated in Eq. (2):

where the revenue REVp from selling product p , the cost item COSTup for upstream pro-
duction, and the other cost item COSTma incurred at the manufacturing stage are given by 
Eqs. (3)–(5), and total CO2 emissions are calculated by Eq. (6).

As shown by the equations, both the upstream and the manufacturing costs consist of 
capital investment, fixed and variable O&M costs at each subsequent time step. The main 
difference lies in fuel cost, which is determined by stochastic fuel prices and significantly 
affects the upstream production cost as well as the technological choice. The tactical prob-
lem defines monthly operations of the installations in the whole supply chain. Produc-
tion planning deals with the timing and the amount of the products produced from each 
fuel-based technology and manufacturing plant at monthly time step accounting for the 
uncertain market prices in each scenario. The consequent CO2 emissions are calculated by 
multiplying the amount of ethylene produced from each technology and the corresponding 
emissions rate. The summation of the emissions from each technology gives the total CO2 
emissions of the whole system, as shown in Eq. (6).

Material balances and physical constraints are ensured by Eqs. (7) and (16). Equation (7) 
restricts that volatile demand with a generally growing trend shall always be satisfied for 
each product at each time step. Equations (8)–(10) guarantee the material balances across 
all the echelons throughout the supply chain. Equations (11) and (12) indicate the capacity 
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constraints on both the upstream and the manufacturing plants. Equations (13)–(16) ensure 
that monthly operations of a particular technology rest on the prerequisite selection of this 
technology on a strategic level.

4.2 � Modelling price variation and interrelations

Studies reveal that changes in energy prices could be transmitted horizontally and/or verti-
cally, in which horizontal transmission is defined as changes generated by linkages among 
fuels at a similar stage of processing, such as from crude oil to natural gas, whereas verti-
cal transmissions pertain to linkages between upstream/downstream in the energy supply 
chain, e.g., from oil to petrochemical products (Kaufmann et al., 2009). Numerous studies 
have been carried out using various methods of statistics to uncover these mutual effects. 
Considerable difference exists with regards to analytical methods, targeted markets, data 
sources, and time spans, leading to diverged interpretations of these interrelations. Despite 
this, some common findings have been drawn. For instance, oil product prices (such as 
gasoline) do not react symmetrically to changes in crude oil prices. This asymmetric effect 
is also referred to as ‘rockets and feathers’, a metaphor indicating that downstream product 
prices rise faster in response to an increase in the price of crude oil than prices decline in 
response to a drop in crude oil prices (Kaufmann and Laskowski, 2005; Peltzman, 2000; 
Tappata, 2009). Moreover, long-run cointegrating relationships at the horizontal level have 
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been tested by studies using Vector AutoRregression (VAR) or Vector Error Correction 
Model (VECM), with conclusions that innovations in crude oil prices ‘Granger cause’ nat-
ural gas prices, but not in a reversed way (Kaufmann et al., 2009). The coal market is usu-
ally deemed local market and not significantly affected by other international markets such 
as crude oil. This has been revealed by previous statistic studies as discussed above.

A study on energy markets in the United States finds that local coal and natural gas 
prices as well as coal and crude oil, are only very superficially linked (Bachmeier & Grif-
fin, 2006). In China’s case, it is found that China’s coal and crude oil prices largely hinge 
on the shares of oil and coal in China’s energy mix, and inter-fuel substitution dominated 
the interaction of China’s coal market with other energy types (Li et al., 2019). It might be 
because, in China, the majority of coal trading is in domestic markets; therefore, fluctua-
tions in international oil and gas markets exert relatively weak impacts.

We compiled the historical prices of crude oil, natural gas, coal, and PE for this study. 
The logarithmic values of these prices are shown in Fig. 3. There are different prices for 
one commodity as many trading markets exist; we tried to collect the most representative 
price indices as far as possible. For example, crude oil is regarded as the most interna-
tionally traded commodity; we thus use the price indices compiled by the International 
Monetary Fund (IMF), which takes the average values of several benchmark futures prices, 
including WTI, Brent, and Dubai (IMF, 2020). The price indicators for natural gas and coal 
in this study are also collected from this dataset. As for the PE prices, we use the data from 
Wind Data Service (2020), which covers a relatively shorter time span dating back to 2005. 
All the original price indicators are converted to a uniformed unit and then taken logarithm 
to allow comparison in the same scale. The vertical blue lines in the figure signify the co-
movements among these commodities in the periods of several historical events. The quick 
rise of the energy prices from 1999 was mainly attributed to the increase in energy demand 
in developing countries such as China and India. In the middle of the 2008 financial crisis, 
the prices of oil, natural gas, and coal underwent a significant decrease, along with many 
other commodities. After recovered from the financial crisis, energy prices stagnated until 
the plummet of oil price in the middle of 2014. This was mainly driven by the compound 

Fig. 3   Monthly logarithmic prices of crude oil, natural gas, coal and PE
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effects of a slowing global economy, positive supply shocks to oil production, among oth-
ers (Baumeister & Kilian, 2016). The latest COVID-19 pandemic lowered energy demand 
because of lockdowns around the world, which also significantly hit the three energy mar-
kets as well as other financial markets.

4.2.1 � Oil price scenarios

According to the statistic findings drawn from the above-mentioned studies, we simulate 
the prices of these commodities based on the assumptions that oil price follows an inde-
pendent stochastic process, which also exerts influences on other price movements. As a 
result, there are in total four stochastic price processes in this model. The Ornstein–Uhlen-
beck model is employed to simulate the movement of oil price, given by Eq. (17)

where � is the mean-reversion rate, � is the mean, � is the volatility, and Wt is the Wiener 
process. The Ornstein–Uhlenbeck process features a ‘mean-reverting’ trend in a way that 
the drift term becomes positive when the current value of the process is less than the long-
term equilibrium level for the process represented by � ; otherwise, the drift term turns 
negative. This creates a tendency of the process to return to its long-term equilibrium, rep-
resenting the characteristic of the historical movement of oil price. The parameters for this 
process are estimated through historical data. Simulations of price movement projected in 
300 time-steps are performed. Panel A of Fig. 4 shows 100 stochastic paths of simulation. 
Each path represents a price scenario (PS) and serves as inputs to the optimization model.

It is important to note that including all the simulated price paths would pose sig-
nificant pressure on computing resources, sometimes even fail to attain feasible results 
within reasonable time. In addition, it is not necessary to incorporate all the price paths 
because many of the paths are close to each other, and therefore would not significantly 
impact the strategies obtained from the optimization model. In fact, the obtained optimal 
strategies predominantly rely on each distinctive ‘price pattern’ that can be extracted 
from the simulated paths, for example, the magnitude of price variation and the tim-
ing of abrupt changes. Therefore we use the k-means clustering algorithm to partition 
n = 100 simulated price paths into a few price scenarios, in which each path belongs to 
the cluster with the nearest mean � . The objective function is given by Eq. (18).

where pr is the simulated price path, PS is the price scenario to be clustered.
The number of clusters is determined through a procedure termed cluster valida-

tion aiming at the quantitative evaluation of the results of the clustering algorithms. 
There are different methods for cluster validation (Rendón et al., 2011). Here we adopt 
compactness (CP) and separation (SP) to measure the internal and external cluster-
ing results, respectively, and use the ratio of the two indices as the criterion to select 
the number of clusters. Calculation of CP and SP is given by Eqs.  (19) and (20), see 
Table 4. According to this criterion, the number of clusters is determined as six.
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where K is the number of clusters, and w is the centroid of cluster k.
The six scenarios obtained from clustering are illustrated in Panel B of Fig. 4. The clus-

tered price scenarios demonstrate distinctive patterns from each other. For example, PS2 
presents a relatively stable movement, in contrast with PS4, which shows significant varia-
tion in the time frame. Nevertheless, all the price paths follow a ‘mean-reverting’ trend, as 
they are all governed by the same Ornstein–Uhlenbeck process.

4.2.2 � Natural gas price and plastic price

The above-mentioned relation between the oil market, natural gas market, and downstream 
product market indicates that modeling natural gas price and plastic product price shall 
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Fig. 4   Oil price simulations and scenario clustering
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account for the impacts from the oil price. As a result, we use Autoregressive Integrated 
Moving Average with Exogenous Variable (ARIMAX) model to project natural gas price 
and product price, in which oil price serves as the exogenous variable.

where yg,t and yo,t are the integrated time series of natural gas price and oil price, zg,t is a 
white noise process. Note that yg,t and yo,t are supposed to be stationary time series. To 
achieve this, a conventional way is to take d-order difference until the resulted time series 
becomes stationary. This method is suitable for forecasting when multivariate has any 
type of data pattern, for instance, with trend or seasonality or cyclicity. Specification of 
the model should follow a particular procedure, which is elaborated in the supplementary 
information (SI). The values of the auto-correlation and partial auto-correlation function of 
any series with its lagged values are provided by auto-correlation function (ACF) and par-
tial auto-correlation function (PACF) shown in Figs. S3 (natural gas) and S4 (plastic prod-
uct), respectively. Following this procedure, it is specified that p = 2 , q = 2 for the natural 
gas model, and p = 1 , q = 1 for the plastic price model. Durbin Watson (DW) test was also 
performed to examine the distributions of residuals (Figs. S5 and S6). The modelled price 
projections are presented below.

4.2.3 � Coal price

As analyzed previously, the interrelation between coal and oil differs from the one between 
oil and gas. The most distinct co-movements between coal and other energy commodities 
occur in several business cycles, which affect many commodity prices not limited to energy 
markets. Analyzing the effects of business cycles is beyond the scope of this study. For the 
sake of brevity, we use Monte Carlo simulations to capture this interrelation. The ratio of 
coal price relative to oil price is set as a random variable, and its value is sampled at each 
time step from historical distribution through Monto Carlo simulation (Fig. 5). As a result, 
coal price is calculated by multiplying oil price and this random ratio.

Price projections for the four commodities in the six price scenarios are summarized in 
Fig. 6. Note that all the prices are taken logarithmic values in order to be set on the same 
scale. The interrelations of these four commodities in each scenario are illustrated. Spe-
cifically, PS5 is the most volatile and reaches the spikes in the middle of the time horizon. 

(21)yg,t = �yo,t + �1yg,t−1 +⋯ + �pyg,t−p − �1zg,t−1 −⋯ − �qzg,t−q + zg,t

Fig. 5   Histogram of the ratio of 
coal price relative to oil price



571Annals of Operations Research (2022) 316:555–579	

1 3

In contrast, PS1 is the most flattened with very small variations. Others are in between. 
This reflects the representability of these scenarios in terms of price pattern distinctive-
ness. The blue lines represent oil price, modelled by the Ornstein–Uhlenbeck process with 
information on its own historical data. Prices of natural gas and plastic, as elaborated in the 
previous sections, are modelled by the ARIMAX model in which oil price is adopted as an 
exogenous variable to account for the external impacts. The simulated coal prices, despite 
following a different modelling approach, also capture the co-movement tendency in the 
overall energy markets (Fig. 7).

4.3 � Model implementation

All the components in the model are coded in Python 3.7. The core optimization compo-
nent is constructed in Pyomo 5.6, a Python-based optimization modeling framework, with 
Gurobi 8.1 serving as the solver. Modelling price variations are mainly implemented in 
the Python-based statistical module Statsmodels 0.11. The python-based machine learning 
package, Scikit-learn 0.23, is employed to perform k-means clustering of price scenarios.

As explained above, the proposed integrated modelling framework consists of an ESM 
for optimizing the energy supply system and several stochastic process models for generat-
ing a variety of energy price scenarios. The ESM comprises approximately 6251 variables 

Fig. 6   Modelling natural gas price and plastic price in the six clustered scenarios
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and 8423 constraints. It takes roughly 1800s for running one price scenario, and 11,000 s 
for the six scenarios in total. The computing platform includes Intel Core i7-6500U CPU 
and 32 GB RAM, with Windows 10 as the operating system.

5 � Results and analysis

5.1 � Technology selection and capacity expansion

Technology selection is mainly determined by the relative economic advantages and the 
varying interrelations of the various energy prices. At the early stage, the total demand for 
plastic products is at a lower level, and the capacity of one single technology is sufficient to 
meet the demand. As the demand grows, more capacities would be required, and therefore 
other technologies need to be added at some points. Figure 8 shows the probabilities of 
the three technologies being selected along the horizon. Note that all six price scenarios 
are assigned with the same probability. At the initial stage, the gas-based and oil-based 
approaches are selected with different probabilities. In contrast, the coal route is abandoned 
because of its economic disadvantage. This advantage of the oil and gas-based technolo-
gies with higher selection probabilities continues until time step 190. It is interesting to 

Fig. 7   Logarithmic prices of the four energy commodities in the six scenarios
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observe that coal-based technology is increasingly favored from time step 52 onwards. 
All three technologies are selected at the final stage because of the growing downstream 
demand. It is noteworthy that the strategic and tactic decision-making is mainly dependent 
on feedstock price variation because the feedstock cost constitutes the largest part in total 
costs.

5.2 � Operational production scheduling

The operational strategy shows a more complicated manner, because it needs not only 
to decide which technology should be selected and switched on at each time step, but 
also how many products should be produced from each technology. These results are 
presented in Fig.  9. There are several time windows when frequent switching of the 
operational status occurs, for instance, the natural gas plant during time step 80–90 
and 260–270. As coal price is gaining the economic advantage, it is gradually taking 
the shares of natural gas and oil in the second half of the horizon. This also reflects 
the competitiveness of the coal-based route featuring low fuel costs despite the high-
est capital investment among the three approaches. In the actual plant operations, such 
costs could be high, particularly in the process industry. One caveat of this modelling 
work is that the switching costs are not accounted for. As a result, the operational costs 
would be underestimated.

The operational planning of monthly ethylene production for the three technologies 
(Panel A) is in line with the results of technology selection. The natural gas route is 
more favored at the beginning, whereas the coal-based route is catching up after time 
step 52. All three technologies are selected and become operational after this initial 
stage. Nevertheless, the outputs from each plant are highly volatile. It is seen an abrupt 
drop for gas-based production at around time step 180 because of the surge of the natu-
ral gas price at that point.

The cumulative production (Panel B) could better illustrate the whole profile over 
the time span, where the two extreme cases, PS1 and PS5 are compared. The results 
of a deterministic version of the model for the six price scenarios are also calculated 
(details are summarized in the SI) and compared with the two scenarios. As discussed 
above, PS1 features a relatively stable, low-level price variation, which significantly 

Fig. 8   Technology selection probability along the time horizon
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promotes the competitiveness of the oil-based route. On the contrary, the oil-based 
route gradually loses its market share to the gas-based and coal-based technologies 
in PS5. It is because when oil prices fluctuating at a relatively high level, the gaps 
between oil prices and the other two tend to enlarge. The expected results from the sto-
chastic version show that the three technologies produce similar amounts of ethylene. 
This comparison of the results suggests that high volatilities of energy markets tend 
to shrink the competitiveness of the producing technologies. In addition, the frequent 
switching of the operation status, as shown in the second half of the duration in PS5, 
would inevitably lead to the reluctance of investors’ decision-making and consequently 
hamper the development of the industry.

6 � CO2 emissions

CO2 emissions from the operations of the three technologies are also calculated. Figure 10 
presents the expected results for the stochastic model compared to the two extreme scenar-
ios. The results show that the most carbon-intensive coal-based route dominates the total 
emissions of the three routes. Cumulative emissions from the coal-based technology con-
stitute roughly 91% of the aggregated cumulative emissions of the three technologies, with 
only a very slight difference of the proportion within the three cases. However, the total 
emissions differ remarkably across the three cases, depending on how much coal is used. 
PS1 has the lowest emissions because of the dominance of the oil route in this scenario. In 
PS5, however, coal utilization is at a relatively higher level, causing a large share of emis-
sions despite the gas-based technology produces most of the products.

To examine the impacts of carbon tax on the total system cost, four levels of carbon tax 
ranging from 50 to 200 yuan/ton were set. For each tax level, the ratio of the additional 
costs from carbon tax relative to the total system cost was calculated for each scenario. 

Fig. 9   Monthly and cumulative production of ethylene in the operational planning
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The results are summarized in Table 5. It is shown that PS3 has the highest cost increase, 
because this scenario has the highest emissions due to most usage of the coal-based route. 
It is also interesting to find that, PS1 and PS2, two scenarios in which emissions are very 
close, have distinct cost increase ratios when exposed to the same level of the carbon tax. It 
is because PS1 uses more coal than PS2, but the latter uses significantly larger amount of 
natural gas, which drives up the total system cost.

It is important to note that the potential costs of carbon emissions are not incorpo-
rated into the decision-making process in the model; hence the technological choice is not 
affected by the respective emission intensities of these technologies. Although not included 
in this study, this direction is definitely worthy of further investigation. Many countries are 
now planning to implement an emissions trading scheme (ETS) to build an economy-wide 
carbon trading market. Either ETS or carbon tax will put considerable costs on carbon-
intensive industries, especially for coal-based technologies. Considering this factor would 
drastically change the technology portfolio.

Fig. 10   CO2 emissions of the three technologies

Table 5   The impacts of carbon tax on the total system cost

Carbon tax 
(yuan/ton)

PS1 (%) PS2 (%) PS3 (%) PS4 (%) PS5 (%) PS6 (%) Expectation (%)

50 3.91 2.52 5.18 3.09 3.05 4.50 3.61
100 7.82 5.04 10.36 6.19 6.10 9.00 7.22
150 11.72 7.56 15.54 9.28 9.15 13.50 10.83
200 15.63 10.09 20.72 12.37 12.20 18.00 14.45
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7 � Conclusions

Different energy markets are interrelated in a manner that the fluctuation in one market 
may transmit either horizontally to the parallel competing market or vertically to the down-
stream products. Investing technology among various competing options is determined by 
its own economic strength, i.e., the ability to maximize the total profit over the timespan. 
Although the co-movements of several energy commodity prices are typically observed 
both in the short- and long run, these interrelations vary significantly along the horizon. 
These varying interrelations greatly affect the competitiveness of energy technologies, 
therefore complicate the decision-making problem for a complex energy system charac-
terized by multiple competing technologies, multiple echelons and multiple periods. This 
study investigates this problem by constructing an energy system optimization model and 
incorporating the dynamics of multiple energy prices with stochastic process simulations. 
Specifically, the oil price is modelled with the mean-reverting Ornstein–Uhlenbeck pro-
cess, the key parameters of which are regressed by the historical data. Gas price and plastic 
price are modelled by the ARIMAX model, in which oil price is incorporated as an exog-
enous variable. Monte Carlo simulations are used to model coal prices. A large number 
of price simulations dramatically affects the efficiency of model computing. By cluster-
ing the numerous possible price paths into a few distinctive patterns, the model could be 
solved within reasonable time, while retaining key information from the results. Integrating 
machine learning clustering methods into the stochastic optimization model, as presented 
in this study, demonstrate potential for further application to other problems of this kind 
characterized by high-dimensional stochastic variables.

The model results suggest that high volatilities of energy markets compromise the com-
petitiveness of the producing technologies and consequently cause reluctance of investment 
behavior, which would eventually barricade the industry development. It is shown that the 
coal-based route is favored under the scenario with extremely volatile oil prices. Neverthe-
less, the cost from CO2 emissions is not included in this optimization model. The variation 
of emissions allowance market would inevitably add new risks on the related investment, 
hence influence the decision-making process, particularly considering the fact that the 
national emissions trading scheme is set to operate soon. In this context, reducing the vola-
tilities of energy prices through a variety of measures becomes essential to create a sound 
market environment and to manage the market expectation of investors.

This study evaluates the interrelations across energy prices in a market consisting of 
several existing technologies without considering entering of new technologies. In fact, 
technological breakthrough may permanently break these market price interrelations (Hart-
ley et al., 2008). There are some promising technologies, e.g., producing chemicals directly 
from crude oil (Tullo, 2019) or the widely debated biomass-based route. It is imperative 
to evaluate the possible technological learning trends of these innovations on the energy 
market once they are commercialized. Another aspect that deserves further exploration lies 
in assessing the impacts from the environmental perspective, including carbon emissions, 
water withdrawal, etc. For instance, high carbon-intensity of the coal-based technology 
would undermine its economic advantage when facing carbon pricing mechanisms such as 
ETS or carbon tax. Quantitative analysis in this regard shall be explored in future research.
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