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Abstract
We provide several applications of the linearization problem of a binary quadratic problem.
We propose a new lower bounding strategy, called the linearization-based scheme, that is
based on a simple certificate for a quadratic function to be non-negative on the feasible
set. Each linearization-based bound requires a set of linearizable matrices as an input. We
prove that the Generalized Gilmore–Lawler bounding scheme for binary quadratic problems
provides linearization-based bounds. Moreover, we show that the bound obtained from the
first level reformulation linearization technique is also a type of linearization-based bound,
which enables us to provide a comparison among mentioned bounds. However, the strongest
linearization-based bound is the one that uses the full characterization of the set of linearizable
matrices. We also present a polynomial-time algorithm for the linearization problem of the
quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete
characterization of the set of linearizable matrices for the quadratic shortest path problem.

Keywords Binary quadratic program · Linearization problem · Generalized
Gilmore–Lawler bound · Quadratic assignment problem · Quadratic shortest path problem

Mathematics Subject Classification 90C20 · 90C27 · 90C10

1 Introduction

Abinary quadratic problem (BQP) is anoptimizationproblemwith binary variables, quadratic
objective function and linear constraints. BQPs are NP-hard problems. A wide range of
combinatorial optimization problems, including the quadratic assignment problem (QAP),
the quadratic shortest path problem (QSPP), the graph partitioning problem, the max-cut
problem, clustering problems, etc., can be modeled as a BQP.
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We study here the linearization problem for binary quadratic problems. A binary quadratic
optimization problem is said to be linearizable if there exists a corresponding cost vector such
that the associated costs for both, quadratic and linear problems are equal for every feasible
vector. The BQP linearization problem asks whether an instance of the BQP is linearizable.
The linearization problem is studied in the context of many combinatorial optimization prob-
lems. Kabadi and Punnen (2011) give a necessary and sufficient condition for an instance of
the quadratic assignment problem (QAP) to be linearizable, and develop a polynomial-time
algorithm to solve the corresponding linearization problem. The linearization problem for
the Koopmans-Beckmann QAP is studied in Punnen and Kabadi (2013). Linearizable special
cases of the QAP are studied in Adams and Waddell (2014), Çela et al. (2016) and Punnen
(2001). In Ćustić et al. (2017) it is shown that the linearization problem for the bilinear assign-
ment problem can be solved in polynomial time. The linearization problem for the quadratic
minimum spanning tree problem was considered by Ćustić and Punnen (2018). Punnen et al.
(2017) provide necessary and sufficient conditions for which a cost matrix of the quadratic
traveling salesman problem is linearizable. Hu and Sotirov (2018) provide a polynomial time
algorithm that verifies if a QSPP instance on a directed grid graph is linearizable. The authors
of Hu and Sotirov (2018) also present necessary conditions for a QSPP instance on complete
digraphs to be linearizable. These conditions are also sufficient when the complete digraph
has only four vertices.

There are very few studies concerning applications of the linearization problem. Punnen
et al. (2019) show how to derive equivalent representations of a quadratic optimization prob-
lem by using linearizable matrices of the problem. They show that equivalent representations
might result with different bounds for the optimization problem.

In this paper, we present several interesting applications of the linearization problem. We
propose a new lower bounding scheme that uses a simple certificate for a quadratic function
to be non-negative on the feasible set. The resulting bounds we call the linearization-based
bounds. Each linearization-based bound requires a set of linearizable matrices as an input,
and its quality depends on those matrices. To compute a particular linearization-based bound,
one needs to solve one linear programming problem. The strongest linearization-based bound
is the one that uses the full characterization of the set of linearizable matrices. Further, we
show that bounds obtained from an iterative lower bounding strategy for BQPs, known as
the Generalized Gilmore–Lawler (GGL) scheme, see e.g., Hahn and Grant (1998), Carraresi
and Malucelli (1992), Rostami et al. (2018) and Rostami and Malucelli (2015) are also
linearization-based bounds. Note that the well known Gilmore–Lawler bound is the first
bound within the Generalized Gilmore–Lawler bounding scheme. Furthermore, we prove
that one of the linearization-based bounds with a particular choice of linearizable matrices
dominates theGGLbounds. The same linearization-based bound is equivalent to the first level
RLT relaxation by Adams and Sherali (1990) for BQPs where upper bounds on the vector
of variables are implied by the constraints. Here RLT stands for reformulation linearization
technique. This result explains the relation between the Generalized Gilmore–Lawler bounds
and the first level RLT bound, which was already observed in the context of the quadratic
assignment problem (Frieze & Yadegar, 1983; Hahn et al., 1998) but not in general. Further,
we extend the notion of linearizable matrices, which results in the extended linearization-
based bounds.

Finally, we provide a polynomial-time algorithm for the linearization problem of the
quadratic shortest path problemon directed acyclic graphs (DAGs).We solve the linearization
problem for the QSPP on DAGs in O(nm3) time, where n is the number of vertices and m
is the number of arcs in the given graph. Our algorithm also yields a characterization of the
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set of linearizable matrices, and thus provides the strongest linearization-based bound for the
QSPP on DAGs.

The paper is organized as follows. In Sect. 2 and 3, we introduce the binary quadratic
problem and its linearization problem, respectively. In Sect. 4, we show how to reformulate
a binary quadratic minimization problem into an equivalent maximization problem that is
suitable for deriving bounds. In Sect. 5, we introduce the linearization-based scheme. In
Sect. 6.1, we show that the Generalized Gilmore–Lawler bounds are also linearization-based
bounds. Section 6.2 relates different linearization-based bounds to the first level RLT bound,
and Sect. 6.3 demonstrates the strength of the strongest lineariztion-based bound. In Sect. 6.4
introduced the extended linearization-based bounds. In Sect. 7, we present a polynomial-time
algorithm that verifies whether a QSPP instance on a directed acyclic graph is linearizable.
Conclusion and suggestions for further research are given in Sect. 8.

2 Binary quadratic problems

In this section, we introduce binary quadratic problems and their two special cases; the
quadratic assignment problem and the quadratic shortest path problem.

Let K be the set of feasible binary vectors, i.e.,

K := {x ∈ R
m | Bx = b, x ∈ {0, 1}m}, (1)

where B ∈ R
n×m and b ∈ R

n . We are interested in binary quadratic problems of the form

min
x∈K xTQx, (2)

where Q ∈ R
m×m is the given quadratic cost matrix. Note that we allow here that Q has also

negative elements. In the case that Q is a diagonal matrix i.e., Q = Diag(c) the objective is
linear and we have the following linear optimization problem:

min
x∈K cTx . (3)

The simple model (2) is notable for representing a wide range of combinatorial optimiza-
tion problems, including the quadratic assignment problem and the quadratic shortest path
problem.

The quadratic assignment problem is one of the most difficult combinatorial optimization
problems. It was introduced by Koopmans and Beckmann (1957). It is well-known that the
QAP contains the traveling salesman problem as a special case and is therefore NP-hard in
the strong sense. The QAP can be described as follows. Suppose that there are n facilities
and n locations. The flow between each pair of facilities, say i, k, and the distance between
each pair of locations, say j, l, are specified by aik and d jl , respectively. The problem is to
assign all facilities to different locations with the goal of minimizing the sum of the distances
multiplied by the corresponding flows. The quadratic assignment problem is given by:

min

⎧
⎨

⎩

∑

i, j,k,l

aikd jl xi j xkl : X = (xi j ), X ∈ Πn

⎫
⎬

⎭
,

where Πn is the set of n × n permutation matrices. If A = (aik), D = (d jl) and x =
vec(X) ∈ R

n2 , then the objective can be written as xT(A ⊗ D)x . Here, the vec operator
stacks the columns of the matrix X , and ⊗ denotes the Kronecker product. The QAP is
known as a generic model for various real-life problems, see e.g., Burkard et al. (2012).
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The quadratic shortest path problem has a lot of important application in transportation
problems, see Murakami and Kim (1997), Rostami et al. (2018), Sen et al. (2001) and
Sivakumar and Batta (1994). The QSPP is an NP-hard optimization problem, see Hu and
Sotirov (2018) and Rostami et al. (2018), and it can be described as follows. Let G = (V , A)

be a directed graph with n vertices andm arcs, and s, t two distinguished vertices inG. A path
is a sequence of distinct vertices (v1, . . . , vk) such that (vi , vi+1) ∈ A for i = 1, . . . , k − 1.
An s-t path is a path P = (v1, v2, . . . , vk) from the source vertex s = v1 to the target vertex
t = vk . Let the interaction cost between two distinct arcs e and f be 2qef , and the linear cost
of an arc e be qe,e. The quadratic shortest path problem is given by:

minimize
{ ∑

e, f ∈A

qe, f xex f | x ∈ P}
, (4)

where P be the set of characteristic vectors of all s-t paths in G.

3 The linearization problem of a BQP

We say that the binary quadratic optimization problem (2) is linearizable, if there exists a cost
vector c such that xTQx = cTx for every x ∈ K . If such a cost vector c exists, then we call
it a linearization vector of Q. The cost matrix Q is said to be linearizable if its linearization
vector c exists. The linearization problem of a BQP asks whether Q is linearizable, and if
yes, provide its linearization vector c.

If Q is linearizable, then (2) can be equivalently formulated as (3), and the latter could
be much easier to solve. For instance, in the case of the quadratic assignment problem or the
quadratic shortest path problem on directed acyclic graphs this boils down to solve a linear
programming problem.

Let us define the spanning set of linearizable matrices for the given BQP.

Definition 1 Let {Q1, . . . , Qk} be a set of matrices such that a cost matrix Q is linearizable
if and only if Q = ∑k

i=1 αi Qi for some α ∈ R
k . Then, we say that {Q1, . . . , Qk} span the

set of linearizable matrices.

In Sect. 7, we show that the spanning set of linearizable matrices for the quadratic shortest
path problemon directed acyclic graphs can be generated efficiently. Thuswe have a complete
characterization of the set of linearizable matrices for the QSPP on DAGs. This is also the
case for the bilinear assignment problem, see Ćustić et al. (2017). In fact, the authors in Lendl
et al. (2019) show that the set of linearizable cost matrices for combinatorial optimization
problemswith interaction costs can be characterized by the so-called constant value property,
under certain conditions. For the list of non-trivial binary quadratic problems for which one
can find the spanning set of linearizable matrices, see Lendl et al. (2019).

In general, it is not clear whether one can find a complete characterization of the set of
linearizable matrices for a given BQP. However, it is not difficult to identify a subset of
linearizable matrices. For instance, the sum matrix is often found to be linearizable. We say
that a matrix M ∈ R

m×n is a sum matrix generated by vectors a ∈ R
m and b ∈ R

n if
Mi, j = ai + b j for every i = 1, . . . ,m and j = 1, . . . , n. In the quadratic assignment
problem, if A or D is a sum matrix, then the corresponding cost matrix is linearizable, see
Burkard et al. (2012). In the quadratic shortest path problem, if every s-t path in the graph
has the same length, then a sum-matrix Q is always linearizable, see Hu and Sotirov (2018)
and Punnen et al. (2019).
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In the latter case, the condition for a matrix to be linearizable depends on the problem
structure. Since we are interested in a lower bounding scheme for general binary quadratic
problems, we need a condition for linearizability that is independent of the problem. The
next result provides an universal sufficient condition for a matrix being linearizable, and it
is also the key connecting the linearization problem and some of the existing bounds in the
literature.

Lemma 1 (Punnen et al. 2019)Consider the BQP (2). For any Y ∈ R
n×m, z ∈ R

m, thematrix
Q = BTY + Diag(z) ∈ R

m×m is linearizable with linearization vector c = Y Tb + z ∈ R
m.

Proof For any x ∈ K , see (1),we have xTQx = xT(BTY+Diag(z))x = (bTY+zT)x = cTx .
��

The next result shows that adding redundant equality constraints to the system Bx = b
does not generate more linearizable matrices in Lemma 1.

Lemma 2 Consider the BQP (2). Assume the equation aTx = d is implied by the system
Bx = b, i.e., a = BTα ∈ R

m and d = bTα ∈ R for some α ∈ R
n. For any Y ∈ R

n×m, y ∈
R
m, the matrix

Q =
(
B
aT

)T (
Y
yT

)

is linearizable with linearization vector c = Y Tb + dy ∈ R
m.

Proof From
(
B
aT

)T (
Y
yT

)

= BTY + ayT = BTY + BTαyT = BT(Y + αyT) ∈ R
m×m

it follows that BT(Y + αyT) is linearizable with linearization vector c = (Y + αyT)Tb. ��
A matrix M ∈ R

m×m is called a weak sum matrix if we can find vectors a, b ∈ R
m such

that Mi, j = ai + b j for every i �= j and i, j = 1, . . . ,m. In particular, if M is a symmetric
weak sum matrix, then we can assume a = b in the definition. If eTx = ∑

i xi is a constant
for every x ∈ K , then every weak sum matrix in the corresponding BQP is linearizable,
see Punnen et al. (2019). In such case, it follows from Lemma 2 that symmetric weak sum
matrices can be represented as symmetrized matrices from Lemma 1. In particular, we have
the following corollary.

Corollary 1 Consider the BQP (2). Assume Bx = b implies that eTx is a constant. Then
every symmetric weak sum matrix M can be written as M = BTY + Y TB + Diag(z) for
some Y and z.

Proof By assumption, we have e = BTα ∈ R
m for some α ∈ R

n . Since M is a symmetric
weak sum matrix, we can write M = aeT + eaT + Diag(z) ∈ R

m×m for some vectors
a ∈ R

m, z ∈ R
m and all-ones vector e ∈ R

m . Let Y = αaT ∈ R
n×m . Then

BTY + Y TB + Diag(z) = BTαaT + aαTB + Diag(z)

= eaT + aeT + Diag(z) = M .

��
Erdoğan and Tansel (2011) identify an additively decomposable class of costs for the

quadratic assignment problem that provide a set of linearizable matrices for the QAP. We
verified numerically that the linearizable matrices from Erdoğan and Tansel (2011) can be
written as BTY + Y TB + Diag(z) for some small instances with n ≤ 10.
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4 General bounding approaches

Wepresent here an equivalent reformulation of the BQP (2) and list several possible bounding
approaches for this reformulation. The new equivalent reformulation of the BQP is also the
basis for deriving our bounding scheme in the next section.

Let Q1, . . . , Qk be linearizable matrices for a given BQP with linearization vectors
c1, . . . , ck , respectively. For example, linearizable matrices can be obtained from Lemma 1
for any binary quadratic problems, or from Proposition 5 for the quadratic shortest path
problem. Define the linear operator A : R

k → S
m by A(α) := ∑k

i=1 αi Qi and C :=[
c1, . . . , ck

] ∈ R
m×k . Clearly, Cα is a linearization vector of the linearizable cost matrix

A(α), for any α ∈ R
k .

Let f (x) = xTQx and hα,β(x) := xTA(α)x + β, where α ∈ R
k , β ∈ R. Let us

reformulate the binary quadratic optimization problem (2) equivalently as

supα,β minx∈K hα,β(x)
s.t. f − hα,β > 0, ∀x ∈ K .

(5)

Theorem 1 The binary quadratic program (2) is equivalent to (5).

Proof Let x∗ be an optimal solution of (2) with optimal value f ∗. If α = 0 and β = f ∗ − ε

for ε > 0, then they are feasible for (5) as f − hα,β > 0 for x ∈ K . As f ∗ − ε =
minx∈K hα,β(x), taking ε → 0, we conclude that the optimal value of (5) is at least f ∗.
Conversely, f (x) − hα,β(x) > 0 on K implies that minx∈K hα,β(x) is at most f ∗. This
shows the equivalence between (2) and (5). ��

We note that Theorem 1 holds for any choice of the linearizable matrices in the definition
of A. Let

K̄ = {x ≥ 0 : Bx = b}. (6)

From now on we assume w.l.g. that Bx = b includes also one as an upper bound on xi for
all i . For the inner minimization problem of (5) we have:

min
x∈Rm

{hα,β(x) | x ∈ K } = min
x∈Rm

{(Cα)Tx + β | x ∈ K }
≥ min

x∈Rm
{(Cα)Tx + β | x ∈ K̄ } (7)

= max
y∈Rn

{bTy + β | BTy ≤ Cα}.

Here, the first equality exploits the linearizability ofA(α), and the last equality follows from
strong duality of linear programming. In the case that K is the convex hull of the feasible
integer points, like in the case of the linear assignment problem and the shortest path problem
on directed acyclic graphs, the above inequality turns to be equality. However the inequality
in (7) can be strict in general. Nevertheless, the above leads to the following optimization
problem:

supα,β,y bTy + β

s.t. f − hα,β > 0, ∀x ∈ K
BTy ≤ Cα,

(8)

that can be exploited to obtain bounds for the BQP (2). Moreover, several approaches may
be used to compute bounds for the BQP (2) by exploiting (8). For instance, one can relax the
condition f − hα,β ≥ 0 on K by a sum of squares (SOS) decomposition of f − hα,β . In, for
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example, following papers (Lasserre, 2001; Nie & Schweighofer, 2007; Laurent, 2009), the
authors do not consider the linearization problem and construct hierarchies of approximations
based on sum of squares decompositions for the following optimization problem:

sup{β | f (x) − β ≥ 0, ∀x ∈ K },
where f (x) is a multivariate polynomial and K the closed semialgebraic set.

Buchheim and Traversi (2018) propose a semidefinite programming relaxation for binary
quadratic programs. Their approach can be viewed as a special case of (5), where A(α) is a
diagonal matrix, and Q − A(α) � 0 is the positivity certificate. Alternatively, one can use
a simple positivity certificate to derive linear programming lower bounds like we do in the
next section.

5 The linearization-based scheme

In this section, we consider a simple but efficient positivity certificate using the fact that
both f and hα,β are quadratic functions. This yields an efficient lower bounding scheme.
Here, we use the same notation as in the previous section, namely f (x) = xTQx and
hα,β(x) = xTA(α)x + β.

Note that if A(α) ≤ Q and β ≤ 0, then f − hα,β ≥ 0 for all x ∈ K . This leads to the
following relaxation for the BQP (2):

max
α,y

{bTy | BTy ≤ Cα, A(α) ≤ Q}, (9)

where we have removed the redundant scalar variable β. We call relaxation (9) the
linearization-based relaxation. Thus, a linearization-based bound (LBB) is a solution of one
linear programming problem. However, the quality of so obtained bound depends on the
choice ofA(α). For example, one can take linearizable matrices from Lemma 1 for any BQP.
de Meijer and Sotirov (2020) choose a particular linearizable matrix for the quadratic cycle
problem, which enables them to compute strong bounds fast.

Billionnet et al. (2009) provide a method to reformulate a binary quadratic program into
an equivalent binary quadratic program with a convex quadratic objective function. Their
approach results with the tightest convex bound. However the authors from Billionnet et al.
(2009) need to solve a semidefinite programming relaxation in order to compute their bound,
which makes their approach computationally more expensive than the approach we present
here.

Next, we consider reformulations of the BQP and their influence to the linearization-based
bounds. For any skew-symmetric matrix S and vector d , we can reformulate the objective
function of (2) as f (x) = xT(Q + S +Diag(d))x − dTx using the fact that x ∈ K is binary.
This follows from the fact that xTSx = 0 and x2i = xi , see also Theorem 2.4 in Punnen et al.
(2019). Thus, we obtain an equivalent representation of (2). Since we have an extra linear
term dTx , we underestimate f (x) by hα,γ (x) := xTA(α)x+γ Tx . So both f (x) and hα,γ (x)
have an extra linear term now. Then xTA(α)x+γ Tx ≤ f (x) ifA(α) ≤ Q+S+Diag(d) and
γ ≤ −d . Under this setting, we can derive a bound in the same way as in (9). In particular,
we have

max
α,γ

{

min
x∈K(Cα + γ )Tx | A(α) ≤ Q + S + Diag(d), γ ≤ −d

}

= max
α,γ,y

{
bTy | BTy ≤ Cα + γ, A(α) ≤ Q + S + Diag(d), γ ≤ −d

}
. (10)
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Below we show that the bound (10), is invariant under a reformulation of the objective
function whenA(α) is in the special form, i.e., contains every skew-symmetric matrix. Note
that skew-symmetric matrices are linearizable.

Proposition 1 Assume that for any skew-symmetric matrix S ∈ R
m×m and vector d ∈ R

m

there exists α ∈ R
k such that A(α) = S + Diag(d) in (10). For the binary quadratic

optimization problem

min
x∈K xT(Q + S + Diag(d))x − dTx, (11)

the bound (10) does not depend on the choice of the skew-symmetric matrix S or the vector
d.

Proof Let S := S1 and d := d1 in the BQP (11), and (α∗, γ ∗, y∗) be a feasible solution of
(10), whose objective value f ∗ is given by

f ∗ = max
y

{bTy | BTy ≤ Cα∗ + γ ∗}. (12)

Let S := S2 and d := d2 in the BQP (11). We now construct a feasible solution of (10)
for (11) having the objective value f ∗. By assumption, we can find α̂ ∈ R

k such that
A(α̂) = S2 − S1 + Diag(d2 − d1). Let α∗∗ = α∗ + α̂ and γ ∗∗ = γ ∗ − d2 + d1. Note that
Cα∗∗ = Cα∗ + d2 − d1, and thus Cα∗∗ + γ ∗∗ = Cα∗ + γ ∗. Here we assume w.l.g. that the
linearization vector of a diagonal matrix Diag(d) is given by d . To see that (α∗∗, γ ∗∗, y∗) is
a feasible solution of (10), we check

BTy∗ ≤ Cα∗ + γ ∗ = Cα∗∗ + γ ∗∗,
A(α∗∗) = A(α∗) + A(α̂) ≤ Q + S2 + Diag(d2),

γ ∗∗ = γ ∗ − d2 + d1 ≤ −d2.

Furthermore, the objective value of this solution is clearly f ∗ = bTy∗. ��

We remark here that in the case thatA(α) does not contain skew-symmetric matrices, the
linearization-based bound (10) depends on S. Note that in Proposition 1 we do not specify a
non-skew-symmetric part of A(α).

Let us now restrict to BTY +Diag(z) where Y ∈ R
n×m and z ∈ R

m , see Lemma 1. Now,
for any skew-symmetric S ∈ R

m×m we have that BTY + S + Diag(z) is linearizable with
linearization vector Y Tb + z. This yields the following linearization-based relaxation:

max
Y ,S,z,y

{bTy | BTy ≤ Y Tb + z, BTY + S + Diag(z) ≤ Q, S + ST = 0}. (13)

This relaxation satisfies the assumption of Proposition 1. Thus, we may assume without loss
of generality that Q is symmetric for (13). By applying Proposition 1, the next result shows
that the variable S can be eliminated from (13) to obtain an equivalent relaxation with less
variables and constraints.

Proposition 2 Assume Q is symmetric. The relaxation (13) is equivalent to

max
Y ,z,y

{bTy | BTy ≤ 2Y Tb + z, BTY + Y TB + Diag(z) ≤ Q}. (14)
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Proof Let (Y , S, z, y) be a feasible solution of (13). Then 1
2 (B

TY +Y TB)+Diag(z) ≤ Q as
Q is symmetric, and thus ( 12Y , z, y) is feasible for (14). Conversely, let (Y , z, y) be feasible
for (14). Let S = Y TB − BTY . Then S is skew-symmetric, and

2BTY + S + Diag(z) = BTY + Y TB + Diag(z) ≤ Q.

Therefore (2Y , S, z, y) is a feasible solution for (13). ��
In what follows, we consider the following two cases. In both cases, we can assume Q is

symmetric without loss of generality.

– We replaceA(α) by BTY + Y TB +Diag(z), and Cα by 2Y Tb+ z in (9). Thus, we have
the linearization-based relaxation (14). The obtained lower bound, denoted by vLBB′ , is
the optimal solution of (14).

– If we know the spanning set of linearizable matrices {Q1, . . . , Qk}, then we denote by
vLBB∗ the corresponding linearization-based bound.

6 The LBB and related bounds

In Sect. 6.1 we present the Generalized Gilmore–Lawler bounding scheme, that is a well
known iterative lower bounding scheme for binary quadratic problems. We show that the
GGLbounds are dominated by our linearization-based bound vLBB′ . In Sect. 6.2, we compare
our linearization-based bounds with the bounds obtained from the first level RLT relaxation
proposed by Adams and Sherali (1986, 1990). In Sect. 6.3 we show the strength of our
strongest linearization-based bound, and in Sect. 6.4 we introduce extended linearization
based bounds.

6.1 The generalized Gilmore–Lawler bounding scheme

The Generalized Gilmore–Lawler bounding scheme is implemented for many optimization
problems, including the quadratic assignment problem (Hahn & Grant, 1998; Carraresi &
Malucelli, 1992), the quadratic shortest path problem (Rostami et al. 2018), the quadratic
minimum spanning tree problem (Rostami and Malucelli 2015).

Let Q = [q1, . . . , qm] ∈ R
m×m be the given quadratic cost matrix, see (2). Denote by

Ik the k-th column of the identity matrix of size m. Let ȳk ∈ R
n and z̄k ∈ R be an optimal

solution of the following linear program:

max
yk∈Rn ,zk∈R

{ bTyk + zk | BTyk + Ik zk ≤ qk }, (15)

for each k = 1, . . . ,m. Collect all ȳk in matrix Ȳ ∈ R
n×m , and all z̄k in vector z̄ ∈ R

m .
Define

c̄ = Ȳ Tb + z̄ ∈ R
m,

Q̄ = BTȲ + Diag(z̄) ∈ R
m×m .

(16)

From Lemma 1, we know that c̄ is a linearization vector of Q̄. The feasibility of (15) implies
that Q̄ ≤ Q, and thus minx∈K̄ c̄Tx , where K̄ is given in (6) is a lower bound for the binary
quadratic program (2). Moreover, this bound is known as the Gilmore–Lawler (GL) type
bound and it is implemented for many BQP problems including the QAP and the QSPP. The
GL bound was originally introduced for the QAP, see Gilmore (1962) and Lawler (1963).
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Let us call the dual-update of Q the following update of the objective Q ← Q − Q̄.
The dual-update can be applied iteratively followed by some equivalent representation of the
objective in order to obtain an increasing sequence of lower bounds. This iterative bounding
scheme is known as theGeneralizedGilmore–Lawler bounding scheme, and it is an important
lower bounding strategy for binary quadratic problems. We describe this bounding scheme
below.

Algorithm 1 The Generalized Gilmore–Lawler bound
1: Input: The binary quadratic program (2).
2: Output: The GGL bound vGGL .
3: i ← 0, Q0 ← Q, c ← 0
4: while true do
5: Set Qi+1 ← Qi − Q̄i and c ← c + c̄i from (16)
6: Set Qi+1 ← Qi+1 + Si+1, where Si+1 is skew-symmetric
7: if ||c̄i || = 0 then
8: break
9: end if
10: i ← i + 1
11: end while
12: vGGL ← minx∈K̄ cTx

Note that the skew-symmetric matrix Si+1 in the algorithm yields an equivalent repre-
sentation. For example, Frieze and Yadegar (1983) pick a skew-symmetric matrix S such
that Q + S is upper triangular, while Rostami et al. (2018) keep Q + S symmetric. More
sophisticated reformulation can also be found by exploiting the problem structure, see Hahn
and Grant (1998) and de Meijer and Sotirov (2020). Bounds based on the dual-update are
very competitive, see also Carraresi and Malucelli (1992), Assad and Xu (1985) and Hahn
et al. (1998). However, the quality of bounds depends on the choice of the skew-symmetric
matrix.

The key observation here is that each iteration of the Generalized Gilmore–Lawler bound-
ing strategy is based on maximizing c̄k over yk and zk in a ‘local’ way, i.e., solving m linear
programs (15) independently. Then, followed by the dual update, the quadratic cost matrix
is reshuffled by some skew-symmetric matrix, and the procedure is repeated. Instead, the
linearization-based bound vLBB′ , see (14), is obtained by maximizing minx∈K̄ c̄Tx over
Y , S and z in a “global" way. This means, vLBB′ is optimal in terms of the Generalized
Gilmore–Lawler bound. The following proof, where we show that vLBB′ is stronger than the
Generalized Gilmore–Lawler bound vGGL , makes this observation precise.

Theorem 2 vGGL ≤ vLBB′ .

Proof Let Q̄i = BTȲi +Diag(z̄i ) (i = 0, . . . , k−1) be the sequence of linearizable matrices
from Algorithm 1. Let S0 be the matrix of zeros. For convenience, denote by Q1, . . . , Qk−1

the cost matrix obtained right after line six in Algorithm 1. Thus, Qi = Qi−1 + Si−1 − Q̄i−1

in this notation. Define function g(M) = (M+MT)/2. Then g(M) is a zeromatrix whenever
M is skew-symmetric.

From the feasibility of (15), it holds that Qk = Qk−1 + Sk−1 − Q̄k−1 ≥ 0 and thus
g(Qk) ≥ 0. As Qk = Qk−1 + Sk−1 − Q̄k−1 = Q0 + ∑k−1

i=0 (Si − Q̄i ), we have

0 ≤ g(Qk) = g
(
Q0 +

k−1∑

i=0

(Si − Q̄i )
) = g(Q0) − g

(
k−1∑

i=0

Q̄i

)

,
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from where it follows g
( ∑k−1

i=0 Q̄i
) ≤ g(Q0).

Let Ỹ := 1
2

∑k−1
i=0 Ȳi and z̃ := ∑k−1

i=0 z̄i . It is easy to see that

g

(
k−1∑

i=0
Q̄i

)

= g

(

BT
k−1∑

i=0
Ȳi + Diag

(
k−1∑

i=0
z̄i

))

= BTỸ + Ỹ TB + Diag(z̃).

Therefore BTỸ + Ỹ TB + Diag(z̃) ≤ g(Q). Note that Q = g(Q) in vLBB′ . Since c =
∑k−1

i=0 c̄i = 2Ỹ Tb + z̃, it holds that

vLBB′ ≥ max
y

{bTy | BTy ≤ 2Ỹ Tb + z̃} = min
x∈K̄

cTx = vGGL .

��
In the next section we relate vLBB′ and the bound obtained from the first level RLT.

6.2 The first level RLT bound

The reformulation linearization technique proposed by Adams and Sherali (1986, 1990)
generates a hierarchy of linear programming relaxations for binary quadratic programs. It
has been substantiated that this hierarchy generates tight relaxations even at the first level in
many applications.

We show here that the linearization-based bound vLBB′ coincides with the first level RLT
bound for optimization problems where the constraint x ≤ e is redundant for K̄ = {x ≥
0 : Bx = b}, see Lemma 3. If this is not the case, we establish a relation between those two
bounds in Lemma 4.

The first level RLT relaxation for the binary quadratic problem (2) is given as follows:

vRLT1 := min
x∈Rm ,X∈Sm

〈Q, X〉
(x, X) ∈ F
e − x ≥ 0
J − xeT − exT + X ≥ 0
xeT − X ≥ 0,

(17)

where J is all-ones matrix, Sm denotes the set of symmetric matrices of order m, and

F := {
(x, X) ∈ (Rm,Sm) | Bx = b, BX = bxT, x = diag(X), (18)

x ≥ 0, X ≥ 0
}
. (19)

Here the ‘diag’ operator maps an m × m matrix to the m-vector given by its diagonal.
Depending on the specific problem structure the constraint x ≤ e can be omitted with-

out affecting its continuous relaxation. For instance, this is the case when the BQP under
consideration is the QAP, the QSPP on directed acyclic graphs, the quadratic cycle cover
problem, the quadratic minimum spanning tree problem, etc. In such cases, the first level
RLT relaxation is given by

vRLT ′
1

:= min
x∈Rm ,X∈Sm

〈Q, X〉
s.t. (x, X) ∈ F .

(20)

In general, the bound vRLT ′
1
is weaker than vRLT1 . The next result shows that the linearization-

based bound vLBB′ is equivalent to RLT ′
1.
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Lemma 3 Let x ≤ e be redundant for K̄ , then vLBB′ = vRLT ′
1

= vRLT1 .

Proof The proof follows directly from the dual of (14). The Lagrangian function of (14) is
given by

L(Y , z, y, x, X) = bTy + 〈Q − BTY − Y TB − Diag(z), X〉 + 〈2Y Tb + z − BTy, x〉
= 〈Q, X〉 + 〈b − Bx, y〉 + 〈2bxT − BX − BXT, Y 〉

+〈x − diag(X), z〉,
where x ∈ R

m and X ∈ Sm . Thus the dual of (14) is

min
x∈Rm ,X∈Sm

{〈Q, X〉 | Bx = b, x ≥ 0, BX = bxT, X ≥ 0, x = diag(X)}. (21)

As we assumed Q is symmetric for the linearization-based bound vLBB′ , and thus the dual
program of (14) is exactly the same as the RLT relaxation (20). The equality vRLT ′

1
= vRLT1

follows from e.g., Adams and Sherali (1986). ��
Remark 1 Note that we can strengthen the linearization-based bound vLBB′ by exploiting
the sparsity pattern of the binary quadratic program. Let G = {(i, j) | xi x j = 0 ∀x ∈ K }.
Then, A(α) ≤ Q can be equivalently replaced by

(A(α)
)

i j ≤ Qi j for every (i, j) /∈ G.
For Lemma 3, this implies that the dual variable X in (21) has to satisfy Xi j = 0 for every
(i, j) ∈ G. Thus, so strengthened linearization-based bound is equivalent to the first level
RLT relaxation (20) with extra sparsity constraints Xi j = 0 for every (i, j) ∈ G.

Theorem 2 proves that the Generalized Gilmore–Lawler bound vGGL is bounded by the
first level RLT relaxation for a BQP when the upper bound on x is redundant. A relation
between these two bounds was studied only in the context of the quadratic assignment prob-
lem. In particular, Frieze and Yadegar (1983) show that the Gilmore–Lawler bound with
a particular decomposition is weaker than the Lagrangian relaxation of their well known
mixed-integer linear programming formulation for the QAP. On the other hand, the linear
programming relaxation of the mentioned mixed-integer linear programming formulation is
known to be dominated by the first level RLT relaxation, see Adams and Johnson (1994).
Adams and Johnson (1994) also show that the QAP bounds from Carraresi and Malucelli
(1992) and Assad and Xu (1985) are dominated by the first level QAP-RTL bound. However,
we show here more since our proof is not restrict to a particular skew-symmetric matrix.

Note that if x ≤ e are not redundant for K̄ , we have that vLBB′ dominates vRLT ′
1
. In

particular we have the following result.

Lemma 4 Suppose that x ≤ e is not redundant for K̄ , then

vRLT ′
1

≤ vLBB′ ≤ vRLT1 .

6.3 The LBB∗ bound

The linearization-based bound vLBB∗ can be viewed as a strengthened vLBB′ bound. We
show here by an example that vLBB∗ may be stronger than vRLT1 .

Let Q1, . . . , Qk be linearizable matrices for a given BQP with linearization vectors
c1, . . . , ck , respectively. In general, those matrices are not of the form given in Lemma 1.
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Combining linearizable matrices Q1, . . . , Qk together with the symmetrized linearizable
matrix from Lemma 1, we obtain the following linear programming relaxation:

max
Y ,α,y

{
bTy | BTY + Y TB + Diag(z) +

k∑

i=1

αi Qi ≤ Q,

BTy ≤ 2Y Tb + z + Cα
}
,

(22)

whose dual is given by

min
x∈Rm ,X∈Sm

〈Q, X〉
s.t. (x, X) ∈ F

〈Qi , X〉 = 〈ci , x〉 for i = 1, . . . , k.

(23)

where F is given in (18). Thus, the linear program (23) is a strengthened relaxation (20)
with additional constraints of the form 〈Qi , X〉 = 〈ci , x〉. Indeed, if Qi is linearizable with
linearization vector ci , then xTQi x = cTi x for every s-t path x . This yields a valid constraint
〈Qi , X〉 = 〈ci , x〉. In particular, when the set of matrices {Q1, . . . , Qk} span the set of
linearizable matrices, the optimal solution of relaxation (23) is just vLBB∗ .

Recall that the first iteration of theGGL is simply theGilmore–Lawler type bound, denoted
by vGL . To the best of our knowledge, it was only known that vGL ≤ vGGL ≤ vRLT ′

1
= vRLT1

for theQAP.Moreover, vGGL for theQAPwas studied only for particular cases, not in general.
We summarize below relations between several of the mentioned bounds for any BQP.

Proposition 3 (a) Let x ≤ e be redundant for K̄ , then

vGL ≤ vGGL ≤ vLBB′ = vRLT ′
1

= vRLT1 ≤ vLBB∗ .

(b) Let x ≤ e be not redundant for K̄ , then

vRLT ′
1

≤ vLBB′ ≤ vLBB∗ .

Proof Part (a) follows from Theorem 2, Lemma 3 and construction of vLBB∗ . Part (b) follows
from Lemma 4 and construction of vLBB∗ . ��

It should be clear that for case (a) in the above proposition we have vRLT1 = vLBB∗
whenever the spanning set of linearizable matrices can be characterized by the linearizable
matrices of the form BTY + Y TB + Diag(z). Unfortunately we were not able to prove that
the inequality vRLT1 ≤ vLBB∗ is strict when x ≤ e is redundant for K̄ . On the other hand, we
found examples when those two bounds are equal. By using Proposition 5 we computed the
spanning set of linearizablematrices for theQSPP on tournament graphs, GRID1,GRID2 and
PAR-K graphs up to certain size. We refer to Hu and Sotirov (2020) for the definition of these
acyclic graphs. We have also computed the spanning set of linearizable matrices for the QAP
for n ≤ 9 by brute-force search. It turns out that the spanning sets of all mentioned instances
can be expressed as BTY + Y TB + Diag(z). This indicates that the set of (symmetrized)
linearizable matrices obtained from Lemma 1 is considerably rich.

Note that for case (b) in Proposition 3, we do not compare vLBB∗ and vRLT1 , as their
relation is not clear in general. However, our example below shows that there are instances
for which vRLT1 < vLBB∗ .

Example 1 Consider the quadratic shortest path problem on the complete symmetric digraph
K ∗
n , that is a digraph in which every pair of vertices is connected by a bidirectional edge.
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Table 1 The bounds for QSPP
instances on K ∗

n
instance vRLT1 vSDPNL vLBB∗ opt

1 −0.51757 −0.51757 0 0

2 −0.7399 −0.74882 0 0

3 −0.58818 −0.48862 0 0

4 −0.48526 −0.48526 0 0

5 −0.66547 −0.56165 0 0

6 −0.27015 −0.22945 0 0

7 −1.1405 −1.1405 0 0

Assume the incoming arcs to s and outgoing arcs from t are removed. We can find the
spanning set of linearizable matrices as follows. If Q is linearizable with linearization vector
c, then 〈xxT , Q −Diag(c)〉 = 0 for every s-t path x . By enumerating all s-t paths, we have
a linear system whose null space represents a set of linearizable matrices. That set, together
with the set of diagonal matrices {Diag(ek) | k = 1, . . . ,m}, provides the spanning set of
linearizable matrices for K ∗

n . Here, ek denotes column k of the identity matrix.
For n = 5, there are 85 linearly independent linearizable matrices in the spanning set.

However there are only 59 linearly independent linearizablematrices from the set {BT(ei eTj )+
(e j eTi )B + Diag(ek) | i = 1, . . . , n and j, k = 1, . . . ,m}, see Lemma 1. Here B is the
incidence matrix of the complete symmetric digraph with five vertices.

Now, we use these linearizable matrices as the cost matrix Q in the QSPP. For each
linearizable matrix, we have vLBB∗ = 0 as there exists an α such that A(α) = Q in (9).
However vLBB′ is unbounded from below for some of the instances due to negative loops in
K ∗
5 . Table 1 we shows numerical results for the first level RLT bound vRLT1 for seven of the

mentioned instances. We also compute the strongest semidefinite programming relaxation
SDPNL fromHuandSotirov (2020) for thementioned instances.Optimal values are provided
in the last column of the table.

Table 1 shows that vLBB∗ dominates both vRLT1 and vSDPNL for all instances. It is sur-
prising that vLBB∗ dominates also the semidefinite programming bound.

6.4 The extended linearization-based bounds

In Sect. 5 we introduce the linearization-based bounding scheme by exploiting linearizable
matrices. In this section, we extend the notion of linearizable matrices, which enables us to
construct a linearization-type of a bound that turns to be equivalent to the first level RLT
bound also for BQPs where x ≤ e is not redundant for K̄ .

For a given BQP, we call the cost matrix Q extended linearizable if there exists a vector c
such that cTx ≤ xTQx for all x ∈ K . An example of extended linearizable matrix is given
below.

Lemma 5 Let Λ ∈ Sm+ , Ω ∈ R
m×m+ . Then Λ − Ω is extended linearizable, and

(2Λe − Ωe)Tx − eTΛe ≤ xT(Λ − Ω)x

for any binary vector x ∈ {0, 1}m.
Proof It is not difficult to see that −xTΩe ≤ −xTΩx . It also holds that

2eTΛx − eTΛe − xTΛx = −(e − x)TΛ(e − x) ≤ 0.
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The statement follows by summing both inequalities. ��
Similar to the linearization-based bound, we can use the (extended) linearizable matrices

to derive a lower bound for a given BQP. For any fixed Y ∈ R
n×m, z ∈ R

m,Λ ∈ Sm+ ,Ω ∈
R
m×m+ such that BTY + Y TB + Diag(z) + Λ − Ω ≤ Q, the optimal value of the following

problem

min
x∈K̄

(2Y Tb + z + 2Λe − Ωe)Tx,

subtracted by eTΛe is a lower bound for the BQP. The dual of the above LP is

max
Y ,z,y

{ bTy | BTy ≤ 2Y Tb + z + 2Λe − Ωe}.

In order to obtain the strongest bound of the above type, one has to solve the following
maximization problem.

vExLBB := max
Y ,z,y,Λ=ΛT,Ω

bTy − 〈J ,Λ〉
BTY + Y TB + Diag(z) + Λ − Ω ≤ Q
BTy ≤ 2Y Tb + z + 2Λe − Ωe
Λ ≥ 0,Ω ≥ 0.

(24)

We call the solution of (24) the extended linearization-based bound. We conclude this
section by showing that vExLBB is equivalent to the first level RLT bound (17).

Theorem 3 Suppose that x ≤ e is not redundant for K̄ , then vExLBB = vRLT1 .

Proof Proof follows by verifying that (17) and (24) are a primal-dual pair. ��
The above result is interesting from a theoretical perspective. However, from a practical view
the linearization-based bounds are more attractive due to the smaller number of variables and
constraints.

7 The QSPP linearization problem on DAGs

In this section, we first introduce several assumptions and definitions. Then, we derive nec-
essary and sufficient conditions for an instance of the QSPP on a directed acyclic graph to be
linearizable, see Theorem 4. We also show that those conditions can be verified in O(nm3)

time. This result is a generalization of the corresponding results for the QSPP on directed
grid graphs from Hu and Sotirov (2018).

We have the following assumptions in this section:

(i) G is a directed acyclic graph;
(ii) the vertices v1, . . . , vn are topologically sorted, that is, (vi , v j ) ∈ A implies i < j ;
(iii) for each vertex v, there exists at least one s-t path containing v;
(iv) the diagonal entries of the cost matrix Q are zeros.

It is well-known that a topological ordering of a directed acyclic graph can be computed
efficiently. We also note that assumptions (iii) and (iv) do not restrict the generality. For
instance, assumption (iv) is not restrictive as Q is linearizable if and only if Q + Diag(c) is
linearizable for any cost vector c, see Lemma 4.1 in Hu and Sotirov (2018).
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Here, we choose and fix an arbitrary labeling of the arcs. The vertices v2, . . . , vn−1, e.g.,
those between the source vertex v1 and the target vertex vn , are called the transshipment
vertices. For each transshipment vertex, we pick the outgoing arc with the smallest index and
call it a non-basic arc. The remaining arcs are basic. Thus there are n− 2 non-basic arcs and
m − n + 2 basic arcs.

Note that for a linearizable cost matrix its linearization vector is not necessarily unique.
However, we would like to restrict our analysis to the linearization vectors that are in a
unique, reduced form. For this purpose we introduce the following definitions, see also Hu
and Sotirov (2018).

Definition 2 We say that the cost vectors c1 and c2 are equivalent if cT1 x = cT2 x for all x ∈ P .

Definition 3 The reduced form of a cost vector c is an equivalent cost vector R(c) such that
(R(c))e = 0 for every non-basic arc e.

The existence of the reduced form of the cost vector c follows from the following trans-
formation. Let v be a transshipment vertex, and f the non-basic arc going from v. Define ĉ
as follows:

ĉe :=

⎧
⎪⎨

⎪⎩

ce − c f if e is an outgoing arc from vertex v,

ce + c f if e is an incoming arc to v,

ce otherwise.

(25)

It is not difficult to verify that ĉ and c are equivalent. Furthermore, if we apply this trans-
formation at each transshipment vertex v in the reverse topological order i.e., vn−1, . . . , v2,
then the obtained cost vector, after n − 2 transformations, is in the reduced form. Moreover
the resulting cost vector is equivalent to c. Let us define now critical paths, see also Hu and
Sotirov (2018).

Definition 4 For a basic arc e = (u, v), the associated critical path Pe is an s-t path containing
arc e and determined as follows. Choose an arbitrary s-u path P1, and take for P2 the unique
v-t path with only non-basic arcs. Then, the critical path Pe = (P1, P2) is the concatenation
of the paths P1 and P2.

The uniqueness of P2 in Definition 4 follows from the fact that each transshipment vertex
has exactly one outgoing arc that is non-basic and G is acyclic. Clearly, to each basic arc e
we can associate one critical path Pe as given above.

The following result shows that for a linearizable cost matrix Q there exists a unique
linearization vector in reduced form. The uniqueness is up to the choice of non-basic arcs
and critical paths.

Proposition 4 Let Q ∈ R
m×m be a linearizable cost matrix for the QSPP, and c ∈ R

m its
linearization vector. Then, the reduced form of c, R(c) ∈ R

m, is uniquely determined by the
costs of the critical paths in the underlying graph G.

Proof Let M be a binary matrix whose rows correspond to the s-t paths in G and columns
correspond to the basic arcs. In particular, MP,e = 1 if and only if the path P contains the
basic arc e. Let b be the vector whose elements contain quadratic costs of s-t paths. Let
ĉB ∈ R

m−n+2 is the subvector of R(c) composed of the elements corresponding to the basic
arcs. Then, ĉB satisfies the linear system MĉB = b. In order to show the uniqueness of ĉB it
suffices to prove that the rank of M equals m − n + 2, which is the number of the basic arcs.
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Table 2 Notation with respect to target vertex v

Notation Definition

Gv = (Vv, Av) An induced subgraph of G for which assumption (iii) is satisfied with target vertex v

Qv An |Av | × |Av | submatrix of Q whose rows and columns correspond to the arcs in Av

Rv(·) The linear function that maps a cost vector on Gv to its reduced form

pv The pseudo-linearization vector of Qv

Let M̄ be a square submatrix of M of size (m − n + 2) × (m − n + 2) whose rows
correspond to the critical paths. Let Ci be the set of the basic arcs emanating from vertex vi
for i = 1, . . . , n−1. Since the sets C1, . . . , Cn−1 partition the set of the basic arcs, they can be
used to index the matrix M̄ . Upon rearrangement, M̄ is a block matrix such that the (i, j)th
block M̄i j is the submatrix whose rows and columns correspond to Ci and C j , respectively.
It is readily seen that every diagonal block M̄ii is an identity-matrix. Furthermore, the block
M̄i j is a zero matrix for i < j . To see this, we first recall that the vertices are topologically
ordered. Then, note that for the critical path that is associated to the arc e = (i, j), all arcs
visited after e are non-basic by construction. Thus, the rank of M̄ is m − n + 2, and this
finishes the proof. ��

From the previous proposition, it follows that for a linearizable cost matrix Q its lineariza-
tion vector can be computed easily from the costs of the critical paths. However, the above
calculation of the unique linear cost vector in reduced form can be performed even when the
linearizability of Q is not known. Since the resulting vector does not have to be a linearization
vector, we call it pseudo-linearization vector. In particular, we have the following definition,
see also Hu and Sotirov (2018).

Definition 5 The pseudo-linearization vector of the cost matrix Q ∈ R
m×m is the unique

cost vector p ∈ R
m in reduced form such that xTQx = pTx for every critical path x .

Here, the uniqueness is up to the choice of non-basic arcs and critical paths. Recall that
the pseudo-linearization vector can be computed also for a non-linearizable cost matrix. The
following lemma shows that for linearizable Q its pseudo-linearization vector coincides with
the linearization vector in reduced form.

Lemma 6 Let Q be linearizable. Then the corresponding linearization vector in reduced
form and the pseudo-linearization vector are equal.

Proof Let c be the linearization vector of Q in reduced form, and p the pseudo-linearization
vector of Q. Then, cTx = pTx for each critical path x . From Proposition 4 it follows that
c = p since both cost vectors are in the reduced form. ��

If we change the input target vertex from t to another vertex v, some arcs and vertices have
to be removed from G in order to satisfy assumption (iii). This results in a reduced QSPP
instance. To simplify the presentation, we introduce the following notation.

The next result from Hu and Sotirov (2018) establishes a relationship between the lin-
earization vector of Qt and the linearization vector of Qv where (v, t) ∈ A.

Lemma 7 (Hu and Sotirov 2018) The cost vector c ∈ R
m is a linearization of Qt ∈ R

m×m

if and only if the cost vector Te(c) ∈ R
|Av | given by

(
Te(c)

)

e′ =
{
ce′ − 2 · qe,e′ if e′ = (u, w) ∈ Av and u �= s

ce′ − 2 · qe,e′ + ce if e′ = (u, w) ∈ Av and u = s
, (26)
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is a linearization of Qv for every vertex v such that e = (v, t) ∈ A.

Now, we are ready to prove the main result in this section.

Theorem 4 Let Rv(·) and pv be defined as in Table 2, and Te given as in Lemma 7. Then,
the pseudo-linearization vector pt is a linearization of Qt if and only if (Ru ◦ Te)(pv) = pu
for every e = (u, v) ∈ A.

Proof If Qt is linearizable, then it follows from Lemmas 6 and 7 that for every vertex v, the
cost matrix Qv is linearizable with the linearization vector pv . Thus, (Ru ◦ Te)(pv) = pu
for every arc e = (u, v) ∈ A.

Conversely, assume that Qt is not linearizable. Then, from Lemma 7, it follows that there
exists an arc e = (v, t) ∈ A such that the vector Te(pt ) is not a linearization vector of Qv .
Let us distinguish the following two cases:

1. If Qv is linearizable, then pv is its linearization vector and (Rv ◦ Te)(pt ) �= pv by
Lemma 6.

2. If Qv is not linearizable, then we again distinguish two cases. Thus, we repeat the whole
argument to Qv .

This recursive process must eventually end up with case (i), as the number of vertices in
the underlying graph decreases in each recursion step, and every cost matrix on a graph
with at most three vertices is linearizable. Thus, we obtain (Ru ◦ Te)(pv) �= pu for some
e = (u, v) ∈ A. ��

Note that the iterative procedure from Theorem 4 provides an answer to the QSPP lin-
earization problem. Moreover, it returns the linearization vector in reduced form if such
exists. We present the pesudo-algorithm for the QSPP linearization problem below.

Algorithm 2 The QSPP linearization algorithm on DAGs
1: Input: A QSPP instance with G = (V , A) acyclic, s, t ∈ V and cost matrix Q.
2: Output: A linearization vector c of Q, if it exists
3: procedure isLinearizable(G, Q)
4: for v ∈ V do
5: compute the pseudo-linearization pv , see Prop 4
6: end for
7: for e = (u, v) ∈ A do
8: if (Ru ◦ Te)(pv) �= pu then
9: Q is not linearizable
10: return
11: end if
12: end for
13: c ← pt is the linearization vector of Q

The quadratic cost of an s-t path can be computed in O(m2) steps, and thus we need
O(m3) steps for the m − n + 2 critical paths. The pseudo-linearization of Q can be obtained
in O(m2) steps by solving a linear system whose left-hand-side is a lower triangular square
matrix M̄ of order m − n + 2, see Proposition 4. Since there are n vertices, computing
all pseudo-linearizations requires O(nm3) steps. The rest of the computation takes at most
O(m3) steps. Thus the complexity of the algorithm given in Theorem 4 is O(nm3).

Now we show that the linearization algorithm also characterize the set of linearizable
matrices.
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Proposition 5 Let G be an acyclic digraph. The matrices Q1, . . . , Qk spanning the set of
linearizable matrices can be computed in polynomial time.

Proof Let vi be a transshipment vertex, and f the non-basic arc going from vi . Let Mi be
the matrix with ones on the diagonals, and the following non-zero off-digonal entries,

(Mi )e, f :=
{

−1 if e is an outgoing arc from vertex vi ,

1 if e is an incoming arc to vi .
(27)

It it easy to see that for a given cost vector c, ĉ = Mic gives an alternative representation
for (25). Thus, the reduced form Ru(c) of c is a linear transformation given by Ru(c) =
(Mn−1Mn−2 · · · M2)c. Similarly, the linear operator Te from Lemma 7, and the pseudo-
linearization vector pv can be obtained from linear transformations. Therefore, we can find
a matrix L in polynomial time such that Lvec(Q) = 0 if and only if Q is linearizable.
If vec(Q1), . . . , vec(Qk) span the null space of L , then Q is linearizable if and only if
vec(Q) = vec(

∑k
i=1 αi Qi ) for some α ∈ R

k . ��

The previous proposition can be used to compute the spanning set of linearizable matrices
for the QSPP on DAGs.

8 Conclusions

In this paper, we present several applications of the linearization problem for binary quadratic
problems. In particular, we propose a new lower bounding scheme which follows from
a simple certificate for a quadratic function to be non-negative. Each linearization-based
relaxation depends on the chosen set of linearizable matrices. This allows us to compute a
number of different lower bounds. One can obtain the best possible linearization-based bound
in the case that the complete characterization of the set of linearizable matrices is known.

In Theorem 2, we prove that the Generalized Gilmore–Lawler bound obtained fromAlgo-
rithm 1, and for any choice of a skew-symmetric matrix, is bounded by vLBB′ , see (14). We
also show that vLBB′ coincides with the first level RLT bound by Adams and Sherali (1990)
when the upper bounds on variables are implied by the rest of the constraints, see Lemma 3.
This also implies that all Generalized Gilmore–Lawler bounds are bounded by the first level
RLT bound for the mentioned setting. Similar result was already observed in the context
of the quadratic assignment problem, but it was not known for BQPs in general. For BQPs
where upper bounds on variables are not implied by constraints, Lemma 4 establishes the
relation between vLBB′ and vRLT1 . In Proposition 3, we relate all here presented bounds with
the strongest linearization-based bound vLBB∗ . Our Example 1 demonstrates the strength of
that bound.

We also provide a polynomial-time algorithm to solve the linearization problem of the
quadratic shortest path problem on directed acyclic graphs, see Algorithm 2. Our algorithm
yields the complete characterization of the set of linearizablematrices for theQSPP onDAGs.
Thus, we are able to compute the strongest linearization-based bound vLBB∗ for the QSPP
on DAGs. Our numerical experiments show that vLBB∗ and vLBB′ coincides for all tested
instances.

For future research, it would be interesting to further investigate strength of linearization-
based bounds for types of linearizable matrices that do not fall into the case of Lemma 1.
Finally, let us note that the results from this paper (partially) address questions posed by Çela
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et al. (2018) related to computing good bounds by exploiting polynomially solvable special
cases.
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