Skip to main content
Log in

Reselling or marketplace mode for an online platform: the choice between cap-and-trade and carbon tax regulation

  • S.I. : MIM2019
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

A Correction to this article was published on 03 March 2022

This article has been updated

Abstract

This paper explores a manufacturer’s production decisions and a government’s choice between cap-and-trade and carbon tax regulation. The manufacturer sells its product through offline and online channels, and we consider the online-offline spillover effect (OOSE) to reflect the influence of online sales on offline sales. We further compare carbon emission, the manufacturer’s profit, and social welfare for reselling and marketplace modes under the two types of regulations. First, we find that under both policies, when the government allocates a tight cap (high tax rate), the manufacturer should decrease online sales if the OOSE increases, and vice versa. Interestingly, we also discover that the manufacturer’s profit may decrease with the cap regardless of the modes. Second, under a low (high) environmental coefficient, the social welfare using reselling mode is lower (higher) than using marketplace mode, and the two modes can generate the same social welfare under a moderate environmental coefficient. Third, using either mode, when the environmental damage coefficient is low (high), the government should implement cap-and-trade regulation (carbon tax regulation). Finally, based on the data of a real-world company, when the environmental damage coefficient is low (high), the company should use an online platform with marketplace (reselling) mode to achieve optimal profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Notes

  1. http://www.jdxfw.com/html/2018/sjbg_1111/26359.html.

  2. http://chuwei.yesky.com/322/83396322.shtml.

  3. http://www.guannews.com/xinwen/121883.html.

  4. https://baijiahao.baidu.com/s?id=1665372505302207679&wfr=spider&for=pc.

References

  • Abhishek, V., Jerath, K., & Zhang, Z. J. (2016). Agency selling or reselling? Channel structures in electronic retailing. Management Science, 62(8), 2259–2280.

    Google Scholar 

  • An, S., Li, B., Song, D., & Chen, X. (2021). Green credit financing versus trade credit financing in a supply chain with carbon emission limits. European Journal of Operational Research, 292(1), 125–142.

    Google Scholar 

  • Babagolzadeh, M., Shrestha, A., Abbasi, B., Zhang, Y., Woodhead, A., & Zhang, A. (2020). Sustainable cold supply chain management under demand uncertainty and carbon tax regulation. Transportation Research Part D: Transport and Environment, 80, 102245.

    Google Scholar 

  • Bai, Q., & Chen, M. (2016). The distributionally robust newsvendor problem with dual sourcing under carbon tax and cap-and-trade regulations. Computers & Industrial Engineering, 98, 260–274.

    Google Scholar 

  • Bai, Q., Xu, J., & Zhang, Y. (2018). Emission reduction decision and coordination of a make-to-order supply chain with two products under cap-and-trade regulation. Computers & Industrial Engineering, 119, 131–145.

    Google Scholar 

  • Bansal, S. (2008). Choice and design of regulatory instruments in the presence of green consumers. Resource and Energy Economics, 30(3), 345–368.

    Google Scholar 

  • Benjaafar, S., Li, Y., & Daskin, M. (2012). Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116.

    Google Scholar 

  • Benz, E., & Trück, S. (2009). Modeling the price dynamics of CO2 emission allowances. Energy Economics, 31(1), 4–15.

    Google Scholar 

  • Bhatnagar, A., & Papatla, P. (2016). Increasing online sales by facilitating spillover shopping. Journal of Retailing and Consumer Services, 29, 58–69.

    Google Scholar 

  • Bian, J., & Zhao, X. (2020). Tax or subsidy? An analysis of environmental policies in supply chains with retail competition. European Journal of Operational Research, 283(3), 901–914.

    Google Scholar 

  • Brynjolfsson, E., Hu, Y., & Rahman, M. S. (2009). Battle of the retail channels: How product selection and geography drive cross-channel competition. Management Science, 55(11), 1755–1765.

    Google Scholar 

  • Cai, Y. J., Choi, T. M., Feng, L., & Li, Y. (2021). Producer’s choice of design-for-environment under environmental taxation. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2021.04.048

    Article  Google Scholar 

  • Cao, K., He, P., & Liu, Z. (2019). Production and pricing decisions in a dual-channel supply chain under remanufacturing subsidy policy and carbon tax policy. Journal of the Operational Research Society, 71, 1199.

    Google Scholar 

  • Chang, X., Xia, H., Zhu, H., Fan, T., & Zhao, H. (2015). Production decisions in a hybrid manufacturing–remanufacturing system with carbon cap and trade mechanism. International Journal of Production Economics, 162, 160–173.

    Google Scholar 

  • Chelly, A., Nouira, I., Frein, Y., & Hadj-Alouane, A. B. (2019). On the consideration of carbon emissions in modelling-based supply chain literature: The state of the art, relevant features and research gaps. International Journal of Production Research, 57(15–16), 4977–5004.

    Google Scholar 

  • Chen, L., Nan, G., Li, M., & Tan, Y. (2018). Adding the online-to-store channel to supply chain: Impact of spillover effect. Available at SSRN: https://ssrn.com/abstract=3202600 or https://doi.org/10.2139/ssrn.3202600.

  • Chen, X., Yang, H., Wang, X., & Choi, T. M. (2020). Optimal carbon tax design for achieving low carbon supply chains. Annals of Operations Research. 1–28. https://doi.org/10.1007/s10479-020-03621-9.

  • Chen, X., Li, B., Chen, W., & Wu, S. (2021). Influences of information sharing and online recommendations in a supply chain: reselling versus agency selling. Annals of Operations Research, 1–40. https://doi.org/10.1007/s10479-021-03968-7.

  • Chen, X., & Hao, G. (2015). Sustainable pricing and production policies for two competing firms with carbon emissions tax. International Journal of Production Research, 53(21), 6408–6420.

    Google Scholar 

  • Dinner, I. M., Van Heerde, H. J., & Neslin, S. A. (2013). Driving online and offline sales: The cross-channel effects of traditional, online display, and paid search advertising. Journal of Marketing Research, 50(5), 527–545.

    Google Scholar 

  • Dong, G., Liang, L., Wei, L., Xie, J., & Yang, G. (2021). Optimization model of trade credit and asset-based securitization financing in carbon emission reduction supply chain. Annals of Operations Research, 1–50. https://doi.org/10.1007/s10479-021-04011-5.

  • Drake, D. F., Kleindorfer, P. R., & Van Wassenhove, L. N. (2016). Technology choice and capacity portfolios under emissions regulation. Production and Operations Management, 25(6), 1006–1025.

    Google Scholar 

  • Du, S., Hu, L., & Wang, L. (2017). Low-carbon supply policies and supply chain performance with carbon concerned demand. Annals of Operations Research, 255(1), 569–590.

    Google Scholar 

  • Fahimnia, B., Sarkis, J., Boland, J., Reisi, M., & Goh, M. (2015). Policy insights from a green supply chain optimisation model. International Journal of Production Research, 53(21–22), 6522–6533.

    Google Scholar 

  • Farrow, S. (1995). The dual political economy of taxes and tradable permits. Economics Letters, 49(2), 217–220.

    Google Scholar 

  • Gale, W. G., Brown, S., & Saltiel, F. (2015). Carbon taxes as part of the fiscal solution. Implementing a US Carbon Tax (pp. 43–59). Routledge.

    Google Scholar 

  • Gao, J., Xiao, Z., Wei, H., & Zhou, G. (2018). Active or passive? Sustainable manufacturing in the direct-channel green supply chain: A perspective of two types of green product designs. Transportation Research Part d: Transport and Environment, 65, 332–354.

    Google Scholar 

  • Geng, X., Tan, Y., & Wei, L. (2018). How add-on pricing interacts with distribution contracts. Production and Operations Management, 27(4), 605–623.

    Google Scholar 

  • Gong, X., & Zhou, S. X. (2013). Optimal production planning with emissions trading. Operations Research, 61(4), 908–924.

    Google Scholar 

  • Goolsbee, A. (2001). Competition in the computer industry: Online versus retail. The Journal of Industrial Economics, 49(4), 487–499.

    Google Scholar 

  • Hagiu, A., & Wright, J. (2014). Marketplace or reseller? Management Science, 61(1), 184–203.

    Google Scholar 

  • Han, S., Fu, Y., Cao, B., & Luo, Z. (2018). Pricing and bargaining strategy of e-retail under hybrid operational patterns. Annals of Operations Research, 270(1), 179–200.

    Google Scholar 

  • He, P., Dou, G., & Zhang, W. (2017). Optimal production planning and cap setting under cap-and-trade regulation. Journal of the Operational Research Society, 68(9), 1094–1105.

    Google Scholar 

  • He, P., Zhang, W., Xu, X., & Bian, Y. (2015). Production lot-sizing and carbon emissions under cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 103, 241–248.

    Google Scholar 

  • Hilton III, J. L., & Wiley, D. (2010). The short-term influence of free digital versions of books on print sales. Journal of Electronic Publishing, 13(1), 0–7.

  • Hintermann, B. (2010). Allowance price drivers in the first phase of the EU ETS. Journal of Environmental Economics and Management, 59(1), 43–56.

    Google Scholar 

  • Homayouni, Z., Pishvaee, M. S., Jahani, H., & Ivanov, D. (2021). A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty. Annals of Operations Research, 1–41.

  • Hu, X., Yang, Z., Sun, J., & Zhang, Y. (2020). Carbon tax or cap-and-trade: Which is more viable for Chinese remanufacturing industry? Journal of Cleaner Production, 243, 118606.

    Google Scholar 

  • Hua, G., Cheng, T. C. E., & Wang, S. (2011). Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178–185.

    Google Scholar 

  • Jauhari, W. A., Adam, N. A. F. P., Rosyidi, C. N., Pujawan, I. N., & Shah, N. H. (2020). A closed-loop supply chain model with rework, waste disposal, and carbon emissions. Operations Research Perspectives, 7, 100155.

    Google Scholar 

  • Ji, T., Xu, X., Yan, X., & Yu, Y. (2020). The production decisions and cap setting with wholesale price and revenue sharing contracts under cap-and-trade regulation. International Journal of Production Research, 58(1), 128–147.

    Google Scholar 

  • Koch, N., Fuss, S., Grosjean, G., & Edenhofer, O. (2014). Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything? — New evidence. Energy Policy, 73, 676–685.

    Google Scholar 

  • Krass, D., Nedorezov, T., & Ovchinnikov, A. (2013). Environmental taxes and the choice of green technology. Production and Operations Management, 22(5), 1035–1055.

    Google Scholar 

  • Li, F., Haasis, H. D., & Dovbischuk, I. (2016). Challenges and solutions toward green logistics under EU-emission trading scheme. Dynamics in Logistics (pp. 397–405). Cham: Springer.

    Google Scholar 

  • Li, Y., Deng, Q., Zhou, C., & Feng, L. (2020). Environmental governance strategies in a two-echelon supply chain with tax and subsidy interactions. Annals of Operations Research, 290(1), 439–462.

    Google Scholar 

  • Liu, B., Holmbom, M., Segerstedt, A., & Chen, W. (2015). Effects of carbon emission regulations on remanufacturing decisions with limited information of demand distribution. International Journal of Production Research, 53(2), 532–548.

    Google Scholar 

  • Liu, J., & Ke, H. (2021). Firms’ preferences for retailing formats considering one manufacturer’s emission reduction investment. International Journal of Production Research, 59(10), 3062–3083.

    Google Scholar 

  • Nie, J., Zhong, L., Yan, H., & Yang, W. (2019). Retailers’ distribution channel strategies with cross-channel effect in a competitive market. International Journal of Production Economics, 213, 32–45.

    Google Scholar 

  • Oreskes, N. (2011). Metaphors of warfare and the lessons of history: Time to revisit a carbon tax? Climatic Change, 104(2), 223.

    Google Scholar 

  • Pezzey, J. (1992). The symmetry between controlling pollution by price and controlling it by quantity. Canadian Journal of Economics, 25, 983–991.

    Google Scholar 

  • Sabzevar, N., Enns, S. T., Bergerson, J., & Kettunen, J. (2017). Modeling competitive firms’ performance under price-sensitive demand and cap-and-trade emissions constraints. International Journal of Production Economics, 184, 193–209.

    Google Scholar 

  • Sahin, F., & Robinson Jr, E. P. (2005). Information sharing and coordination in make-to-order supply chains. Journal of Operations Management, 23(6), 579–598.

    Google Scholar 

  • Shen, Y., Willems, S. P., & Dai, Y. (2019). Channel selection and contracting in the presence of a retail platform. Production and Operations Management, 28(5), 1173–1185.

    Google Scholar 

  • Sheu, J. B., & Li, F. (2013). Market competition and greening transportation of airlines under the emission trading scheme: A case of duopoly market. Transportation Science, 48(4), 684–694.

    Google Scholar 

  • Smith, M. D., & Telang, R. (2010). Piracy or promotion? The impact of broadband Internet penetration on DVD sales. Information Economics and Policy, 22(4), 289–298.

    Google Scholar 

  • Song, S., Govindan, K., Xu, L., Du, P., & Qiao, X. (2017). Capacity and production planning with carbon emission constraints. Transportation Research Part e: Logistics and Transportation Review, 97, 132–150.

    Google Scholar 

  • Tan, Y., & Carrillo, J. E. (2017). Strategic analysis of the agency model for digital goods. Production and Operations Management, 26(4), 724–741.

    Google Scholar 

  • Tian, L., Vakharia, A. J., Tan, Y., & Xu, Y. (2018). Marketplace, reseller, or hybrid: Strategic analysis of an emerging E-commerce model. Production and Operations Management, 27(8), 1595–1610.

    Google Scholar 

  • Toptal, A., & Çetinkaya, B. (2017). How supply chain coordination affects the environment: A carbon footprint perspective. Annals of Operations Research, 250(2), 487–519.

    Google Scholar 

  • Turken, N., Geda, A., & Takasi, V. D. G. (2021). The impact of co-location in emissions regulation clusters on traditional and vendor managed supply chain inventory decisions. Annals of Operations Research, 1–50. https://doi.org/10.1007/s10479-021-03954-z.

  • Wang, K., & Goldfarb, A. (2017). Can offline stores drive online sales? Journal of Marketing Research, 54(5), 706–719.

    Google Scholar 

  • Wang, K., Wei, Y. M., & Huang, Z. (2016). Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings. Omega, 63, 48–59.

    Google Scholar 

  • Wang, M., Zhao, L., & Herty, M. (2018). Modelling carbon trading and refrigerated logistics services within a fresh food supply chain under carbon cap-and-trade regulation. International Journal of Production Research, 56(12), 4207–4225.

    Google Scholar 

  • Wei, C., Asian, S., Ertek, G., & Hu, Z. H. (2020). Location-based pricing and channel selection in a supply chain: A case study from the food retail industry. Annals of Operations Research, 291(1), 959–984.

    Google Scholar 

  • Xia, L., Bai, Y., Ghose, S., & Qin, J. (2020). Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences. Annals of Operations Research, 1–36. https://doi.org/10.1007/s10479-020-03838-8.

  • Xiao, W., & Xu, Y. (2018). Should an online retailer penalize its independent sellers for stockout? Production and Operations Management, 27(6), 1124–1132.

    Google Scholar 

  • Xu, X., Zhang, M., Dou, G., & Yu, Y. (2021b). Coordination of a supply chain with an online platform considering green technology in the blockchain era. International Journal of Production Research, 1–18. https://doi.org/10.1080/00207543.2021.1894367.

  • Xu, X., Chen, Y., He, P., Yu, Y., & Bi, G. (2021a). The selection of marketplace mode and reselling mode with demand disruptions under cap-and-trade regulation. International Journal of Production Research, 1–20. https://doi.org/10.1080/00207543.2021.1897175.

  • Xu, X., He, P., & Fan, Y. (2021b). The pricing and carbon abatement decisions of a manufacturer selling with marketplace or reselling mode. International Transactions in Operational Research. https://doi.org/10.1111/itor.13025

    Article  Google Scholar 

  • Xu, X., He, P., Xu, H., & Zhang, Q. (2017a). Supply chain coordination with green technology under cap-and-trade regulation. International Journal of Production Economics, 183, 433–442.

    Google Scholar 

  • Xu, X., Xu, X., & He, P. (2016). Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 112, 4093–4106.

    Google Scholar 

  • Xu, X., Zhang, M., & He, P. (2020). Coordination of a supply chain with online platform considering delivery time decision. Transportation Research Part E: Logistics and Transportation Review, 141, 101990.

    Google Scholar 

  • Xu, X., Zhang, W., He, P., & Xu, X. (2017b). Production and pricing problems in make-to-order supply chain with cap-and-trade regulation. Omega, 66, 248–257.

    Google Scholar 

  • Yan, Y., Zhao, R., & Liu, Z. (2018). Strategic introduction of the marketplace channel under spillovers from online to offline sales. European Journal of Operational Research, 267(1), 65–77.

    Google Scholar 

  • Yang, H., & Chen, W. (2018). Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus cost-sharing. Omega, 78, 179–191.

    Google Scholar 

  • Yang, L., Hu, Y., & Huang, L. (2020). Collecting mode selection in a remanufacturing supply chain under cap-and-trade regulation. European Journal of Operational Research, 287(2), 480–496.

    Google Scholar 

  • Yu, M., & Cruz, J. M. (2019). The sustainable supply chain network competition with environmental tax policies. International Journal of Production Economics, 217, 218–231.

    Google Scholar 

  • Zhang, B., & Xu, L. (2013). Multi-item production planning with carbon cap and trade mechanism. International Journal of Production Economics, 144(1), 118–127.

    Google Scholar 

  • Zhang, J., Cao, Q., & He, X. (2019a). Contract and product quality in platform selling. European Journal of Operational Research, 272(3), 928–944.

    Google Scholar 

  • Zhang, Q., Zhao, Q., & Zhao, X. (2019b). Manufacturer’s product choice in the presence of environment-conscious consumers: Brown product or green product. International Journal of Production Research, 57(23), 7423–7438.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFB1601401), National Natural Science Foundation of China (Nos. 71801211, 72171001, 71520107002 and 71921001), the Project of Leading Talent of Anhui Province (No.S020218015), the Key Project of Education Department of Anhui Province (No. SK2020A0041), China Postdoctoral Science Foundation (Nos. 2018M632556 and 2019T120548), Thousand Young Scholars Program of China, and Fundamental Research Funds for the Central Universities of China (No. WK2040160028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

The platform is the leader of the Stackelberg game, and we define the retail price is as follows: \(p = \omega + \Delta .\) The manufacturer’s profit function and its derivative are:

$$ \pi_{m}^{cap} = p_{0} {\text{\{ }}Q + \gamma [\alpha - \beta (\omega { + }\Delta )]{\text{\} + }}\omega [\alpha - \beta (\omega { + }\Delta )] - e_{0} \{ Q + (1{ + }\gamma )[\alpha - \beta (\omega { + }\Delta )]\} + C(\lambda - bC), $$
$$ {{\partial \pi_{m}^{cap} } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap} } {\partial \omega }}} \right. \kern-\nulldelimiterspace} {\partial \omega }} = \alpha - {2}\beta \omega - \beta [p_{0} \gamma + \Delta - e_{0} (\lambda - bC)(1 + \gamma )]. $$

We know that \({{\partial^{2} \pi_{m}^{cap} } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{m}^{cap} } {\partial \omega^{2} }}} \right. \kern-\nulldelimiterspace} {\partial \omega^{2} }} = - 2\beta < 0,\) so set the first partial derivative of \(\pi_{m}^{cap}\) with \(\omega\) equal to zero. That is, \({{\partial \pi_{m}^{cap} } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap} } {\partial \omega }}} \right. \kern-\nulldelimiterspace} {\partial \omega }} = \alpha - {2}\beta \omega - \beta [p_{0} \gamma + \Delta - e_{0} (\lambda - bC)(1 + \gamma )]{ = }0,\) so \(\omega { = }{{\{ \alpha - \beta [p_{0} \gamma + \Delta - e_{0} (\lambda - bC)(1 + \gamma )]\} } \mathord{\left/ {\vphantom {{\{ \alpha - \beta [p_{0} \gamma + \Delta - e_{0} (\lambda - bC)(1 + \gamma )]\} } {(2\beta )}}} \right. \kern-\nulldelimiterspace} {(2\beta )}}.\)

The platform’s profit function and its derivative are:

$$ \pi_{p}^{cap} = {{{{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC) - \Delta ]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC) - \Delta ]\} } 2}} \right. \kern-\nulldelimiterspace} 2} + \Delta } \mathord{\left/ {\vphantom {{{{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC) - \Delta ]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC) - \Delta ]\} } 2}} \right. \kern-\nulldelimiterspace} 2} + \Delta } 2}} \right. \kern-\nulldelimiterspace} 2}, $$
$$ {{\partial \pi_{p}^{cap} } \mathord{\left/ {\vphantom {{\partial \pi_{p}^{cap} } {\partial \Delta }}} \right. \kern-\nulldelimiterspace} {\partial \Delta }} = {{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC) - 2\Delta ]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC) - 2\Delta ]\} } 2}} \right. \kern-\nulldelimiterspace} 2}. $$

We know \({{\partial^{2} \pi_{p}^{cap} } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{p}^{cap} } {\partial \Delta^{2} }}} \right. \kern-\nulldelimiterspace} {\partial \Delta^{2} }} = - \beta < 0,\) hence \(\Delta { = }{{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC)]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC)]\} } {(2\beta )}}} \right. \kern-\nulldelimiterspace} {(2\beta )}}.\) Then we can derive the equilibrium outcomes presented in Theorem 1.

Proof of Corollary 1

\({{\partial \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap * } } {\partial C}}} \right. \kern-\nulldelimiterspace} {\partial C}} = be_{0} Q - 2bC + \lambda + ({1 \mathord{\left/ {\vphantom {1 8}} \right. \kern-\nulldelimiterspace} 8})be_{0} (1 + \gamma )\{ \alpha + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC)]\} ,\) \({{\partial^{2} \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{m}^{cap * } } {\partial C^{2} }}} \right. \kern-\nulldelimiterspace} {\partial C^{2} }} = {{b[ - 16 + be_{0}^{2} \beta (1 + \gamma )^{2} ]} \mathord{\left/ {\vphantom {{b[ - 16 + be_{0}^{2} \beta (1 + \gamma )^{2} ]} 8}} \right. \kern-\nulldelimiterspace} 8}.\) These allow us to derive the equilibrium outcomes.

Proof of Theorem 2

Denote by \(W_{R}^{cap}\) the social welfare under cap-and-trade regulation. Then we have \(W_{R}^{cap} = \int_{0}^{{q^{ * } }} {(p - p^{ * } )dq + \pi_{R}^{s} } + \pi_{p}^{cap*} - v[e_{0} (q + Q + \gamma q)]^{2} .\) That is:

$$ W_{R}^{cap} = \int_{0}^{{q^{ * } }} {({\alpha \mathord{\left/ {\vphantom {\alpha \beta }} \right. \kern-\nulldelimiterspace} \beta } - {q \mathord{\left/ {\vphantom {q \beta }} \right. \kern-\nulldelimiterspace} \beta } - p^{ * } )dq + \pi_{m}^{cap*} } + \pi_{p}^{cap*} { + }\pi_{{\text{C}}}^{cap*} - v[e_{0} (q + Q + \gamma q)]^{2} , $$
$$ \begin{aligned} {{\partial W_{R}^{cap} } \mathord{\left/ {\vphantom {{\partial W_{R}^{cap} } {\partial C}}} \right. \kern-\nulldelimiterspace} {\partial C}} {=} & - {1 \mathord{\left/ {\vphantom {1 {16}}} \right. \kern-\nulldelimiterspace} {16}}b^{2} \beta Ce_{0}^{2} (1 {+} \gamma )^{2} [1 {+} 2e_{0}^{2} (1 {+} \gamma )^{2} v\beta ] {+} ({1 \mathord{\left/ {\vphantom {1 {16}}} \right. \kern-\nulldelimiterspace} {16}})be_{0} (1 {+} \gamma )\{ 3p_{0} \beta \gamma {-} \alpha [ - 3 {+} 2e_{0}^{2} (1 {+} \gamma )^{2} v\beta ] \\ & + e_{0} \beta (1 + \gamma )\lambda - 8Q\beta e_{0}^{2} v(1 + \gamma ) + 2e_{0}^{2} v\beta^{2} (1 + \gamma )^{2} [ - p_{0} \gamma + e_{0} (1 + \gamma )\lambda ]\} , \\ \end{aligned} $$

We know \({{\partial^{2} W_{R}^{cap} } \mathord{\left/ {\vphantom {{\partial^{2} W_{R}^{cap} } {\partial C^{2} }}} \right. \kern-\nulldelimiterspace} {\partial C^{2} }} = {{\{ e_{0}^{2} \beta b^{2} [ - 1 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )^{2} \} } \mathord{\left/ {\vphantom {{\{ e_{0}^{2} \beta b^{2} [ - 1 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )^{2} \} } {16}}} \right. \kern-\nulldelimiterspace} {16}} < 0\), so.

\({{\partial^{2} W_{R}^{cap} } \mathord{\left/ {\vphantom {{\partial^{2} W_{R}^{cap} } {\partial C^{2} }}} \right. \kern-\nulldelimiterspace} {\partial C^{2} }} = {{\{ e_{0}^{2} \beta b^{2} [ - 1 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )^{2} \} } \mathord{\left/ {\vphantom {{\{ e_{0}^{2} \beta b^{2} [ - 1 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )^{2} \} } {16}}} \right. \kern-\nulldelimiterspace} {16}} < 0.\) Now, define

$$ A {=} {1 \mathord{\left/ {\vphantom {1 {16}}} \right. \kern-\nulldelimiterspace} {16}}be_{0} (1{+} \gamma )\{ 3p_{0} \beta \gamma {-} \alpha [ - 3 {+} 2e_{0}^{2} (1 {+} \gamma )^{2} v\beta ] {+} e_{0} \beta (1 {+} \gamma )\lambda {-} 8\beta Qe_{0}^{2} v(1 {+} \gamma ) {+} 2e_{0}^{2} v\beta^{2} (1 {+} \gamma )^{2} [ - p_{0} \gamma {+} e_{0} (1 {+} \gamma )\lambda ]\} . $$

If \(A < 0,\) we get \(v < \frac{{3(\alpha + p_{0} \beta \gamma ) + e_{0} \beta (1 + \gamma )\lambda }}{{2e_{0}^{2} \beta (1 + \gamma )\{ 4Q + (1 + \gamma )[\alpha + \beta p_{0} \gamma - e_{0} \beta (1 + \gamma )\lambda ]\} }},\) so the optimal total emission is \(C^{ * } < 0.\) Therefore, we make \(C^{ * } = 0\) without loss of generality.

If \(A > 0,\) we denote that the optimal cap \(C^{ * }\) exists in the interval of \(\left[ {0,{\lambda \mathord{\left/ {\vphantom {\lambda b}} \right. \kern-\nulldelimiterspace} b}} \right]\) to maximize social welfare under cap-and-trade regulation.

  1. (1)

    If \(C^{ * } > {\lambda \mathord{\left/ {\vphantom {\lambda b}} \right. \kern-\nulldelimiterspace} b},\) we have \(v < \frac{{3(\alpha + p_{0} \beta \gamma )}}{{2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]}},\) so we must have \(C^{ * } = {\lambda \mathord{\left/ {\vphantom {\lambda b}} \right. \kern-\nulldelimiterspace} b}.\)

  2. (2)

    If \(C^{ * } < {\lambda \mathord{\left/ {\vphantom {\lambda b}} \right. \kern-\nulldelimiterspace} b},\) then

    $$ C^{ * } = \frac{{[3 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) - 8Qv\beta e_{0}^{2} (1 + \gamma ) + \beta e_{0} \lambda [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )}}{{e_{0} b\beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )}}. $$

We define \(v_{2} ,v_{2}^{^{\prime}}\), with \(v_{2}^{^{\prime}} > v_{2} ,\) as follows

$$ v_{2} = \frac{{3(\alpha + p_{0} \beta \gamma )}}{{2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]}},v_{2}^{^{\prime}} = \frac{{3(\alpha + p_{0} \beta \gamma ) + e_{0} \beta (1 + \gamma )\lambda }}{{2e_{0}^{2} \beta (1 + \gamma )\{ 4Q + (1 + \gamma )[\alpha + \beta p_{0} \gamma - e_{0} \beta (1 + \gamma )\lambda ]\} }}. $$

Then we can easily solve for the optimal cap \(C_{R}^{ * }\), total carbon emission \(E_{R}^{cap}\) and social welfare \(W_{R}^{cap}\) under different environmental damage conditions.

  1. (i)

    If \(0 < v < v_{2} ,\) then \(C_{R}^{ * } = {\lambda \mathord{\left/ {\vphantom {\lambda b}} \right. \kern-\nulldelimiterspace} b},\)

    $$ W_{R}^{cap} {=} \frac{{(\alpha {+} p_{0} \beta \gamma )^{2} [7 {-} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {-} 16(\alpha {+} p_{0} \beta \gamma )e_{0}^{2} Qv\beta (1 {+} \gamma ) {-} 32e_{0}^{2} v\beta Q^{2} {+} 32p_{0} \beta Q}}{32\beta }, $$
    $$ E_{R}^{cap} = {{\{ e_{0} [4Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [4Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } 4}} \right. \kern-\nulldelimiterspace} 4},\quad \pi_{m}^{cap} { = }p_{0} Q + {{(\alpha + p_{0} \beta \gamma )^{2} } \mathord{\left/ {\vphantom {{(\alpha + p_{0} \beta \gamma )^{2} } {16\beta }}} \right. \kern-\nulldelimiterspace} {16\beta }}. $$
  2. (ii)

    If \(v_{2} < v < v_{2}^{^{\prime}} ,\) then

    $$ C_{R}^{ * } = \frac{{[3 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) - 8Qv\beta e_{0}^{2} (1 + \gamma ) + \beta e_{0} \lambda [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )}}{{e_{0} b\beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )}}, $$
    $$ W_{R}^{cap} = \frac{{\alpha^{2} + 2Q(p_{0} - e_{0}^{2} Qv)\beta + 2\alpha \beta [p_{0} \gamma - 2e_{0}^{2} (1 + \gamma )vQ] + \beta^{2} p_{0} [p_{0} \gamma^{2} + 4e_{0}^{2} Qv(1 + \gamma )]}}{{2\beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ]}}, $$
    $$ E_{R}^{cap} = {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}, $$
    $$ \begin{aligned} \pi_{m}^{cap} { = } & p_{0} Q + \frac{{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\}^{2} }}{{\beta [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} }} \\ & - \frac{\begin{gathered} \{ \alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] - 3\beta p_{0} \gamma + 2\beta e_{0}^{2} v(1 + \gamma )[4Q + p_{0} \beta \gamma (1 + \gamma )]\} \hfill \\ \{ \alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] - 3\beta p_{0} \gamma + e_{0} \beta (1 + \gamma )[be_{0} Q + 2be_{0}^{3} Qv\beta (1 + \gamma )^{2} \hfill \\ - \lambda + 8e_{0} vQ + 2\beta e_{0} v(1 + \gamma )(p_{0} \gamma - e_{0} (1 + \gamma )\lambda )]\} \hfill \\ \end{gathered} }{{\{ be_{0}^{2} \beta^{2} (1 + \gamma )^{2} [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} \} }}, \\ \end{aligned} $$
  3. (iii)

    If \(v > v_{2}^{^{\prime}} ,\) then \(C_{R}^{ * } = 0,\)

    $$ W_{R}^{cap} = \frac{\begin{gathered} 32Q(p_{0} - e_{0}^{2} Qv)\beta - [\alpha + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ] \hfill \\ \{ \alpha [ - 7 + 2v\beta e_{0}^{2} (1 + \gamma )^{2} ] - 7\beta p_{0} \gamma + \beta e_{0} (1 + \gamma )[ - \lambda + 16Qe_{0} v + 2e_{0} v\beta (1 + \gamma )p_{0} \gamma - 2e_{0}^{2} v\beta (1 + \gamma )^{2} \lambda ]\} \hfill \\ \end{gathered} }{32\beta }, $$
    $$ E_{R}^{cap} = {{\{ e_{0} [4Q + (1 + \gamma )(a + \beta p_{0} \gamma - e_{0} \beta (1 + \gamma )\lambda )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [4Q + (1 + \gamma )(a + \beta p_{0} \gamma - e_{0} \beta (1 + \gamma )\lambda )]\} } 4}} \right. \kern-\nulldelimiterspace} 4},\pi_{m}^{cap} { = }p_{0} Q - e_{0} Q\lambda + {{[\alpha + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ]^{2} } \mathord{\left/ {\vphantom {{[\alpha + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ]^{2} } {(16\beta )}}} \right. \kern-\nulldelimiterspace} {(16\beta )}}. $$

Proof of Theorem 3

The proof follows the process used in proving Theorem 1. We omit the proof here.

Proof of Theorem 4

Denote by \(W_{R}^{tax}\) the social welfare under carbon tax regulation. Then we have \(W_{R}^{tax} = \int_{0}^{{q^{ * } }} {(p - p^{ * } )dq + \pi_{R}^{s} } + \pi_{p}^{tax*} - v[e_{0} (q + Q + \gamma q)]^{2} .\) That is:

$$ W_{R}^{tax} = \int_{0}^{{q^{ * } }} {({\alpha \mathord{\left/ {\vphantom {\alpha \beta }} \right. \kern-\nulldelimiterspace} \beta } - {q \mathord{\left/ {\vphantom {q \beta }} \right. \kern-\nulldelimiterspace} \beta } - p^{ * } )dq + \pi_{m}^{tax*} } + \pi_{p}^{tax*} { + }\pi_{{\text{C}}}^{tax*} - v[e_{0} (q + Q + \gamma q)]^{2} , $$
$$ \begin{aligned} {{\partial W_{R}^{tax} } \mathord{\left/ {\vphantom {{\partial W_{R}^{tax} } {\partial \tau }}} \right. \kern-\nulldelimiterspace} {\partial \tau }} = & {1 \mathord{\left/ {\vphantom {1 {16}}} \right. \kern-\nulldelimiterspace} {16}}\beta e_{0}^{2} (1{ + }\gamma )^{2} [ - 1 - 2v\beta e_{0}^{2} (1{ + }\gamma )^{2} ]\tau { + }{1 \mathord{\left/ {\vphantom {1 {16}}} \right. \kern-\nulldelimiterspace} {16}}e_{0} (1{ + }\gamma )\{ - 3\beta p_{0} \gamma \\ & + 8v\beta e_{0}^{2} (1{ + }\gamma )Q + 2e_{0}^{2} p_{0} v\beta^{2} \gamma (1 + \gamma )^{2} + \alpha [ - 3 + 2v\beta e_{0}^{2} (1{ + }\gamma )^{2} ]\} . \\ \end{aligned} $$

We know \({{\partial^{2} W_{R}^{tax} } \mathord{\left/ {\vphantom {{\partial^{2} W_{R}^{tax} } {\partial \tau^{2} }}} \right. \kern-\nulldelimiterspace} {\partial \tau^{2} }} = {1 \mathord{\left/ {\vphantom {1 {16}}} \right. \kern-\nulldelimiterspace} {16}}e_{0}^{2} \beta [ - 1 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )^{2} < 0,\) so we set the first derivative of \(W_{R}^{tax}\) with respect to \(\tau\) to zero. Hence \(\tau^{ * } = {{\{ [ - 3 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) + 8Qv\beta e_{0}^{2} (1 + \gamma )\} } \mathord{\left/ {\vphantom {{\{ [ - 3 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) + 8Qv\beta e_{0}^{2} (1 + \gamma )\} } {\{ e_{0} \beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )\} }}} \right. \kern-\nulldelimiterspace} {\{ e_{0} \beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )\} }}.\)

Define \(B = {1 \mathord{\left/ {\vphantom {1 {16}}} \right. \kern-\nulldelimiterspace} {16}}e_{0} (1{ + }\gamma )\{ - 3\beta p_{0} \gamma + 8v\beta e_{0}^{2} (1{ + }\gamma )Q + 2e_{0}^{2} p_{0} v\beta^{2} \gamma (1 + \gamma )^{2} + \alpha [ - 3 + 2v\beta e_{0}^{2} (1{ + }\gamma )^{2} ]\} .\)

If \(B < 0,\) that is \(v < {{[3(\alpha + p_{0} \beta \gamma )]} \mathord{\left/ {\vphantom {{[3(\alpha + p_{0} \beta \gamma )]} {\{ 2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]\} }}} \right. \kern-\nulldelimiterspace} {\{ 2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]\} }},\) then the optimal total emission is \(\tau^{ * } < 0.\) Therefore, we can set \(\tau^{ * } = 0\) without loss of generality.

If \(B > 0,\) we denote that the optimal \(\tau^{ * }\) exists in the interval of \(\left[ {0,{{(\alpha + \beta p_{0} \gamma )} \mathord{\left/ {\vphantom {{(\alpha + \beta p_{0} \gamma )} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}}} \right]\) to maximize social welfare under carbon tax regulation.

  1. (1)

    If \(\tau^{ * } < {{(\alpha + \beta p_{0} \gamma )} \mathord{\left/ {\vphantom {{(\alpha + \beta p_{0} \gamma )} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}},\) that is \(v < {{[3(\alpha + p_{0} \beta \gamma )]} \mathord{\left/ {\vphantom {{[3(\alpha + p_{0} \beta \gamma )]} {\{ 2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]\} }}} \right. \kern-\nulldelimiterspace} {\{ 2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]\} }},\) then \(\tau^{ * } { = }\frac{{[ - 3 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) + 8Qv\beta e_{0}^{2} (1 + \gamma )}}{{e_{0} \beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )}}.\)

  2. (2)

    If \(\tau^{ * } > {{(\alpha + \beta p_{0} \gamma )} \mathord{\left/ {\vphantom {{(\alpha + \beta p_{0} \gamma )} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}},\) then \(\tau^{ * } { = }{{(\alpha + \beta p_{0} \gamma )} \mathord{\left/ {\vphantom {{(\alpha + \beta p_{0} \gamma )} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}}.\)

We define \(v_{3} ,v_{3}^{^{\prime}}\), and \(v_{3}^{^{\prime}} = v_{2} < v_{3} ,\)

$$ v_{3} {=} {{(\alpha {+} p_{0} \beta \gamma )} \mathord{\left/ {\vphantom {{(\alpha {+} p_{0} \beta \gamma )} {[2e{}_{0}^{2} Q\beta (1 {+} \gamma )]}}} \right. \kern-\nulldelimiterspace} {[2e{}_{0}^{2} Q\beta (1 {+} \gamma )]}},v_{3}^{^{\prime}} {=} v_{2} {=} {{[3(\alpha {+} p_{0} \beta \gamma )]} \mathord{\left/ {\vphantom {{[3(\alpha + p_{0} \beta \gamma )]} {\{ 2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]\} }}} \right. \kern-\nulldelimiterspace} {\{ 2e_{0}^{2} \beta (1 + \gamma )[4Q + (1 + \gamma )(\alpha + \beta p_{0} \gamma )]\} }}. $$

Then we can easily solve for the optimal tax rate \(\tau_{R}^{ * }\), total carbon emission \(E_{R}^{tax}\), and social welfare \(W_{R}^{tax}\) under the different environmental damage conditions as follows:

  1. (i)

    If \(0 < v < v_{3}^{^{\prime}} { = }v_{2} ,\) then \(\tau_{R}^{ * } { = }0,\)

    $$ W_{\tau }^{ * } = \frac{{32Q(p_{0} {-} e_{0}^{2} Qv)\beta {-} (\alpha {+} p_{0} \beta \gamma )\{ - 7\alpha {+} 2\alpha e_{0}^{2} v\beta (1 {+} \gamma )^{2} {-} 7\beta p_{0} \gamma {+} 2e_{0}^{2} v\beta^{2} (1 {+} \gamma )[8Q {+} p_{0} \beta \gamma (1 + \gamma )]\} }}{32\beta }, $$
    $$ E_{R}^{tax} = {{\{ e_{0} [4Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [4Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } 4}} \right. \kern-\nulldelimiterspace} 4},\quad \pi_{m}^{tax} = {{\{ e_{0} [4Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [4Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } 4}} \right. \kern-\nulldelimiterspace} 4}. $$
  2. (ii)

    If \(v_{2} < v < v_{3} ,\) then

    $$ \tau_{R}^{ * } { = }{{\{ [ - 3 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) + 8Qv\beta e_{0}^{2} (1 + \gamma )\} } \mathord{\left/ {\vphantom {{\{ [ - 3 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) + 8Qv\beta e_{0}^{2} (1 + \gamma )\} } {\{ e_{0} \beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )\} }}} \right. \kern-\nulldelimiterspace} {\{ e_{0} \beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )\} }}, $$
    $$ W_{R}^{tax} = \frac{{\alpha^{2} + 2Q(p_{0} - e_{0}^{2} Qv)\beta + 2\alpha \beta [p_{0} \gamma - 2e_{0}^{2} (1 + \gamma )vQ] + \beta^{2} p_{0} [p_{0} \gamma^{2} + 4e_{0}^{2} Qv(1 + \gamma )]}}{{2\beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ]}}, $$
    $$ E_{R}^{tax} = {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}, $$
    $$ \begin{aligned}\pi_{R}^{tax} & = \frac{{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\}^{2} }}{{\beta [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} }} \\ & \quad + Q\{ p_{0} - \frac{{\alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] - 3\beta p_{0} \gamma + 2e_{0}^{2} \beta v(1 + \gamma )[4Q + p_{0} \beta \gamma (1 + \gamma )]}}{{\beta (1 + \gamma )[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}\}.\end{aligned} $$

If \(v > v_{3} ,\) then \(\tau_{R}^{ * } { = }{{(\alpha + \beta p_{0} \gamma )} \mathord{\left/ {\vphantom {{(\alpha + \beta p_{0} \gamma )} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}},W_{R}^{tax} = p_{0} Q - ve_{0}^{2} Q^{2} ,E_{R}^{tax} = e_{0} Q,\)\(\pi_{R}^{tax} = {{[Q( - \alpha + p_{0} \beta )]} \mathord{\left/ {\vphantom {{[Q( - \alpha + p_{0} \beta )]} {[\beta (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta (1 + \gamma )]}}.\)

Proof of Theorem 5

We have \({{\partial \pi_{m}^{cap} } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap} } {\partial q}}} \right. \kern-\nulldelimiterspace} {\partial q}} = - {{[2(1 - \varphi )]} \mathord{\left/ {\vphantom {{[2(1 - \varphi )]} \beta }} \right. \kern-\nulldelimiterspace} \beta }q + \alpha {{(1 - \varphi )} \mathord{\left/ {\vphantom {{(1 - \varphi )} \beta }} \right. \kern-\nulldelimiterspace} \beta } + p_{0} \gamma - e_{0} (\lambda - bC)(1 + \gamma ).\)

The optimization problem can be seen to involve only the decision of the production quantity. We know that \({{\partial^{2} \pi_{m}^{cap} } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{m}^{cap} } {\partial q^{2} }}} \right. \kern-\nulldelimiterspace} {\partial q^{2} }} = {{[ - 2(1 - \varphi )]} \mathord{\left/ {\vphantom {{[ - 2(1 - \varphi )]} \beta }} \right. \kern-\nulldelimiterspace} \beta } < 0,\) so we can solve for the optimal quantity \(q^{ * } = {{\{ \alpha + \beta [p_{0} \gamma - e_{0} (\lambda - bC)(1 + \gamma )]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - e_{0} (\lambda - bC)(1 + \gamma )]\} } {[2(1 - \varphi )]}}} \right. \kern-\nulldelimiterspace} {[2(1 - \varphi )]}},\) which gives us the optimal production decisions stated in Theorem 5.

Proof of Corollary 2

We have \({{\partial \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap * } } {\partial C}}} \right. \kern-\nulldelimiterspace} {\partial C}} = be_{0} Q - 2bC + \lambda + ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2})be_{0} (1 + \gamma )\{ \alpha (1 - \varphi ) + \beta [p_{0} \gamma - e_{0} (1 + \gamma )(\lambda - bC)]\} ,\)

\({{\partial^{2} \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{m}^{cap * } } {\partial C^{2} }}} \right. \kern-\nulldelimiterspace} {\partial C^{2} }} = {{[ - 4b(1 - \varphi ) + b^{2} e_{0}^{2} \beta (1 + \gamma )^{2} ]} \mathord{\left/ {\vphantom {{[ - 4b(1 - \varphi ) + b^{2} e_{0}^{2} \beta (1 + \gamma )^{2} ]} {[2(1 - \varphi )]}}} \right. \kern-\nulldelimiterspace} {[2(1 - \varphi )]}}.\) Set the first partial derivative of \(\pi_{m}^{cap * }\) with respect to \(C\) equal to zero, and define \(C_{M}^{\gamma }\) as the stationary point. That is

$$ C_{M}^{\gamma } = \frac{{be_{0} \{ (1 + \gamma )[ - p_{0} \beta \gamma + e_{0} \beta (1 + \gamma )\lambda + \alpha ( - 1 + \varphi )] + 2Q( - 1 + \varphi )\} + 2\lambda ( - 1 + \varphi )}}{{b[ - 4(1 - \varphi ) + be_{0}^{2} \beta (1 + \gamma )^{2} ]}}. $$
  1. (i)

    When \(0 \le \varphi {{ \le [4 - be_{0}^{2} \beta (1 + \gamma )^{2} ]} \mathord{\left/ {\vphantom {{ \le [4 - be_{0}^{2} \beta (1 + \gamma )^{2} ]} 4}} \right. \kern-\nulldelimiterspace} 4},\) we have \({{\partial^{2} \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{m}^{cap * } } {\partial C^{2} }}} \right. \kern-\nulldelimiterspace} {\partial C^{2} }} < 0.\) Therefore, if \(0 \le C \le C_{M}^{\gamma } ,\) then \({{\partial \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap * } } {\partial C}}} \right. \kern-\nulldelimiterspace} {\partial C}} > 0;\) if \(C_{M}^{\gamma } < C \le {\lambda \mathord{\left/ {\vphantom {\lambda b}} \right. \kern-\nulldelimiterspace} b},\) then \({{\partial \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap * } } {\partial C}}} \right. \kern-\nulldelimiterspace} {\partial C}} < 0.\)

  2. (ii)

    When \({{[4 - be_{0}^{2} \beta (1 + \gamma )^{2} ]} \mathord{\left/ {\vphantom {{[4 - be_{0}^{2} \beta (1 + \gamma )^{2} ]} 4}} \right. \kern-\nulldelimiterspace} 4} \le \varphi \le 1,\) we have \({{\partial^{2} \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial^{2} \pi_{m}^{cap * } } {\partial C^{2} }}} \right. \kern-\nulldelimiterspace} {\partial C^{2} }} > 0.\) Since we assume that the manufacturer has a positive demand and profit, we must have \({{\partial \pi_{m}^{cap * } } \mathord{\left/ {\vphantom {{\partial \pi_{m}^{cap * } } {\partial C}}} \right. \kern-\nulldelimiterspace} {\partial C}} > 0.\)

Proof of Theorem 6

Following the process used in proving Theorem 2, we get the result shown in Theorem 6.

We define \(v_{1} ,v_{1}^{^{\prime}}\), and \(v_{1}^{^{\prime}} > v_{1} ,\)

$$ \begin{aligned} v_{1} = & \frac{{\alpha (1 - \varphi ) + p_{0} \beta \gamma (1 - 2\varphi )}}{{2e_{0}^{2} \beta (1 + \gamma )\{ 2Q(1 - \varphi ) + (1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]\} }}, \\ v_{1}^{^{\prime}} = & \frac{{\alpha (1 - \varphi ) + p_{0} \beta \gamma (1 - 2\varphi ) + e_{0} \beta (1 + \gamma )\lambda }}{{2e_{0}^{2} \beta (1 + \gamma )\{ 2Q(1 - \varphi ) + (1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ]\} }}. \\ \end{aligned} $$
  1. (i)

    If \(0 < v < v_{1} ,\) then \(C_{M}^{ * } = {\lambda \mathord{\left/ {\vphantom {\lambda b}} \right. \kern-\nulldelimiterspace} b}.\)

    $$ W_{M}^{cap} = \frac{\begin{gathered} [\alpha (1 {-} \varphi ) {+} p_{0} \beta \gamma ]^{2} [1 {-} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {+} 2[\alpha (1 {-} \varphi ) {+} p_{0} \beta \gamma ][\alpha (1 - \varphi ) + p_{0} \beta \gamma (1 - 2\varphi )] \hfill \\ - 8e_{0}^{2} v\beta \{ Q^{2} (1 - \varphi )^{2} + (1 - \varphi )Q(1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]\} + 8p_{0} \beta Q(1 - \varphi )^{2} \hfill \\ \end{gathered} }{{8\beta (1 - \varphi )^{2} }}, $$
    $$ \begin{aligned} E_{M}^{cap} & = {{[2e_{0} Q( - 1 + \varphi ) - e_{0} (1 + \gamma )(\alpha + p_{0} \beta \gamma - \alpha \varphi )]} \mathord{\left/ {\vphantom {{[2e_{0} Q( - 1 + \varphi ) - e_{0} (1 + \gamma )(\alpha + p_{0} \beta \gamma - \alpha \varphi )]} {[2( - 1 + \varphi )]}}} \right. \kern-\nulldelimiterspace} {[2( - 1 + \varphi )]}},\\ \pi_{m}^{cap} & = p_{0} Q + {{[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]^{2} } \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]^{2} } {[4\beta (1 - \varphi )]}}} \right. \kern-\nulldelimiterspace} {[4\beta (1 - \varphi )]}}.\end{aligned} $$
  2. (ii)

    If \(v_{1} < v < v_{1}^{^{\prime}} ,\) then

    $$ C_{M}^{ * } = \frac{{\alpha (1 {-} \varphi )[1 {-} 2v\beta e_{0}^{2} (1 {+} \gamma )^{2} ] {+} p_{0} \beta \gamma [(1 {-} 2\varphi ) {-} 2v\beta e_{0}^{2} (1 {+} \gamma )^{2} ] {+} \beta \lambda e_{0} (1 {+} \gamma )[1 {+} 2e_{0}^{2} (1 {+} \gamma )^{2} v\beta ] {-} 4Qv\beta e_{0}^{2} (1 + \gamma )(1 - \varphi )}}{{e_{0} b\beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )}}, $$
    $$ W_{M}^{cap} = \frac{{\alpha^{2} + 2Q(p_{0} - e_{0}^{2} Qv)\beta + 2\alpha \beta [p_{0} \gamma - 2e_{0}^{2} (1 + \gamma )vQ] + \beta^{2} p_{0} [p_{0} \gamma^{2} + 4e_{0}^{2} Qv(1 + \gamma )]}}{{2\beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ]}}, $$
    $$ E_{M}^{cap} = {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}, $$
    $$ \begin{aligned} \pi_{m}^{cap} = & p_{0} Q - \frac{{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\}^{2} ( - 1 + \varphi )}}{{\beta [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} }} \\ & + \frac{\begin{gathered} \{ - \alpha [ - 1 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ]( - 1 {+} \varphi ) + 2\beta e_{0}^{2} v(1 + \gamma )[p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1 + \varphi )] + \beta p_{0} \gamma ( - 1 + 2\varphi )\} \hfill \\ \alpha [ - 1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi ) - \beta \{ be_{0}^{2} Q(1 + \gamma )[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] \hfill \\ - e_{0} (1 {+} \gamma )\lambda {-} 2e_{0}^{3} v\beta (1 {+} \gamma )^{3} \lambda {+} 2e_{0}^{2} v(1 {+} \gamma )[p_{0} \beta \gamma (1 {+} \gamma ) {-} 2Q( - 1 {+} \varphi )] {+} p_{0} \gamma ( - 1 {+} 2\varphi )\} \hfill \\ \end{gathered} }{{be_{0}^{2} \beta^{2} (1 + \gamma )^{2} [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} }}, \\ \end{aligned} $$
  3. (iii)

    If \(v > v_{1}^{^{\prime}} ,\) then \(C_{M}^{ * } = 0,\)

    $$ \begin{aligned} W_{M}^{cap} & = p_{0} Q + \frac{1}{8\beta }\{ \alpha + \frac{\beta }{(1 - \varphi )}[p_{0} \gamma - e_{0} \lambda (1 + \gamma )]\}^{2}\\ & \quad + \frac{1}{4}\{ \alpha + \frac{\beta }{(1 - \varphi )}[p_{0} \gamma - e_{0} \lambda (1 + \gamma )]\} [{\alpha \mathord{\left/ {\vphantom {\alpha \beta }} \right. \kern-\nulldelimiterspace} \beta } + \frac{{(1 - 2\varphi )p_{0} \gamma }}{(1 - \varphi )} + \frac{{\lambda e_{0} (1 + \gamma )}}{(1 - \varphi )}] \hfill\\ & \quad - ve_{0}^{2} \{ Q + \frac{\alpha }{2}(1 + \gamma ) + (1 + \gamma )\frac{\beta }{2(1 - \varphi )}[p_{0} \gamma - e_{0} \lambda (1 + \gamma )]\}^{2} , \hfill \\ \end{aligned} $$
    $$ E_{M}^{cap} = {{\{ 2e_{0} Q( - 1 + \varphi ) + e_{0} (1 + \gamma )\left[ {\alpha ( - 1 + \varphi ) - p_{0} \beta \gamma + e_{0} (1 + \gamma )\lambda } \right]\} } \mathord{\left/ {\vphantom {{\{ 2e_{0} Q( - 1 + \varphi ) + e_{0} (1 + \gamma )\left[ {\alpha ( - 1 + \varphi ) - p_{0} \beta \gamma + e_{0} (1 + \gamma )\lambda } \right]\} } {[2( - 1 + \varphi )]}}} \right. \kern-\nulldelimiterspace} {[2( - 1 + \varphi )]}}, $$
    $$ \pi_{m}^{cap} { = }p_{0} Q - e_{0} Q\lambda - {{\{ a(1 - \varphi ) + \beta [p_{0} \gamma - e_{0} (1 + \gamma )\lambda ]\}^{2} } \mathord{\left/ {\vphantom {{\{ a(1 - \varphi ) + \beta [p_{0} \gamma - e_{0} (1 + \gamma )\lambda ]\}^{2} } {[4\beta ( - 1 + \varphi )]}}} \right. \kern-\nulldelimiterspace} {[4\beta ( - 1 + \varphi )]}}. $$

Proof of Theorem 7

Theorem 7 follows from the same process used in proving Theorem 6.

Proof of Theorem 8

Following the process used to prove Theorem 4, we have

$$ W_{R}^{tax} = \int_{0}^{{q^{ * } }} {({\alpha \mathord{\left/ {\vphantom {\alpha \beta }} \right. \kern-\nulldelimiterspace} \beta } - {q \mathord{\left/ {\vphantom {q \beta }} \right. \kern-\nulldelimiterspace} \beta } - p^{ * } )dq + \pi_{m}^{tax*} } + \pi_{p}^{tax*} { + }\pi_{{\text{C}}}^{tax*} - v[e_{0} (q + Q + \gamma q)]^{2} , $$
$$ \begin{aligned} {{\partial W_{R}^{tax} } \mathord{\left/ {\vphantom {{\partial W_{R}^{tax} } {\partial \tau }}} \right. \kern-\nulldelimiterspace} {\partial \tau }} = & - {1 \mathord{\left/ {\vphantom {1 {[4( - 1 + \varphi )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[4( - 1 + \varphi )^{2} ]}}e_{0} (1 + \gamma )[e_{0} \beta (1 + \gamma ) + 2e_{0}^{3} v\beta^{2} (1 + \gamma )^{3} ]\tau \\ & - {1 \mathord{\left/ {\vphantom {1 {[4( - 1 + \varphi )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[4( - 1 + \varphi )^{2} ]}}e_{0} \left( {1 + \gamma } \right)\{ - 2e_{0}^{2} v\beta (1 + \gamma )[p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1{ + }\varphi )] \\ & + p_{0} \beta \gamma (1 - 2\varphi ) + \alpha [ - 1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi )\} . \\ \end{aligned} $$

We know \({{\partial^{2} W_{R}^{tax} } \mathord{\left/ {\vphantom {{\partial^{2} W_{R}^{tax} } {\partial \tau^{2} }}} \right. \kern-\nulldelimiterspace} {\partial \tau^{2} }} = - {{\{ e_{0}^{2} \beta (1 + \gamma )^{2} [1 + 2v\beta e_{0}^{2} (1 + \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0}^{2} \beta (1 + \gamma )^{2} [1 + 2v\beta e_{0}^{2} (1 + \gamma )]\} } {[4(1 - \varphi )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[4(1 - \varphi )^{2} ]}} < 0,\) and we set the first derivative of \(W_{R}^{tax}\) with respect to \(\tau\) to zero. Hence

$$\begin{aligned}\tau^{* } & = \{ \alpha (1 - \varphi )[ - 1 + 2v\beta e_{0}^{2} (1 +\gamma )^{2} ] + p_{0} \beta \gamma [ - (1 - 2\varphi ) + 2v\beta e_{0}^{2} (1 + \gamma )^{2} ]\\ &\quad + 4Qv\beta e_{0}^{2} (1 +\gamma )(1 - \varphi )\}/ \{ e_{0} \beta [1 + 2e_{0}^{2} (1 + \gamma)^{2} v\beta ](1 + \gamma )\}.\end{aligned} $$

Define \(\begin{aligned} B = & - {1 \mathord{\left/ {\vphantom {1 {[4( - 1 + \varphi )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[4( - 1 + \varphi )^{2} ]}}e_{0} \left( {1 + \gamma } \right)\{ - 2e_{0}^{2} v\beta (1 + \gamma )[p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1{ + }\varphi )] \\ & + p_{0} \beta \gamma (1 - 2\varphi ) + \alpha [ - 1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi )\} . \\ \end{aligned}\).

If \(B < 0,\) we get \(v < \frac{{\alpha (1 - \varphi ) + p_{0} \beta \gamma (1 - 2\varphi )}}{{2e_{0}^{2} \beta (1 + \gamma )\{ 2Q(1 - \varphi ) + (1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]\} }},\) and then the optimal total emission is \(\tau^{ * } < 0.\) Therefore, we set \(\tau^{ * } = 0\) without loss of generality.

If \(B > 0,\) we denote that the optimal \(\tau^{ * }\) exists in the interval of \(\left[ {0,{{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}}} \right]\) to maximize social welfare under carbon tax regulation.

  1. (1)

    If \(\tau^{ * } < {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}},\) that is \(v < {{(\alpha + p_{0} \beta \gamma )} \mathord{\left/ {\vphantom {{(\alpha + p_{0} \beta \gamma )} {[2e{}_{0}^{2} Q\beta (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[2e{}_{0}^{2} Q\beta (1 + \gamma )]}},\) then

    $$\begin{aligned}\tau^{* } &= \{ \alpha (1 - \varphi )[ - 1 + 2v\beta e_{0}^{2} (1 +\gamma )^{2} ] + p_{0} \beta \gamma [ - (1 - 2\varphi ) + 2v\beta e_{0}^{2} (1 + \gamma )^{2} ] \\ &\quad + 4Qv\beta e_{0}^{2} (1 +\gamma )(1 - \varphi )\} / \{ e_{0} \beta [1 + 2e_{0}^{2} (1 +\gamma )^{2} v\beta ](1 + \gamma )\}.\end{aligned}$$
  2. (2)

    If \(\tau^{ * } > {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}},\) then \(\tau^{ * } { = }{{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}}.\)

We define \(v_{3} ,v_{3}^{^{\prime}}\), and \(v_{3}^{^{\prime}} = v_{1} < v_{3} ,\)

$$ v_{3} = {{(\alpha + p_{0} \beta \gamma )} \mathord{\left/ {\vphantom {{(\alpha + p_{0} \beta \gamma )} {[2e{}_{0}^{2} Q\beta (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[2e{}_{0}^{2} Q\beta (1 + \gamma )]}},v_{3}^{^{\prime}} = v_{1} = \frac{{\alpha (1 - \varphi ) + p_{0} \beta \gamma (1 - 2\varphi )}}{{2e_{0}^{2} \beta (1 + \gamma )\{ 2Q(1 - \varphi ) + (1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]\} }}. $$
  1. (i)

    If \(0 < v < v_{1} ,\) then \(\tau_{M}^{ * } = 0,\)

    $$ \begin{gathered} W_{M}^{tax} = \hfill \\ - \frac{\begin{gathered} \alpha^{2} [ - 3{+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ]( - 1 {+} \varphi )^{2} {-} 2\alpha \beta ( - 1 {+} \varphi )\{ 2e_{0}^{2} v\beta (1 {+} \gamma )[p_{0} \beta \gamma (1 {+} \gamma ) {-} 2Q( - 1 + \varphi )] + p_{0} \gamma ( - 3 + 2\varphi )\} \hfill \\ + \beta \{ 8e_{0}^{2} Q^{2} v( - 1 {+} \varphi )^{2} {-} 8p_{0} Q( - 1 {+} \varphi )[ - 1 {+} e_{0}^{2} v\beta \gamma (1 {+} \gamma ) {+} \varphi ] {+} p_{0}^{2} \beta \gamma^{2} [ - 3 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} {+} 4\varphi ]\} \hfill \\ \end{gathered} }{{8\beta ( - 1 + \varphi )^{2} }}, \hfill \\ \end{gathered} $$
    $$ \begin{aligned}E_{R}^{tax} & = {{\{ 2e_{0} Q( - 1 + \varphi ) - e_{0} (1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]\} } \mathord{\left/ {\vphantom {{\{ 2e_{0} Q( - 1 + \varphi ) - e_{0} (1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]\} } {[2( - 1 + \varphi )]}}} \right. \kern-\nulldelimiterspace} {[2( - 1 + \varphi )]}},\\ & \pi_{m}^{tax} = p_{0} Q - {{[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]^{2} } \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + p_{0} \beta \gamma ]^{2} } {[4\beta ( - 1 + \varphi )]}}} \right. \kern-\nulldelimiterspace} {[4\beta ( - 1 + \varphi )]}}.\end{aligned} $$
  2. (ii)

    If \(v_{1} < v < v_{3} ,\)

    $$ \tau_{M}^{ * } \frac{{\alpha (1 - \varphi )[ - 1 + 2v\beta e_{0}^{2} (1 + \gamma )^{2} ] + p_{0} \beta \gamma [ - (1 - 2\varphi ) + 2v\beta e_{0}^{2} (1 + \gamma )^{2} ] + 4Qv\beta e_{0}^{2} (1 + \gamma )(1 - \varphi )}}{{e_{0} \beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )}}, $$
    $$ W_{M}^{tax} = \frac{{\alpha^{2} + 2Q(p_{0} - e_{0}^{2} Qv)\beta + 2\alpha \beta [p_{0} \gamma - 2e_{0}^{2} (1 + \gamma )vQ] + \beta^{2} p_{0} [p_{0} \gamma^{2} + 4e_{0}^{2} Qv(1 + \gamma )]}}{{2\beta [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ]}}, $$
    $$ E_{M}^{tax} = {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } \mathord{\left/ {\vphantom {{\{ e_{0} [Q + (1 + \gamma )(\alpha + p_{0} \beta \gamma )]\} } {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}, $$
    $$ \begin{aligned}\pi_{m}^{tax} & = - \frac{{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\}^{2} ( - 1 + \varphi )}}{{\beta [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} }}{ + }p_{0} Q \\ &\quad - Q\frac{\begin{gathered} \{ - \alpha [ - 1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi ) \hfill \\ + 2\beta e_{0}^{2} v(1 + \gamma )[p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1 + \varphi )] + \beta p_{0} \gamma ( - 1 + 2\varphi )\} \hfill \\ \end{gathered} }{{\beta (1 + \gamma )[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}.\end{aligned} $$
  3. (iii)

    If \(v > v_{3} ,\)

    $$ \begin{aligned}\tau_{M}^{ * } & = {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma ]} {[\beta e_{0} (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta e_{0} (1 + \gamma )]}},W_{M}^{tax} = p_{0} Q - ve_{0}^{2} Q^{2},\\ & E_{M}^{tax} = e_{0} Q,\pi_{m}^{tax} = {{[p_{0} Q\beta + \alpha Q( - 1 + \varphi )]} \mathord{\left/ {\vphantom {{[p_{0} Q\beta + \alpha Q( - 1 + \varphi )]} {[\beta (1 + \gamma )]}}} \right. \kern-\nulldelimiterspace} {[\beta (1 + \gamma )]}}.\end{aligned} $$

Proof of Theorem 9

First, we explain the comparison of carbon emission and social welfare under cap-and-trade regulation.

$$ W = {1 \mathord{\left/ {\vphantom {1 {(2\beta )}}} \right. \kern-\nulldelimiterspace} {(2\beta )}}q^{2} + p_{0} \left( {Q + \gamma q} \right) + q({\alpha \mathord{\left/ {\vphantom {\alpha \beta }} \right. \kern-\nulldelimiterspace} \beta } - {q \mathord{\left/ {\vphantom {q \beta }} \right. \kern-\nulldelimiterspace} \beta }) - v[e_{0} (q + Q + \gamma q)]^{2} , $$
$$ {{\partial W} \mathord{\left/ {\vphantom {{\partial W} {\partial q}}} \right. \kern-\nulldelimiterspace} {\partial q}} = - 2e_{0}^{2} v(1 + \gamma )(q + Q + q\gamma ) + {{( - q + \alpha + p_{0} \beta \gamma )} \mathord{\left/ {\vphantom {{( - q + \alpha + p_{0} \beta \gamma )} \beta }} \right. \kern-\nulldelimiterspace} \beta }, $$

We know \({{\partial^{2} W} \mathord{\left/ {\vphantom {{\partial^{2} W} {\partial q^{2} }}} \right. \kern-\nulldelimiterspace} {\partial q^{2} }} = {{[ - 1 - 2\beta e_{0}^{2} v(1 + \gamma )^{2} ]} \mathord{\left/ {\vphantom {{[ - 1 - 2\beta e_{0}^{2} v(1 + \gamma )^{2} ]} \beta }} \right. \kern-\nulldelimiterspace} \beta } < 0,\) and we set the first derivative of \(W\) with respect to \(q\) to zero. Thus, we get \(q = {{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\} } {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}\) as the optimal decision for social welfare.

  1. (i)

    If \(0 < v < v_{1} ,\) from Theorem 2 and Theorem 6, we know that

    \(q_{M}^{ * } - q_{{\text{R}}}^{ * } = {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma (1 + \varphi )]} \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + \beta p_{0} \gamma (1 + \varphi )]} {4(1 - \varphi )}}} \right. \kern-\nulldelimiterspace} {4(1 - \varphi )}} > 0,\) and \(q_{{\text{R}}}^{ * } < q_{M}^{ * } < q,\), so \(W_{R}^{cap} < W_{M}^{cap} , \, and \, E_{R}^{cap} < E_{M}^{cap} .\)

  2. (ii)

    If \(v_{1} < v < v_{2} ,\) from Theorem 2 and Theorem 6, we know that \(W_{M}^{cap} > W_{R}^{cap} .\)

    $$ W_{M}^{cap} {-} W_{{\text{R}}}^{cap} {=} \frac{{\{ \alpha [ - 3 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {-} 3\beta p_{0} \gamma + 2\beta e_{0}^{2} v(1 {+} \gamma )[4Q {+} p_{0} \beta \gamma (1 {+} \gamma )]\}^{2} }}{{32\beta [1 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ]}} > 0. $$
  3. (iii)

    If \(v_{2} < v < v_{1}^{^{\prime}} ,\) from Theorem 2 and Theorem 6, we know that \(q_{{\text{R}}}^{ * } { = }q{ = }q_{M}^{ * } ,\) so \(W_{R}^{cap} { = }W_{M}^{cap} , \, and \, E_{R}^{cap} = E_{M}^{cap} .\)

  4. (iv)

    If \(v_{1}^{^{\prime}} < v < v_{2}^{^{\prime}} ,\) from Theorem 2 and Theorem 6, we know that \(W_{R}^{cap} > W_{M}^{cap} , \, and \, E_{R}^{cap} < E_{M}^{cap} .\)

    $$ W_{{\text{R}}}^{cap} - W_{M}^{cap} { = }\frac{\begin{gathered} \{ \beta e_{0} (1 + \gamma )\lambda + 2e_{0}^{3} v\beta^{2} (1 + \gamma )^{3} \lambda - 2\beta e_{0}^{2} v(1 + \gamma )[p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1 + \varphi )] + \beta p_{0} \gamma (1 - 2\varphi ) \hfill \\ + \alpha [ - 1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi )\}^{2} \hfill \\ \end{gathered} }{{8\beta [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi )^{2} }} > 0, $$
    $$ q_{R}^{*} {-} q_{M}^{ * } \!=\! \frac{{\beta e_{0} (1 \!+\! \gamma )\lambda {+} 2e_{0}^{3} v\beta^{2} (1 {+} \gamma )^{3} \lambda {-} 2\beta e_{0}^{2} v(1 {+} \gamma )[p_{0} \beta \gamma (1{ +} \gamma ) {-} 2Q( - 1 {+} \varphi )] {+} \beta p_{0} \gamma (1 {-} 2\varphi ) {+} \alpha [ - 1 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ]( - 1 {+} \varphi )}}{{2[1 {+} 2e_{0}^{2} (1 {+} \gamma )^{2} v\beta ](1 {-} \varphi )}} \!<\! 0, $$
    $$ q_{R}^{*} < q_{M}^{ * } , \, and \, E_{R}^{cap} < E_{M}^{cap} . $$
  5. (v)

    If \(v > v_{2}^{^{\prime}} ,\) from Theorem 2 and Theorem 6, we know that

\(q_{R}^{ * } - q_{M}^{ * } = {{\{ \alpha (1 - \varphi ) + \beta [p_{0} \gamma - e_{0} \lambda (1 + \gamma )](1 - \varphi )\} } \mathord{\left/ {\vphantom {{\{ \alpha (1 - \varphi ) + \beta [p_{0} \gamma - e_{0} \lambda (1 + \gamma )](1 - \varphi )\} } {[4( - 1 + \varphi )]}}} \right. \kern-\nulldelimiterspace} {[4( - 1 + \varphi )]}} < 0,\) and \(q < 0,\) so \(q < q_{R}^{ * } < q_{M}^{ * } {\text{, W}}_{{\text{R}}}^{cap} > W_{M}^{cap} , \, and \, E_{R}^{cap} < E_{M}^{cap} .\)

Next, we explain the comparison of carbon emission and social welfare under carbon tax regulation. We know that \(q = {{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\} } {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}\) is the optimal decision for welfare.

  1. (i)

    If \(0 < v_{M} < v_{1} ,\) from Theorem 4 and Theorem 8 we know that \(q_{R}^{tax} - q_{M}^{tax} = - {{[\alpha (1 - \varphi ) + p_{0} \beta \gamma (1 + \varphi )]} \mathord{\left/ {\vphantom {{[\alpha (1 - \varphi ) + p_{0} \beta \gamma (1 + \varphi )]} {[4(1 - \varphi )]}}} \right. \kern-\nulldelimiterspace} {[4(1 - \varphi )]}} < 0,\) and \(q_{R}^{tax} < q_{M}^{tax} < q,\) so \(W_{R}^{tax} < W_{M}^{tax} , \, and \, E_{M}^{tax} > E_{R}^{tax}\).

  2. (ii)

    If \(v_{1} < v_{M} < v_{2} ,\) from Theorem 4 and Theorem 8, we know that \(W_{R}^{tax} < W_{M}^{tax} ,\)

    $$ q_{M}^{tax} {-} q_{{\text{R}}}^{tax} {=} - \frac{{\alpha [ - 3 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {+} \beta \{ - 3p_{0} \gamma {+} 2e_{0}^{2} v(1 + \gamma )[4Q + p_{0} \beta \gamma (1 + \gamma )]\} }}{{4 + 8e_{0}^{2} v\beta (1 + \gamma )^{2} }} > 0. $$

    So \(q_{M}^{tax} > q_{{\text{R}}}^{tax} , \, and \, E_{R}^{tax} < E_{M}^{tax} .\)

  3. (iii)

    If \(v_{M} > v_{2} ,\) from Theorem 4 and Theorem 8, we know that \(W_{R}^{tax} { = }W_{M}^{tax} , \, and \, E_{R}^{tax} = E_{M}^{tax} .\)

Combining these parts, we get the result shown in Theorem 9.

Proof of Theorem 10

First, we explain the comparisons of carbon emission, manufacturer’s profit, and social welfare using reselling mode.

  1. (i)

    If \(0 < v < v_{2} ,\) from Theorem 2 and Theorem 4, we know that \(E_{R}^{tax} { = }E_{R}^{cap} , \, \pi_{m}^{tax} { = }\pi_{m}^{cap} , \, W_{R}^{tax} { = }W_{R}^{cap} .\)

  2. (ii)

    If \(v_{2} < v < v_{2}^{^{\prime}} ,\) from Theorem 2 and Theorem 4, we know that \(E_{R}^{tax} { = }E_{R}^{cap} , \, \pi_{m}^{tax} < \pi_{m}^{cap} , \, W_{R}^{tax} = W_{R}^{cap} .\)

    $$ \pi_{m}^{cap} {-} \pi_{m}^{tax} { = }\frac{\begin{gathered} - \{ \alpha [ - 3 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {-} 3\beta p_{0} \gamma {+} 2\beta e_{0}^{2} v(1 {+} \gamma )[4Q {+} p_{0} \beta \gamma (1 {+} \gamma )]\} \hfill \\ \{ \alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] - 3\beta p_{0} \gamma + \beta e_{0} (1 + \gamma )[ - \lambda + 8e_{0} vQ + 2\beta e_{0} v(1 + \gamma )p_{0} \gamma - 2\beta ve_{0}^{2} (1 + \gamma )^{2} \lambda ]\} \hfill \\ \end{gathered} }{{\{ be_{0}^{2} \beta^{2} (1 + \gamma )^{2} [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} \} }} > 0. $$
  3. (iii)

    If \(v_{2}^{^{\prime}} < v < v_{3} ,\) from Theorem 2 and Theorem 4, we know that \(E_{R}^{cap} > E_{R}^{tax} , \, \pi_{m}^{tax} < \pi_{m}^{cap} , \, W_{R}^{tax} > W_{R}^{cap} .\)

    $$ E_{R}^{tax} {-} E_{R}^{cap} {=} \frac{{e_{0} (1 {+} \gamma )\{ - \alpha [ - 3 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {+} 3\beta p_{0} \gamma {+} \lambda \beta e_{0} (1 {+} \gamma ) {+} 2\beta (1 {+} \gamma )e_{0}^{2} v[ - 4Q {+} ( - p_{0} \gamma \beta (1 {+} \gamma ) {+} \beta e_{0} (1 {+} \gamma )^{2} \lambda )]\} }}{{4 + 8e_{0}^{2} v\beta (1 + \gamma )^{2} }}. $$

    Consider the formula:\(- \alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] + 3\beta p_{0} \gamma + \beta e_{0} (1 + \gamma )\{ \lambda - 8e_{0} vQ + 2e_{0} v\beta (1 + \gamma )[ - p_{0} \gamma + e_{0} (1 + \gamma )\lambda ]\} .\) This formula is the molecular of \(C_{R}^{ * }\), and \(E_{R}^{tax} - E_{R}^{cap} < 0.\) Accordingly,

    $$ \pi_{R}^{cap} {-} \pi_{R}^{tax} {=} \frac{\begin{gathered} \{ 8Q[2 {+} 3e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {+} 5(\alpha {+} p_{0} \beta \gamma )(1 {+} \gamma ) {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{3} (\alpha {+} p_{0} \beta \gamma ) {-} e_{0} \beta (1 {+} \gamma )^{2} [1 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ]\lambda \} \hfill \\ \{ \alpha [ - 3 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ] {-} 3\beta p_{0} \gamma {-} \lambda \beta e_{0} (1 {+} \gamma ) {+} \beta (1 {+} \gamma )8e_{0}^{2} vQ {+} 2v\beta^{2} e_{0}^{2} (1 + \gamma )^{2} [p_{0} \gamma - e_{0} (1 + \gamma )\lambda ]\} \hfill \\ \end{gathered} }{{16\beta (1 + \gamma )[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} }} $$

    In the formula:\(\alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] - 3\beta p_{0} \gamma + \beta e_{0} (1 + \gamma )\{ - \lambda + 8Qe_{0} v + 2e_{0} v\beta (1 + \gamma )[p_{0} \gamma - e_{0} (1 + \gamma )\lambda ]\} .\) is the molecular of \(- C_{R}^{ * }\), and \(C_{R}^{ * } < 0,\)

    $$ \begin{aligned} & W_{R}^{cap} {-} W_{R}^{tax} =\\ & \quad \frac{{\{ \alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] - 3\beta p_{0} \gamma + \beta e_{0} (1 + \gamma )[\lambda - 8e_{0} vQ + 2e_{0} v\beta (1 + \gamma )( - p_{0} \gamma + e_{0} \lambda { + }e_{0} \gamma \lambda )]\}^{2} }}{{32\beta [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}} > 0.\end{aligned} $$
  4. (iv)

    If \(v > v_{3}\),from Theorem 2 and Theorem 4, we know that \(E_{R}^{tax} < E_{R}^{cap} , \, \pi_{m}^{tax} < \pi_{m}^{cap} , \, W_{R}^{tax} > W_{R}^{cap} .\)

    $$ E_{R}^{tax} - E_{R}^{cap} = {{\{ e_{0} (1 + \gamma )[ - \alpha - p_{0} \beta \gamma + e_{0} \beta (1 + \gamma )\lambda ]\} } \mathord{\left/ {\vphantom {{\{ e_{0} (1 + \gamma )[ - \alpha - p_{0} \beta \gamma + e_{0} \beta (1 + \gamma )\lambda ]\} } 4}} \right. \kern-\nulldelimiterspace} 4} < 0, $$
    $$ \pi_{R}^{cap} - \pi_{R}^{tax} = \frac{{[\alpha + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ]\{ 16Q + (1 + \gamma )[\alpha + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ]\} }}{16\beta (1 + \gamma )} > 0, $$
    $$\begin{aligned}& W_{R}^{cap} - W_{R}^{tax} =\\ &\quad \frac{\begin{gathered} {[\alpha + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ]} \hfill \\ \{ \alpha [ - 7 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ] - 7\beta p_{0} \gamma + \lambda \beta e_{0} (1 + \gamma ) - 16Qe_{0}^{2} v(1 + \gamma ) + 2e_{0}^{2} v\beta^{2} (1 + \gamma )^{2} [ - p_{0} \gamma + e_{0} (1 + \gamma )\lambda ]\} \hfill \\ \end{gathered} }{32\beta }.\end{aligned} $$

If \(W_{R}^{cap} - W_{R}^{tax} > 0,\) we find \(v > \frac{{7(\alpha + p_{0} \beta \gamma ) + e_{0} \beta (1 + \gamma )\lambda }}{{2e_{0}^{2} \beta (1 + \gamma )\{ 8Q + (1 + \gamma )[\alpha + \beta p_{0} \gamma - e_{0} \beta (1 + \gamma )\lambda ]\} }},\) and \(v_{3} > \frac{{7(\alpha + p_{0} \beta \gamma ) + e_{0} \beta (1 + \gamma )\lambda }}{{2e_{0}^{2} \beta (1 + \gamma )\{ 8Q + (1 + \gamma )[\alpha + \beta p_{0} \gamma - e_{0} \beta (1 + \gamma )\lambda ]\} }},\) so \(W_{R}^{tax} > W_{R}^{cap} .\)

Next, we explain the comparisons of carbon emission, manufacturer’s profit, and social welfare using marketplace mode.

  1. (i)

    If \(0 < v < v_{1} ,\) we know that \(W = {1 \mathord{\left/ {\vphantom {1 {(2\beta )}}} \right. \kern-\nulldelimiterspace} {(2\beta )}}q^{2} + p_{0} \left( {Q + \gamma q} \right) + q({\alpha \mathord{\left/ {\vphantom {\alpha \beta }} \right. \kern-\nulldelimiterspace} \beta } - {q \mathord{\left/ {\vphantom {q \beta }} \right. \kern-\nulldelimiterspace} \beta }) - v[e_{0} (q + Q + \gamma q)]^{2} ,\)

    \(E_{M}^{tax} = E_{M}^{cap} = e_{0} (q + Q + q\gamma ).\) From Theorem 6 and Theorem 8, we know that \(q^{tax*} = q^{cap*} = {{\{ \alpha (1 - \varphi ) + \beta [p_{0} \gamma - e_{0} \lambda (1 + \gamma )]\} } \mathord{\left/ {\vphantom {{\{ \alpha (1 - \varphi ) + \beta [p_{0} \gamma - e_{0} \lambda (1 + \gamma )]\} } {[2(1 - \varphi )]}}} \right. \kern-\nulldelimiterspace} {[2(1 - \varphi )]}}\). So \(E_{M}^{tax} { = }E_{M}^{cap} , \, \pi_{m}^{tax} { = }\pi_{m}^{cap} , \, W_{M}^{tax} { = }W_{M}^{cap} .\)

  2. (ii)

    If \(v_{1} < v < v_{1}^{^{\prime}} ,\) from Theorem 6 and Theorem 8, we know that

    \(q^{tax*} = q^{cap*} = {{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\} } \mathord{\left/ {\vphantom {{\{ \alpha + \beta [p_{0} \gamma - 2e_{0}^{2} Qv(1 + \gamma )]\} } {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}} \right. \kern-\nulldelimiterspace} {[1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]}}.\) So \(E_{M}^{tax} { = }E_{M}^{cap} , \, \pi_{m}^{tax} < \pi_{m}^{cap} , \, W_{M}^{tax} = W_{M}^{cap} .\)

    $$ \pi_{m}^{cap} {-} \pi_{m}^{tax} { = } - \frac{\begin{gathered} \{ \beta e_{0} (1 {+} \gamma )\lambda {+} 2e_{0}^{3} v\beta^{2} (1 {+} \gamma )^{3} \lambda {-} 2\beta e_{0}^{2} v(1 {+} \gamma )(p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1 + \varphi )) {+} \beta p_{0} \gamma (1 {-} 2\varphi ) \hfill \\ + \alpha [ - 1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi )\} \hfill \\ \{ \alpha [ - 1 {+} 2e_{0}^{2} v\beta (1 {+} \gamma )^{2} ]( - 1 {+} \varphi ) {-} 2\beta e_{0}^{2} v(1 {+} \gamma )[\beta p_{0} \gamma (1 {+} \gamma ) {-} 2Q( - 1 {+} \varphi )] {+} \beta p_{0} \gamma ( - 1 {+} 2\varphi )\} \hfill \\ \end{gathered} }{{be_{0}^{2} \beta^{2} (1 + \gamma )^{2} [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]^{2} }} > 0. $$
  3. (iii)

    If \(v_{1}^{^{\prime}} < v < v_{3} ,\) from Theorem 6 and Theorem 8, we know that \(E_{M}^{tax} < E_{M}^{cap} , \, \pi_{m}^{tax} < \pi_{m}^{cap} , \, W_{M}^{tax} > W_{M}^{cap} .\)

    $$ \begin{aligned} & E_{M}^{tax} - E_{M}^{cap} =\\ &\quad \frac{{ - \left( {e_{0} \left( {1 {+} \gamma } \right)\left( {\left( {3 {-} 2e_{0}^{2} \left( {1 {+} \gamma } \right)^{2} v\beta } \right)\left( {\alpha {+} p_{0} \beta \gamma } \right) - 8Qv\beta e_{0}^{2} \left( {1 + \gamma } \right) + \beta e_{0} \lambda \left( {1 + 2e_{0}^{2} \left( {1 + \gamma } \right)^{2} v\beta } \right)\left( {1 + \gamma } \right)} \right)} \right)}}{{\left( {2\left( {1 + 2e_{0}^{2} v\beta \left( {1 + \gamma } \right)^{2} } \right)\left( { - 1 + \varphi } \right)} \right)}} < 0\end{aligned} $$

    In the formula:\([3 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) - 8Qv\beta e_{0}^{2} (1 + \gamma ) + \beta e_{0} \lambda [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )\) is the molecular of \(C_{R}^{ * }\), and \(C_{R}^{ * } < 0\)

    $$ \begin{aligned}& \pi_{m}^{cap} - \pi_{m}^{tax} = \\ &\quad \frac{{\left( \begin{gathered} \left( \begin{gathered} \left( {1 {+} \gamma } \right)\left( {\beta \left( {e_{0} \left( {1 {+} \gamma } \right)\left( {1 {+} 2e_{0}^{2} v\beta \left( {1 {+} \gamma } \right)^{2} } \right)\lambda {-} p_{0} \gamma \left( {3 {+} 2e_{0}^{2} v\beta \left( {1 {+} \gamma } \right)^{2} - 2\varphi } \right)} \right) + \alpha \left( {3 + 2e_{0}^{2} v\beta \left( {1 + \gamma } \right)^{2} } \right)\left( { - 1 + \varphi } \right)} \right) \hfill \\ + 4Q\left( {1 + e_{0}^{2} v\beta \left( {1 + \gamma } \right)^{2} } \right)\left( { - 1 + \varphi } \right) \hfill \\ \end{gathered} \right) \hfill \\ \left( {\left( {3 - 2e_{0}^{2} \left( {1 + \gamma } \right)^{2} v\beta } \right)\left( {\alpha + p_{0} \beta \gamma } \right) - 8Qv\beta e_{0}^{2} \left( {1 + \gamma } \right) + \beta e_{0} \lambda \left( {1 + 2e_{0}^{2} \left( {1 + \gamma } \right)^{2} v\beta } \right)\left( {1 + \gamma } \right)} \right) \hfill \\ \end{gathered} \right)}}{{\left( {4\beta \left( {1{ + }\gamma } \right)\left( {1 + 2e_{0}^{2} v\beta \left( {1 + \gamma } \right)^{2} } \right)^{2} \left( { - 1 + \varphi } \right)} \right)}} > 0 \end{aligned}$$

    In the formula:\([3 - 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](\alpha + p_{0} \beta \gamma ) - 8Qv\beta e_{0}^{2} (1 + \gamma ) + \beta e_{0} \lambda [1 + 2e_{0}^{2} (1 + \gamma )^{2} v\beta ](1 + \gamma )\) is the molecular of \(C_{R}^{ * }\), and \(C_{R}^{ * } < 0\)

    $$ W_{M}^{cap} - W_{M}^{tax} = \frac{{\left\{ \begin{gathered} \alpha [ - 1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ( - 1 + \varphi )] + \beta e_{0} (1 + \gamma )\lambda + 2e_{0}^{3} v\beta^{2} (1 + \gamma )^{3} \lambda - 2\beta e_{0}^{2} v(1 + \gamma ) \hfill \\ [p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1 + \varphi )] + \beta p_{0} \gamma (1 - 2\varphi ) \hfill \\ \end{gathered} \right\}^{2} }}{{8\beta [1 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ]( - 1 + \varphi )^{2} }} > 0, $$
  4. (iv)

    If \(v > v_{3} ,\) from Theorem 6 and Theorem 8, we know that \(E_{M}^{tax} < E_{M}^{cap} , \, \pi_{m}^{tax} < \pi_{m}^{cap} , \, W_{M}^{tax} > W_{M}^{cap} .\)

    $$ E_{M}^{tax} - E_{M}^{cap} = \frac{{e_{0} (1 + \gamma )[\alpha (1 - \varphi ) + p_{0} \beta \gamma - e_{0} \beta (1 + \gamma )\lambda ]}}{2( - 1 + \varphi )} < 0, $$
    $$ \begin{aligned} & \pi_{m}^{cap} - \pi_{m}^{tax} =\\ & \quad \frac{{(1 + \gamma )[\alpha ( - 1 + \varphi ) - p_{0} \beta \gamma + e_{0} (1 + \gamma )\lambda ] + 4Q( - 1 + \varphi )[\alpha ( - 1 + \varphi ) - p_{0} \beta \gamma + e_{0} (1 + \gamma )\lambda ]}}{{4\beta (1{ + }\gamma )(1 - \varphi )}} > 0,\end{aligned} $$
    $$ \begin{aligned} & W_{M}^{cap} - W_{M}^{tax} = \\ &\quad \frac{\begin{gathered} {[\alpha ( - 1 + \varphi ) - p_{0} \beta \gamma + e_{0} \beta (1 + \gamma )\lambda ]} \hfill \\ \{ \alpha [ - 3 + 2e_{0}^{2} v\beta (1 + \gamma )^{2} ( - 1 + \varphi )] + \beta e_{0} (1 + \gamma )\lambda + 2e_{0}^{3} v\beta^{2} (1 + \gamma )^{3} \lambda - 2\beta e_{0}^{2} v(1 + \gamma )[p_{0} \beta \gamma (1 + \gamma ) - 2Q( - 1 + \varphi )]\} \hfill \\ \end{gathered} }{{8\beta ( - 1 + \varphi )^{2} }},\end{aligned} $$

If \(W_{M}^{cap} - W_{M}^{tax} > 0,\) we find.

\(v > \frac{{3\alpha ( - 1 + \varphi ) + \beta [ - e_{0} \beta (1 + \gamma )\lambda + p_{0} \beta \gamma ( - 3 + 4\varphi )]}}{{2e_{0}^{2} \beta (1 + \gamma )\{ 4Q( - 1 + \varphi ) + (1 + \gamma )[\alpha ( - 1 + \varphi ) - \beta p_{0} \gamma + e_{0} \beta (1 + \gamma )\lambda ]\} }},\) and \(v_{3} > \frac{{3\alpha ( - 1 + \varphi ) + \beta [ - e_{0} \beta (1 + \gamma )\lambda + p_{0} \beta \gamma ( - 3 + 4\varphi )]}}{{2e_{0}^{2} \beta (1 + \gamma )\{ 4Q( - 1 + \varphi ) + (1 + \gamma )[\alpha ( - 1 + \varphi ) - \beta p_{0} \gamma + e_{0} \beta (1 + \gamma )\lambda ]\} }},\) so \(W_{M}^{cap} > W_{M}^{tax} .\) Combining the above information, we get the result stated in Theorem 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, X. & Xu, X. Reselling or marketplace mode for an online platform: the choice between cap-and-trade and carbon tax regulation. Ann Oper Res 310, 293–329 (2022). https://doi.org/10.1007/s10479-021-04250-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04250-6

Keywords

Navigation