Annals of Operations Research (2022) 309:425-451
https://doi.org/10.1007/510479-021-04352-1

ORIGINAL - OR MODELING/CASE STUDY

®

Check for
updates

Reflections on kernelizing and computing unrooted
agreement forests

Rim van Wersch' . Steven Kelk' - Simone Linz? - Georgios Stamoulis’

Accepted: 30 September 2021 / Published online: 19 November 2021
© The Author(s) 2021

Abstract

Phylogenetic trees are leaf-labelled trees used to model the evolution of species. Here we
explore the practical impact of kernelization (i.e. data reduction) on the NP-hard problem of
computing the TBR distance between two unrooted binary phylogenetic trees. This problem
is better-known in the literature as the maximum agreement forest problem, where the goal is
to partition the two trees into a minimum number of common, non-overlapping subtrees. We
have implemented two well-known reduction rules, the subtree and chain reduction, and five
more recent, theoretically stronger reduction rules, and compare the reduction achieved with
and without the stronger rules. We find that the new rules yield smaller reduced instances
and thus have clear practical added value. In many cases they also cause the TBR distance to
decrease in a controlled fashion, which can further facilitate solving the problem in practice.
Next, we compare the achieved reduction to the known worst-case theoretical bounds of
15k —9 and 11k — 9 respectively, on the number of leaves of the two reduced trees, where k is
the TBR distance, observing in both cases a far larger reduction in practice. As a by-product of
our experimental framework we obtain a number of new insights into the actual computation
of TBR distance. We find, for example, that very strong lower bounds on TBR distance
can be obtained efficiently by randomly sampling certain carefully constructed partitions of
the leaf labels, and identify instances which seem particularly challenging to solve exactly.
The reduction rules have been implemented within our new solver Tubro which combines
kernelization with an Integer Linear Programming (ILP) approach. Tubro also incorporates
a number of additional features, such as a cluster reduction and a practical upper-bounding
heuristic, and it can leverage combinatorial insights emerging from the proofs of correctness
of the reduction rules to simplify the ILP.

Keywords Phylogenetics - Agreement forest - TBR distance - Kernelization - Fixed
parameter tractability

1 Introduction

The central challenge of phylogenetics, which is the study of phylogenetic (evolutionary)

trees, is to infer a tree whose leaves are bijectively labeled by a set X of species and which
accurately represents the evolutionary events that gave rise to X. There are many methods

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04352-1&domain=pdf
http://orcid.org/0000-0001-7248-8197

426 Annals of Operations Research (2022) 309:425-451

to construct phylogenetic trees; we refer to a standard text such as Felsenstein (2004) for an
overview. The complexity of this problem stems from the fact that we typically only have
indirect data available, such as DNA sequences of a set X of species. It is quite common for
different methods to construct different trees, or the same method to construct different trees
depending on which part of a genome the DNA data is extracted from Huson et al. (2011),
Richards et al. (2018), Yoshida et al. (2019). In such cases we might wish to formally quantify
the dissimilarity of these trees, and this has fuelled research into different distance measures
on pairs of phylogenetic trees (Kuhner and Yamato 2015). Such distances also help us to
understand (i) the space of all phylogenetic trees on a fixed number of leaves (John 2017),
(ii) the construction of phylogenetic supertrees (Whidden et al. 2014), which produces a
single phylogenetic tree summarizing multiple trees; and (iii) phylogenetic networks (Huson
et al. 2011), which generalize phylogenetic trees to graphs.

In this article we focus on the following problem: given two unrooted binary phylogenetic
trees 7 and 7, both on leaf set X, what is the minimum number of Tree Bisection and Recon-
nection (TBR) moves required to turn 7" into 7’? We defer formal definitions to Sect. 2.1, but
in essence a TBR move consists of deleting an edge of a tree and then introducing a new edge
to reconnect the two resulting components back together. This distance measure, denoted
dTBR, 1s NP-hard to compute (Allen and Steel 2001; Hein et al. 1996). Computation of dTpr
is essentially equivalent to the well-known problem of computing a maximum agreement
forest of T and T'. Such a forest is a partition of X into the minimum number of blocks so
that each block induces a subtree in T that is isomorphic (up to subdivision) to that induced
in T’, and no two blocks induce overlapping subtrees in 7 and 7’. This minimum number,
dMAF, 18 equal to dtpr + 1 (Allen and Steel 2001). Due to this equivalence, everything in
this article that applies to drgr also applies to the computation of dyaAF-

In the last few years there has been quite some research into the fixed parameter tractability
of computing dtpr. Fixed parameter tractable (FPT) algorithms are those with running time
O (h(k)-poly(n)) where n is the size of the input and / is a computable function that depends
only on some well-chosen parameter k (Downey and Fellows 2013; Cygan et al. 2015).
Such algorithms have the potential to run quickly when k is small, even if n is large. In
any case, they run more quickly than algorithms with running times of the form O (n"®)).
A common technique for developing FPT algorithms is to navigate a computational search
tree such that the number of vertices in the tree is bounded by a function of k. Using this
branching technique, running times of o4k . poly(]X|)) (Whidden et al. 2013) and later
o@3k. poly(]X])) (Chen et al. 2015) have been obtained for the computation of dTgr, where
k = drpr. Another main technique is kernelization (Fomin et al. 2019), which is the focus
of this article. The goal here is to apply polynomial-time pre-processing reduction rules such
that the reduced instance—the kernel—has size bounded by a function of k. Such a kernel
can then be solved by an exact exponential-time algorithm, which ultimately also yields a
running time of the form O (h(k) - poly(n)). For the computation of drpgr, a kernel of size
28k was established in 2001; recently this was reduced to 15k — 9, and later 11k — 9, by
two of the present authors Kelk and Linz (2019, 2020). The 28k and 15k — 9 results are
based on two well-known reduction rules, the subtree and chain reduction rules, while the
11k — 9 result was obtained by adding five new reduction rules to this repertoire. Roughly
speaking, the latter five reduction rules target short chains that cannot be (further) reduced
by the chain reduction rule and, so, the 11k — 9 result is based on repeated applications of all
seven reduction rules. The 15k — 9 and 11k — 9 bounds are both tight under their respective
sets of reduction rules.

In this article we adopt an experimental approach to answering the following question:
do the new reduction rules from Kelk and Linz (2020) produce smaller kernels in practice

@ Springer

Annals of Operations Research (2022) 309:425-451 427

than, say, when only the subtree and chain reductions are applied? This mirrors several recent
articles in the algorithmic graph theory literature where the practical effectiveness of ker-
nelization has also been analyzed (Fellows et al. 2018; Ferizovic et al. 2020; Henzinger
et al. 2020; Mertzios et al. 2020; Alber et al. 2006). The question is relevant, since earlier
studies of kernelization in phylogenetics have noted that, despite its theoretical importance,
in an empirical setting the chain reduction seems to have very limited effect compared to the
subtree reduction (Hickey et al. 2008; van Iersel et al. 2016). In this sense, it is natural to
ask whether the five new reduction rules have any real added value in practice. Happily, our
experiments indicate that the answer is yes; across a range of experimental settings, the aver-
age percentage of species contained in X that survive after application of the entire ensemble
of reduction rules, is substantially smaller than when only the subtree and chain reductions
are applied. We also explore whether the reduction achieved in practice is, expressed as a
function of k, significantly better than the theoretical worst-case bound of 11k —9. Again, we
answer this affirmatively. Our experiments show that kernels of size 6k or lower are obtained
for 93% of the tree pairs that we used in our experimental study. We also derive insights into
how frequently the phenomenon of parameter reduction occurs: this is when a reduction rule
is triggered that does not preserve drpr but instead reduces it in some predictable and well-
understood fashion. Parameter reduction is particularly helpful if the kernel is subsequently
solved by an FPT algorithm whose running time is exponentially dependent on dtgRr.

Our experimental framework also yields a number of new insights concerning the actual
computation of drgr as opposed to only reducing the problem in size. To compute the
empirical kernel size mentioned in the previous paragraph, it is necessary to know drgg, or a
good lower bound on dtgr. To that end our experiments deploy the only existing, publicly-
available TBR solver uSPR (Whidden and Matsen 2018) to compute dtgr, Where possible,
which is not always the case. In this way we build up a picture of which instances are
particularly challenging to compute in practice. For instances where computation of dtgR is
too challenging for uSPR, we use a novel lower bound on drgr based on randomly sampling
certain types of so-called convex characters, which are specially constructed partitions of
X (Semple and Steel 2003). This turns out to be extremely effective, often yielding lower
bounds within a few seconds that are very close to drgr. Arguably, alongside our study of
kernel size, the discovery of this bound is the most important contribution of this paper.

A final contribution of this article is our new solver Tubro. This was initially intended
simply as a vehicle for the new reduction rules from Kelk and Linz (2020). However, during
development we reasoned that it would be useful for Tubro to incorporate its own solver. To
this end, we give a new Integer Linear Programming (ILP) formulation for computation of
dTBR, and prove its correctness. Tubro feeds this ILP to the powerful solver (Gurobi 2020),
strengthening the formulation with heuristically computed upper bounds and the aforemen-
tioned lower bound. We note that Tubro is capable of solving a number of comparatively
small instances that are out-of-range for uSPR in our experiments. Tubro additionally incor-
porates a number of extra features that are possibly of independent interest, such as a cluster
reduction (Bordewich et al. 2017; Li and Zeh 2017). It is also able to significantly reduce the
number of variables in the ILP by specifying that even in fully kernelized instances certain
chains should never be cut, leveraging an insight used in the proofs of correctness in Kelk
and Linz (2020). An executable version of Tubro is available upon request.

The paper is organized as follows. The next section contains some preliminaries that
are used throughout the paper and details the seven reduction rules that are underlying the
kernelization experiments presented here. In Sect. 3, we introduce the maximum parsimony
distance between two unrooted binary phylogenetic trees and the associated sampling strategy
to obtain a lower bound on the TBR distance. The following three sections describe our

@ Springer

428 Annals of Operations Research (2022) 309:425-451

a € € a

b d b d

Cc C

Fig. 1 Two unrooted binary phylogenetic trees on X = {a, b, ¢, d, e}

experiments. We first present the experimental setup in Sect. 4 and, subsequently, summarize
and analyse the results in Sect. 5. A high-level discussion follows in Sect. 6, where we reflect
on what our experiments tell us about which TBR instances are easy, and difficult, to solve,
and why this might be. In our conclusion Sect. 7 we make a number of suggestions for
further research. Technical details of Tubro are deferred to the appendix, which establishes
correctness of the ILP that Tubro is based on and gives details of the various options that can
be switched on or off when running Tubro, such as chain preservation and cluster reduction.

2 Preliminaries
2.1 Definitions

Our notation closely follows (Kelk and Linz 2020). Throughout this paper, X denotes a
finite set of faxa. An unrooted binary phylogenetic tree T on X is a simple, connected,
and undirected tree whose leaves are bijectively labeled with X and whose other vertices
all have degree 3. See Fig. 1 for an example of two unrooted binary phylogenetic trees
on X = {a, b, c,d, e}. For simplicity and since most phylogenetic trees in this paper are
unrooted and binary, we refer to an unrooted binary phylogenetic trees as a phylogenetic tree.
If a definition or statement applies to all unrooted phylogenetic trees, regardless of whether
they are binary or not, we make this explicit. Two leaves, say a and b, of T are called a cherry
{a, b} of T if they are adjacent to a common vertex. For X' C X, we write T[X'] to denote the
unique, minimal subtree of T that connects all elements in X’. For brevity we call T[X'] the
embedding of X’ in T. Furthermore, we refer to the phylogenetic tree on X’ obtained from
T[X'] by suppressing non-root degree-2 vertices as the restriction of T to X' and we denote
this by T'| X’.

Tree bisection and reconnection Let 7' be a phylogenetic tree on X. Apply the following
three-step operation to 7'

1. Delete an edge in T and suppress any resulting degree-2 vertex. Let 77 and 73 be the two
resulting phylogenetic trees.

2. If Ty (resp. T») has at least one edge, subdivide an edge in 77 (resp. 7>) with a new vertex
vp (resp. v2) and otherwise set vy (resp. v2) to be the single isolated vertex of 77 (resp.
T,).

3. Add a new edge {v;, v2} to obtain a new phylogenetic tree 7’ on X.

We say that T’ has been obtained from 7 by a single tree bisection and reconnection (TBR)
operation (or, TBR move). Furthermore, we define the TBR distance between two phylo-
genetic trees 7 and 7’ on X, denoted by dygr(T, T'), to be the minimum number of TBR
operations that are required to transform 7 into 7". To illustrate, the trees 7 and T’ in Fig. 2
have a TBR distance of 1. It is well known that dtgR is a metric (Allen and Steel 2001). By

@ Springer

Annals of Operations Research (2022) 309:425-451 429

Fig.2 A single TBR operation that transforms 7 into T’. First, T; and T5 are obtained from T by deleting the
edge {u1,us}in T. Second, T’ is obtained from 7} and T» by subdividing an edge in both trees as indicated
by the open circles v and vy and adding a new edge {vy, v2}

building on an earlier result by Hein et al. (1996, Theorem 8), Allen and Steel (2001) showed
that computing the TBR distance is an NP-hard problem.

Agreement forests Let 7 and 7’ be two phylogenetic trees on X. Furthermore, let F =
{Bo, B1, B>, ..., By} be a partition of X, where each block B; withi € {0,1,2,...,k}is
referred to as a component of F. We say that F is an agreement forest for T and T if the
following conditions hold.

(1) Foreachi €{0,1,2,...,k},wehave T|B; = T'|B;.
(2) For each pair i, j € {0,1,2,...,k} with i # j, we have that T[B;] and T[B;] are
vertex-disjoint in 7', and T'[B;] and T'[B;] are vertex-disjoint in 7"

Let F = {By, Bi, Ba, ..., B;} be an agreement forest for 7 and 7. The size of F is simply its
number of components; i.e. k + 1. Moreover, an agreement forest with the minimum number
of components (over all agreement forests for T and T”) is called a maximum agreement
forest (MAF) for T and T'. The number of components of a maximum agreement forest for
T and T’ is denoted by dyar(T, T'). The following theorem is well known.

Theorem 1 (Allen and Steel 2001, Theorem 2.13) Let T and T’ be two phylogenetic trees
on X. Then

drr(T, T") = dwar(T, T') — 1.

A maximum agreement forest for the trees 7 and T’ shown in Fig. 2, which have TBR
distance 1, therefore contains two components. F = {{a, b, ¢, d}, {e, f, g}} is an example
of such a forest (in fact, here it is the only maximum agreement forest).

We conclude this section with a number of algorithmic definitions. A parameterized
problem is a problem for which the inputs are of the form (x, k), where k is a non-negative
integer, called the parameter. A parameterized problem is fixed-parameter tractable (FPT)
if there exists an algorithm that solves' any instance (x, k) in A (k) - |x|?" time, where A (-)
is a computable function depending only on k. A parameterized problem has a kernel of size
g(k), where g(-) is a computable function depending only on k, if there exists a polynomial
time algorithm transforming any instance (x, k) into an equivalent instance (x', k'), with
|x'|, k" < g(k). Here, equivalent means that (x, k) is a yes-instance if and only if (x/, k') is a
yes-instance. If g (k) is a polynomial in k then we call this a polynomial kernel;if g(k) = O (k)
then it is a linear kernel. A well-known theorem from parameterized complexity states that
a parameterized problem is fixed-parameter tractable if and only if it has a (not necessarily
polynomial) kernel. For more background information on fixed parameter tractability and

! Note that the formalism described here actually concerns decision (i.e. yes/no) problems, which in the
context of the current article is most naturally “Is drgr < k?”. An FPT algorithm for answering this question
can easily be transformed into an algorithm for computing drgr with similar asymptotic time complexity by
increasing k incrementally from O until a yes-answer is obtained.

@ Springer

430 Annals of Operations Research (2022) 309:425-451

kernelization, we refer the reader to standard texts such as Cygan et al. (2015), Downey and
Fellows (2013), Fomin et al. (2019).

In this article, we take dtpr as the parameter k and take | X|, the number of leaves, as
the size of the instance |x|. The reduction rules described in the following section produce a
linear kernel and run in poly(| X|) time.

2.2 Description of the subtree, chain and other reduction rules

In this section we describe the existing reduction rules—seven in total—that will be analyzed
in this article.

Let T and T’ be two phylogenetic trees on X. We say that a subtree of T is pendant if
it can be detached from 7 by deleting a single edge. For reasons of simplicity, we assume
for the remainder of this paragraph that |X| > 4. Note that no generality is lost because
digr(T,T') = 0if |X| < 4.Forn > 2,let C = (£1,¢5...,¢,) be a sequence of distinct
taxain X. Foreachi € {1,2..., n}, let p; denote the unique parent of ¢; in 7. We call C an
n-chain of T if there exists a walk py, p2,..., p, in T and the elements p>, p3, ..., pp—1
are all pairwise distinct. Note that £; and > may have a common parent or £,,_1 and ¢, may
have a common parent. Furthermore, if p; = p2 or p,—1 = py holds, then C is pendant in
T . To ease reading, we sometimes write C to denote the set {€1, €2, ..., £,}. It will always be
clear from the context whether C refers to the associated sequence or set of taxa. If a pendant
subtree S (resp. an n-chain C) exists in 7 and 77, we say that S (resp. C) is a common subtree
(resp. chain) of 7 and 7’.

We are now in a position to state all seven reduction rules. Let 7 and 7’ be two phylogenetic
trees on X . We already note here that an application of Reduction 1, 2, 6, or 7 results in two new
trees whose TBR distance is the same as that of 7 and 7’, and an application of Reduction 3,
4, or 5, results in two new trees whose TBR distance is one less than that of 7 and T'.

Reduction 1 (Allen and Steel 2001) If T and T’ have a maximal common pendant subtree
S with at least two leaves, then reduce T and 7" to 7, and T}, respectively, by replacing S
with a single leaf with a new label.

Reduction 2 (Allen and Steel 2001) If 7 and 7’ have a maximal common n-chain C =
£y, 42, ...,¢,) with n > 4, then reduce T and T’ to T, = T|X\{l4, s, ..., ¢,} and
T! =T'|X\{{a, s, ..., L,}, respectively.

Reduction 3 (Kelk and Linz 2020) If T and T’ have a common 3-chain C = ({1, {2, £3)
such that {€;, £} is a cherry in T and {£», £3} is a cherry in T’, then reduce T and T’ to
T, = T|X\C and T, = T'|X\C, respectively.

Reduction 4 (Kelk and Linz 2020) If T and 7’ have a common 3-chain C = ({1, {2, {3)
such that {¢>, ¢3} is a cherry in T and {¢3, x} is a cherry in T’ with x € X\C, then reduce T
and T" to T, = T|X\{x} and T/ = T'| X \{x}, respectively.

Reduction 5 (Kelk and Linz 2020) If T and T’ have two common 2-chains C; = (£1, £») and
Cy = ({3, £4) such that T has cherries {{5, x} and {{3, £4}, and T’ has cherries {{1, £2} and
{€4, x} with x € X\(C; U Cy), thenreduce T and T" to 7, = T|X\{x} and T} = T'| X \{x},
respectively.

Reduction 6 (Kelk and Linz 2020) If 7 and 7" have two common 3-chains C1 = ({1, £2, £3)
and Co» = ({4, {5, Lg) such that T has cherries {¢;, £3} and {¢4, £5}, and (€1, €2, ..., Le)
is a 6-chain of 7", then reduce T and 7’ to T, = T|X\{€4, &5} and T, = T'|X\{¢4, {5},
respectively.

@ Springer

Annals of Operations Research (2022) 309:425-451 431

T T T, T

f3 ZB

K2 ::1 Zl K2 ::1 Zl
Kl g2 Kl [2
‘ Cp 53
€4 fs
Z5 65

Uy

Fig.3 An example of Reduction 7. Ovals indicate subtrees

Reduction 7 (Kelk and Linz 2020) If T and 7’ have common chains C; = (£, {2, £3) and
Cy = (L4, €s) such that T has cherries {{7, {3} and {£4, £5}, and ({1, €2, ..., {5) is a 5-chain
of T’, thenreduce T and 7’ to T, = T|X\{¢4} and T = T'| X\ {4}, respectively.

An example of Reduction 7 is illustrated in Fig. 3. Reduction 1 is known as subtree reduction
while Reduction 2 is known as chain reduction in the literature (for example, see Allen and
Steel 2001). Reductions 3—7 assume that Reductions 1 and 2 have already been applied to
exhaustion.

The following two lemmas summarize results established in Allen and Steel (2001), Kelk
and Linz (2019, 2020).

Lemma1 Let T and T’ be two phylogenetic trees on X. If T, and T, are two phylogenetic
trees obtained from T and T', respectively, by a single application of Reduction 1, 2, 6, or
7, then drr(T, T') = dBr (T}, T)). Moreover, if T, and T, are two trees obtained from T
and T', respectively, by a single application of Reduction 3, 4, or 5, then dygr(T, T') — 1 =
drer(Tr, T)).

Lemma2 Let S and S’ be two phylogenetic trees on X that cannot be reduced by Reduction 1
or 2, and let T and T' be two phylogenetic trees on Y that cannot be reduced by any of
the seven reductions. If dtgr(S, S') > 2, then |X| < 15drgr(S, S’) — 9. Furthermore, if
drer(T, T/) > 2, then |Y| < 11dtgr(T, T/) -9

Note that an application of Reductions 3, 4, or 5 triggers a parameter reduction, whereby
the TBR distance is reduced. In these cases, an element of X is located which definitely
comprises a singleton component in some maximum agreement forest, and whose deletion
thus lowers the TBR distance by 1. Reductions 1, 2, 6 and 7, on the other hand, preserve
TBR distance. Reductions 6 and 7 work by truncating short chains, i.e. chains which escape
Reduction 2, to be even shorter. It was noted in Kelk and Linz (2020) that an application of
Reduction 4 or 5 immediately triggers an application of Reduction 1.

3 Maximum Parsimony distance and a new approach to computing
lower bounds on TBR distance

Throughout this section, an unrooted phylogenetic tree T is not necessarily binary, i.e. each
internal vertex of T has degree at least 3. A character f on X is a function f : X — C,
where C = {c1, c2, ..., ¢, }isaset of character states for some positive integer r. Let T be an
unrooted phylogenetic tree on X with vertex set V, and let f be a character on X whose set of

@ Springer

432 Annals of Operations Research (2022) 309:425-451

character states is C. An extension g of f to Visafunctiong : V — C suchthat g(¢) = f(£)
for each £ € X. Given an extension g of f, let [, (T') denote the number of edges {u, v}in T
such that g(u) # g(v). Then the parsimony score of f on T, denoted by [¢(T), is obtained
by minimizing [(T') over all possible extensions g of f; this score can easily be computed
in polynomial time (Fitch 1971). Following standard terminology in phylogenetics (Semple
and Steel 2003), we say that a character f is convex on T if [s(T) = r — 1. Equivalently, a
convex character is a character where the » minimal spanning trees induced by the r states
of the character are vertex disjoint.

For two unrooted phylogenetic trees T and T’ on X, the maximum parsimony distance
dvp (Fischer and Kelk 2016; Moulton and Wu 2015) is defined as

dvp(T, T") = max |Lp(T) = 1p(T].

It is known that at least one such maximizing f has the following two properties: (i) it is
convex on at least one of T and 7", (ii) each state in f occurs on at least 2 taxa (Kelk and
Fischer 2017).

Ithas been noted several times in the literature that dyip, which is itself NP-hard to compute,
is a lower bound on dtpr (Fischer and Kelk 2016; Moulton and Wu 2015). Experiments in
Kelk et al. (2016) on very small trees (up to 25 taxa), in which dyp was computed exactly
using the exponential-time algorithm from Kelk and Stamoulis (2017), suggest that dyp is
often very close to drpr. Inspired by this, we here propose a new scaleable strategy for
computing good lower bounds on drgr. Rather than computing dyp exactly, which is too
time-intensive, we leverage the fact that every (convex) character f gives a lower bound
on dyp and thus on drpr. By sampling many such characters f, and selecting the one that
maximizes |l f(T)—I(T")| we expect to achieve a strong lower bound on dyp. This sampling
strategy is made possible by Kelk and Stamoulis (2017, Corollary 5) which states that for
a given unrooted phylogenetic tree 7', a character that is convex on T whereby each state
occurs on at least p > 2 taxa (p constant) can be sampled uniformly at random in linear time
and space; let us call such characters eligible. The overall strategy, therefore, is to randomly
choose between T and 77, and then to uniformly at random select an eligible character f
(taking p = 2), repeating this as often as desired, and at the end returning the largest value of
|ly(T) —1;(T")| observed. We henceforth call this the dyip lower bound sampling strategy
or simply dnp lower bound if no confusion arises from the context and denote this bound by

14
dypp-

4 Experimental framework
4.1 uSPR

To compute TBR distances in our experiments we mainly used the solver uSPR that is
described in Whidden and Matsen (2018) and available from https://github.com/cwhidden/
uspr, version 1.0.1. This solver is designed to compute the so-called unrooted subtree prune
and regraft distance between two phylogenetic trees T and T’ which is always at least as large
asdrpr(T, T'). As one of its subroutines, uSPR incorporates an exact TBR solver, which can
be invoked independently (using the —tbr switch). The TBR solver uses iterative deepening.
More precisely, for two phylogenetic trees 7 and T’ on X, it starts from a polynomial-
time computed lower bound k" and repeatedly asks “Is drgr(7T, T') < k’?” for increasing
values of k’ until the question is answered positively. According to Whidden and Matsen

@ Springer

https://github.com/cwhidden/uspr
https://github.com/cwhidden/uspr

Annals of Operations Research (2022) 309:425-451 433

(2018) the TBR solver of uSPR incorporates a number of the enhanced branching cases
described in Chen’s algorithm (Chen et al. 2015), which computes TBR distance in time
O(3%% - poly(| X))

4.2 Tubro

The polynomial-time reduction rules described in Sect. 2.2 have been implemented in our
package Tubro. Tubro’s main role in our experiments is to apply these reduction rules. How-
ever, it also has a secondary role. Specifically, Tubro can compute TBR distance using Integer
Linear Programming (ILP). As explained in the next section, we use Tubro in an attempt to
compute TBR distances for those pairs of phylogenetic trees that are out of range of uSPR.
Given that the ILP formulation has O (| X|*) constraints, however, Tubro is limited to pairs
of phylogenetic trees on X which, after reduction, have (roughly) | X| < 70. Tubro has many
other features; we defer a full description of the package to the appendix.

4.3 High-level description of the experiments

All experiments were conducted on the Windows Subsystem for Linux (WSL) [Ubuntu
16.04.6 LTS], running under Windows 10, on a 64-bit HP Envy Laptop 13-ad0xx (quad-core
i7-7500 @ 2.7 GHz), with 8 Gb of memory. In experiments such as this, which mainly run
in memory and whereby disk accesses are limited, WSL has comparable performance to a
native Linux system?.

Our main dataset comprises 735 tree pairs, where each such pair (T, T') consists of
two phylogenetic trees on the same set of taxa and that were constructed as follows. For
each ¢ € {50, 100, 150, 200, 250, 300, 350} we generated a random phylogenetic tree T on
t taxa with skew s € {50, 70, 90}, where the concept of skew is explained below. Then,
for each k € {5, 10, 15, 20, 25, 30, 35} we applied k random TBR moves to T to obtain a
phylogenetic tree T’. This ensures that drgr (T, T") < k. Note that equality might not hold,
due to different random TBR moves potentially cancelling each other out. We produced 5
replicates of each tree pair: that is, for each parameter combination (t, s, k) we independently
produced 5 different pairs of trees. This yields 7 x 3 x 7 x 5 = 735 pairs of trees in total.
The skew s refers to the random generation of a binary phylogenetic tree via the following
recursive process. (The process actually generates a rooted binary phylogenetic tree, but upon
completion it is turned into an unrooted tree by suppressing the degree-2 root.) Starting with
a rooted binary phylogenetic tree on two leaves, we place a taxon on one side of the root
with probability 155, and on the other side with probability (I — 55), and then recurse on
the two sides of the root until the leaves are reached. Phylogenetic trees with a skew of 50
will be fairly balanced, corresponding to the standard Yule-Harding distribution (Harding
1971) while a skew of 90 will tend to produce a heavily skewed, more “linear” phylogenetic
tree with smaller subtrees hanging off a main backbone. We include the skew parameter to
incorporate more variety into the topology of the starting tree 7.

For each tree pair (7', T'), we computed and collected the following core data:

D1 The number of taxa in the instance after application of the subtree reduction, hence-
forth denoted s(T', T").

2 See https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux, section ‘Benchmarks’. Accessed 20th
August 2021.

@ Springer

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

434

Annals of Operations Research (2022) 309:425-451

D2 The number of taxa in the instance after application of the subtree and chain reduction,
henceforth denoted sc(T, T').

D3 The number of taxa in the instance after application of all seven reductions, henceforth
denoted scn (T, T'). For brevity we often call such tree pairs fully reduced.

D4 The number of parameter reductions that took place.

DS The lower bound dfdP(T, T’y ondyar(T, T’) obtained by sampling convex characters
for 10 s after the subtree reduction, since dyp is also preserved by this reduction rule
(Kelk et al. 2016). We computed this because at the outset of the experiments it was not
clear whether we would be able to compute drgr(7T, T') exactly. However, the exact
TBR distance or a lower bound on this distance is needed to compute empirical kernel
sizes (details follow below).

For each tree pair (T, T'), the exact value of drgr(T, T') if known. The distance was
declared known if at least one of the following solution approaches terminated.

(i) Run uSPR for 5 min on the original tree pair (7', T").

(ii) Run uSPR for 5 min on the fully reduced tree pair obtained from (7', T’) (and take
into account the effect of any parameter reduction achieved during the kernelization).

(iii) Run Tubro for 5 min on the fully reduced tree pair obtained from (T, T”) (and take
into account the effect of any parameter reduction achieved during the kernelization).
We only ran Tubro on those instances for which (i) and (ii) both failed to terminate,
since it is not the goal of this article to directly compare the solving power of uSPR
and Tubro.

Note that, if uSPR (or Tubro) produces an intermediate lower bound of k for a tree pair
(T, T'), where k is the number of TBR moves that were applied to create the pair, it follows
that drgr (T, T') = k. However, if the solver does not also terminate in the allotted time,

we

do not consider such instances known. This is because the solvers do not have this upper

bound information available outside the experimental framework that we describe here.

From D1-D6, we have computed various secondary statistics which are presented in more

detail in Sect. 5. Most notably:

1.

2.

for

The availability of exact TBR distances/difficult trees The distribution of tree pairs
whose TBR distance could not be computed exactly with uSPR or Tubro.

Average percentage of remaining taxa For each pair ¢ and k, the average percentage of
remaining taxa after the subtree reduction, after the subtree and chain reduction, and after
all seven reductions over all 15 tree pairs with this parameter combination.

. Empirical kernel size For each tree pair (T, T'), and for each of the different levels

of reduction s(T,T"), sc(T,T’), and scn(T, T'), the number of taxa in the reduced
instance divided by drgr (T, T’) if the TBR distance is known and, otherwise, divided by
dip(T, T').

. Parameter reductions The distribution of tree pairs that have undergone at least one of

the three reductions that trigger parameter reductions.

. The quality of the dyp lower bound The distribution of tree pairs (7, T') for which

dip(T, T') < drpr(T, T).

For a second dataset that comprises 90 tree pairs of larger size, we generated 5 replicates
each parameter combination (¢, s, k) with ¢ € {500, 1000, 1500, 2000, 2500, 3000}, s €

{50, 70, 90}, and k = 35. To this end, we have followed the same approach as described for
the main dataset and collected the same data and statistics for each tree pair. We will refer to
this dataset as the larger trees dataset.

@ Springer

Annals of Operations Research (2022) 309:425-451 435

While we will focus on analyzing the main dataset in the following section, we use the
larger trees dataset to confirm that our results do not only apply to pairs of phylogenetic
trees with at most 350 taxa but instead describe general trends and observations that are not
restricted to trees of a certain size.

We have made both our datasets, plus the spreadsheets describing our results, available
on the page https://github.com/skelk2001/kernelizing-agreement-forests/. The GitHub page
also includes a stand-alone implementation of the dyp lower bound code, since we feel this
is of independent interest. Source code for Tubro is available upon request.

5 Results and analysis

In each subsection below we combine the presentation of our results with some analysis and
reflection.

5.1 The availability of exact TBR distances/difficult trees

We start by providing the number of tree pairs of both datasets for which we have computed
the exact TBR distance, i.e. the number of tree pairs for which the TBR distance was declared
known.

— 625 (85.0%) of the 735 tree pairs of the main dataset could be solved by uSPR in 5 min,
when using the original (unreduced) trees.

— 646 (87.9%) of the 735 tree pairs could be solved by uSPR in 5 min, when using the fully
reduced trees. In all cases where the original trees could be solved in 5 min, so too could
the fully reduced trees.

— Of the remaining 89 tree pairs, Tubro could solve 51 after allowing the ILP solver Gurobi
to run for 5 min. Hence, in total, the exact TBR distance was calculated for 646+51=697
(94.8%) of the tree pairs. For the remaining 38 tree pairs, df,ﬂ, was used as a lower bound
on the exact TBR distance. This lower bound was in particular used in the determination
of empirical kernel sizes in Sect. 5.3.

— For the larger trees dataset, 86 tree pairs could be solved by running uSPR on the unre-
duced trees for 5 min and and additional 3 tree pairs could be solved by running uSPR
on the reduced tree pairs. The remaining tree pair could not be solved by Tubro.

It is not the goal of this subsection to discuss how much kernelization does, or does not, help
us to solve more challenging instances in practice. However, the experiments did yield some
auxiliary insights in this direction, which we now describe. Applying all seven reductions
allowed uSPR to solve 21 more instances of the main dataset than prior to reduction. While
welcome, this is not a particularly large increase. This is not so surprising, because uSPR
is a branching algorithm with exponential dependency on drgr (T, T”) and only polynomial
dependency on the number of taxa. Plus, uSPR contains an internal subtree reduction which
already helps to reduce the number of taxa quite significantly. On the other hand, uSPR could
potentially exploit parameter reduction, which does occur reasonably often (see Sect. 5.4).
There is some one-sided evidence that parameter reduction did help. Specifically, 20 of the
21 instances that uSPR solved after reduction, exhibited parameter reduction. On the other
hand, amongst the 89 instances that uSPR could still not solve after reduction, only 27.2%
exhibited parameter reduction.

Regarding Tubro, we note that kernelization certainly helped in the following rather vac-
uous sense: the generation and solving time for the underlying ILP becomes prohibitively

@ Springer

https://github.com/skelk2001/kernelizing-agreement-forests/

436 Annals of Operations Research (2022) 309:425-451

Fig.4 Distribution of all 51 tree 35- +
pairs of the main dataset that j: ! j: L
could be solved by Tubro but + +
could not be solved by uSPR 20 1 L
when applied to the fully reduced g . . k
instances. Note that some of these & 7 s ' e 920
51 tree pairs have the same value = . s 95
for ¢, k, and dTgR in which case E 25- : T T = 30
their visualized data points = . + 35
coincide T
L
20- 4
L]
.
50 100 150 200 250
t
(@) k=25 (b) k=30 (€) k=35
15 oer 15- 15
W
[wers
2 10~ WSPR and Tubro # 10~ 2 10~
LA £ 5 LA
Hhe____ Wbl . . UDEED..
Sb 160 150 2le 250 3le '350 Sb 160 15;0 260 ‘25;0 360 35;0 7;0 160 1:‘30 2(50 250 360 350

t t t

Fig.5 Distribution of all 109 (black, uSPR), 88 (dark gray, uSPR+), and 38 (light gray, uSPR+ and Tubro) tree
pairs of the main dataset with k > 25 that could not be solved exactly with uSPR applied to the subtree reduced
tree pairs, with uSPR applied to the fully reduced tree pairs, and with Tubro applied to the fully reduced tree
pairs, respectively. Note that one tree pair with k = 20 and ¢ = 50 could not be solved with uSPR or uSPR+
but could be solved with Tubro

large for instances with more than (roughly) 70 taxa. Prior to kernelization, 85.7% of the tree
pairs had more than 70 taxa, and after full kernelization only 50.5% had this property. As an
unparameterized exponential-time algorithm, Tubro is naturally assisted more than an FPT
branching algorithm by the reduction in instance size (i.e., | X|) achieved by kernelization.
The 51 instances that Tubro could solve, but which uSPR could not, are summarized in Fig. 4.
The average TBR distance of these 51 tree pairs is 27 with a standard deviation of 4.1. Of
the 51 instances, 14 had 50 taxa, 22 had 100 taxa, 11 had 150 taxa, 3 had 250 taxa, and 1 had
250 taxa.

Three histograms that present the distribution of all tree pairs of the main dataset that could
not be solved with the different solvers over all combinations of k € {5, 10, 15, ..., 35} and
t = {50, 100, 150, ..., 350} are shown in Fig. 5. The 110 tree pairs that could not be solved
with uSPR applied to the subtree reduced tree pairs are presented by black bars. Similarly,
the 89 (resp. 38) tree pairs that could not be solved with uSPR applied to the fully reduced
tree pairs (resp. uSPR or Tubro applied to the fully reduced tree pairs) are presented by dark
gray (resp. light gray) bars. Regardless of which solver was used, all unsolvable tree pairs
were generated by applying £ > 25 random TBR moves, except for one pair with k = 20 and
t = 50 that could not be solved with uSPR but could be solved with Tubro (which is why the
numbers 109 and 88 are reported in the figure caption). Turning to the 38 tree pairs that could
not be solved by any of the solvers uSPR and Tubro, 12 had skew 50, 17 had skew 70 and
9 had skew 90, so tree pairs with a skew of 70 seem mildly over-represented. Furthermore,
amongst the 38 unsolved instances, a majority of 24 tree pairs have the property t = 50.
Given the parameterized running time of uSPR, which increases exponentially as a function

@ Springer

Annals of Operations Research (2022) 309:425-451 437

of k, it is not so surprising that uSPR had difficulties with the large TBR distance (k > 25)
of the 38 unsolved tree pairs. It is less obvious why Tubro, which is based on ILP, finds
these instances difficult. Clearly, the ILP generated by Tubro quickly becomes prohibitively
large for tree pairs that have more than 70 taxa after kernelization. However, for + = 50
the ILP generated by Tubro will be comparatively small, and quick to generate, so this does
not explain why Tubro struggles for some such tree pairs while it succeeds on others (14 of
the 51 tree pairs that Tubro could solve but uSPR could not, had + = 50.) It is difficult to
attach far-reaching conclusions to this, but in any case it seems that instances with a small
number of leaves, where the TBR distance is high (as a function of the number of leaves)
are potentially a challenge for both uSPR and Tubro. For uSPR, these instances might even
be harder than instances with the same TBR distance, but more taxa. An informal, intuitive
argument for this could be that, when the TBR distance is high and the number of taxa is
low, the TBR moves required to turn one tree into the other heavily ‘overlap’ and ‘interfere’
with each other. Viewed through the lens of agreement forests, the underlying maximum
agreement forest subsequently has very little structure, causing uSPR and Tubro to approach
their worst-case behaviour. We return to these tractability issues in Sect. 6.

5.2 Average percentage of remaining taxa

To evaluate whether or not the five new reductions further reduce phylogenetic trees that have
already been reduced by the subtree and chain reduction, we have analyzed the percentage
of remaining taxa of all 735 tree pairs after (i) the subtree reduction, (ii) the subtree and
chain reductions, and (iii) all seven reductions. More specifically, for each pair 7 and k
with ¢ € {50, 100, 150, ...,350} and k € {5, 10, 15, ..., 35}, we have calculated the three
average percentages

100 100 100 ,
T'S(T,T) T'SC(T,T) T'SCI’!(T,T)

over all 15 tree pairs (T, T’) with parameter combination (¢, s, k), where s € {50, 70, 90}.
The results are summarized in Fig. 6. For example, the seven reductions reduce tree pairs
with ¢+ = 350 and k = 5 by about 90% and tree pairs with + = 350 and k = 35 by about
60%. Except for the two parameter combinations (50, s, 30) and (50, s, 35), Fig. 6 shows that
applying all seven reductions always results (on average) in smaller tree pairs than applying
the subtree and chain reductions only. Observe that, regardless of k, the percentage of the
number of remaining taxa decreases as ¢ increases. For example, for k = 20 and t = 50, we
have 100 - scn(T, T') ~ 80%, and for k = 20 and ¢ = 350, we have 138 - scn (T, T') ~ 27%.
An analogous trend applies to all other values of k. This can be partially explained by recalling
that, when applied to exhaustion, the seven reduction rules guarantee that the resulting reduced
instance has no more than 11dtgr — 9 taxa (Kelk and Linz 2020). So, taking k as a proxy for
dTBR, the ratio (11k — 9)/t decreases as t increases, if k is fixed. Hence, the curve behaves
like 1/¢ (a hyperbola) for fixed k; decreasing, but at an ever slower rate. A similar observation
holds if we only apply the subtree and chain reduction, since the reduced instances are then
guaranteed to have at most 15dtgr — 9 taxa. Interestingly, when only the subtree reduction is
applied, the solid curves in Fig. 6 have a very similar downward-sloping tendency as the sc and
scn curves, despite the fact that, when applied in isolation there is no g(k) theoretical upper

@ Springer

438 Annals of Operations Research (2022) 309:425-451

(a) k=5 (b) k=10 (¢) k=15
100- 100- 100-
K 75 75
m]
" %
<] <
Z 2
80 50° 80 50-
£ £
Z Z
S 5}
£ £
£ 25- 2 25-
e
) b
0 0- 0
100 200 300 100 200 300 100 200 300
t t t
(d) k=20 (e) k=25 (f) k=30
100- 100- 100~

3

ning taxa [%]

remaining taxa [%]
3
remaining taxa [%)]
&
g

9
&

25~

160 ZbO 360 160 260 iKhO lﬁO 260 360
t t t

(g) k=35 (h) k£ = 35 including the large trees
100~ 100~

=1

remaining taxa [%]
remaining taxa [%)]
S

100 200 300 0 1000 2000 3000
t t

Fig. 6 The average percentage of taxa that remains after the subtree reduction (solid line), after the subtree
and chain reduction (dotted line), and after all seven reductions (dashed line) depending on ¢

bound on the size of the reduced instance>. To gain more insight into this phenomena, we have
redone the analysis underlying Fig. 6d, but separately for each skew value s € {50, 70, 90}.

The results, presented in Fig. 7, suggest that for s € {50, 70} similar performance is
observed, but that at s = 90 the achieved reduction is decreasing when only the subtree
reduction is applied. It seems that high skew militates against the creation of common subtrees.
Intuitively, one would expect the chain reduction to work well at s = 90, since high skew
would seem to support the creation of multiple common long chains; perhaps the two effects
(i.e. less effective subtree reduction, possibly more effective chain reduction) cancel each
other out.

Returning to Fig. 6, a further observation is as follows. Recalling that g(k) denotes the
theoretical upper bound on the size of the kernel, the fact that g(k)/¢ decreases for fixed k

3 Such a bound cannot exist. Consider, for example, the situation when T and T are caterpillar trees—every
internal vertex is incident to at least one taxon—on n + 2 taxa, n > 3, with taxa ordered x, 1, 2, ..., n, y and
v,1,2,...,n,xin T and T, respectively. Irrespective of n, the TBR distance between T and T’ is two, the
subtree reduction does nothing here, and the chain reduction collapses both trees to 5 taxa.

@ Springer

Annals of Operations Research (2022) 309:425-451 439

(a) s =50 (b) s =170 (¢) s=90
100- 100- 100~

o

remaining taxa (%]

remaining taxa [%]
S

remaining taxa [%)]
S

25- 25-

100 200 300 100 200 300 100 200 300
t t t

Fig. 7 The average percentage of taxa that remains after the subtree reduction (solid line), after the subtree
and chain reduction (dotted line), and after all seven reductions (dashed line) for all tree pairs with k = 20,
for different skew values

(a) main dataset (b) main and large trees dataset

ut
o

10
15
20
25

4440

35

100 200 300 0 1000 2000 3000
t t

Fig.8 Empirical estimates f (k) of kernel size, depending on 7, for the fully reduced tree pairs

and increasing ¢ explains the downward-sloping shape of the sc and scn curves, but it only
has limited explanatory power. If ¢ is smaller than 11dtgr — 9, then the reduction rules offer
no guarantees at all. For example, for k = 35, we have 11k — 9 = 376, which is larger than
any ¢ used in our main dataset. Nevertheless, as shown in Fig. 6g, significant reduction is
still achieved. This suggests that the upper bound on kernel size may, in practice, be much
smaller than 11dtgr — 9, a point we elaborate on in Sect. 5.3.

Finally, a brief reflection on the fact that the (50, s, 30) and (50, s, 35) instances exhibited
little reduction and that the difference between sc and scn was negligible. Such instances
have an extremely high TBR distance relative to the number of taxa. This seems to destroy
any of the structures that are targeted by the reduction rules. Interestingly, such instances are
not only difficult to reduce, they also appear potentially difficult to solve, as we saw in the
earlier section. In both cases this seems linked to the phenomenon that, for such instances,

a maximum agreement forest is likely to have many very small components. This is a point
we will return to later.

5.3 Empirical kernel size

By Kelk and Linz (2020, Theorem 6), we have a theoretical upper bound of g(k) =
11dtr(T, T') — 9 on the size of the TBR kernel if 7 and 7" are fully reduced. Hence,

@ Springer

440 Annals of Operations Research (2022) 309:425-451

(a) skew = 50, main dataset (b) skew = 70, main dataset (c) skew = 90, main dataset

=

EE)

100 200 300
t

100 200 300
t

(d) skew = 50, main and large trees dataset (@) skew = 70, main and large trees dataset () skew = 90, main and large trees dataset

8- 8- 8-

F(k)
f(k)
(

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
t t t

Fig. 9 Empirical estimates f (k) of kernel size, depending on ¢, for the fully reduced tree pairs broken down
by different skew values

sen(T, T") < 11dtgr —9 < 11k — 9. To evaluate how well this theoretical kernel compares
to the empirical kernel size obtained from our experimental analysis, we have computed

sen(T, T

fk) = 0T T

for all tree pairs of the main and larger trees dataset, where § = drgr if drgr(T, T') is
known and, otherwise, 6 = df,lp. The results are summarized in Figs. 8 and 9 . For each
pair ¢ and k with ¢ € {50, 100, 150, ...,350} and k € {5, 10, 15, ..., 35}, we have plotted
the average value of f(k) over all 15 tree pairs with parameter combinations (¢, s, k), where
s € {50,70,90} in Fig. 8a. Across all 735 tree pairs of the main dataset, the maximum
empirical kernel size is 9.8. Similarly for k = 35 and each

t € {50, 100, 150, ..., 350, 500, 1000, 1500, ..., 3000},

we have plotted the average value of f (k) over all 15 tree pairs with parameter combinations
(t, s, k) in Fig. 8b. Across all 195 tree pairs (i.e. all 90 tree pairs of the large trees dataset
and all 105 tree pairs of the main dataset with k = 35), the maximum empirical kernel size
is 7.37. In summary, our results show that the empirical kernel size f (k) is, regardless of
the parameter combination (¢, s, k), always significantly smaller than the theoretical upper
bound. Note that the g(k) bound in Kelk and Linz (2020) is tight, in the sense that reduced
instances can be constructed with exactly 11dtgr — 9 taxa. This implies that the observed gap
between the empirical and theoretical bound cannot be closed by strengthening the analysis
in Kelk and Linz (2020). While f (k) increases with 7, the slope of the curve drops off for
very large ¢ as shown in Fig. 8b. However, even for t = 3000, f(k) = 6.12 is still much
smaller than the theoretical upper bound of 11. If we compare the empirical kernel sizes for
a fixed ¢ and different values of k, we see in Fig. 8a that f (k) decreases with increasing k.
One possible explanation for this is as follows. For a fixed 7, the number of tree pairs in the
dataset that have the property 7 /k < ¢ (for a given constant c¢) clearly increases as k increases.

@ Springer

Annals of Operations Research (2022) 309:425-451 441

(@) k=5 main dataset (b) k=35 main dataset (€) k=35 main and large trees dataset

F(k)
f (k)

0 1000 2000 3000

100 200 300

Fig. 10 Empirical estimates f (k) of kernel size, depending on ¢, for the subtree reduced (solid), the subtree
and chain reduced (dotted), and the fully reduced (dashed) tree pairs

For example, for k = 35 all the trees with ¢ € {50, 100} satisfy the inequality if we take
¢ = 3; but at k = 10 and ¢ = 3 none of the trees in the dataset do, because all the trees
in the dataset hz/we at least 50 taxa. Now, if we take k as an estimator of dtgr, we see that
flk) = % will a priori be at most ¢ for tree pairs satisfying the inequality, because
sen(T,T') <t and O(T, T') ~ k. Possibly this has the effect of pulling the f (k) curves
downwards for increasing k i.e. because a higher proportion of the trees in the dataset have
a small number of taxa relative to dTpRr, and thus contribute very low f (k) values.

To evaluate the impact of different skew values on the f (k) values, we have repeated the
analysis that underlies Fig. 8 for each of the three skew values {50, 70, 90}. The results are
shown in Fig. 9 with curves that are overall very similar to those shown in Fig. 8. Moreover, for
fixed values of k and ¢, we see that f (k) increases very slowly as s increases which may again
be the result of the subtree reduction being (on average) less effective when applied to trees
pairs that are heavily skewed (possibly to the extent of cancelling out enhanced performance
of the chain reduction—but whether this indeed occurs requires further investigation).

Finally, we note that similar to the analysis that underlies Fig. 8, empirical kernel sizes
can also be computed for the tree pairs that have been reduced under the subtree reduction
only, or under the subtree and chain reduction only. For a selection of tree pairs of both data
sets, these are shown in Fig. 10. In particular, we note that the sc curve remains well below
the worst-case bound of 15; in Fig. 10c the curve seems to be flattening at around f (k) = 7.

These results hint at the possibility that the empirical kernel size is determined by more
parameters than just drgr. It is difficult to say what these hidden parameters might be.
Popular ‘local’ phylogenetic parameters such as level (Bordewich et al. 2017) do not explain
the phenomenon, since the seven reduction rules are largely uninfluenced by low level. The
phenomenon is probably linked to the fact that the tight instances described in Kelk and Linz
(2019, 2020) were extremely carefully engineered. It is very unlikely that such instances
will occur in our experimental setting, so the worst-case kernel size is unlikely to occur.
To understand this phenomenon further it will be necessary to carefully analyze such tight
instances and formalize how (and, quantitatively, how far) they differ from trees generated
in our experimental setting; we defer this to future work.

5.4 Parameter reductions
We have analyzed the frequency with which the five new reductions have triggered parameter

reductions among all 735 tree pairs and observed that 499 tree pairs were reduced by at least
one application of Reduction 3, 4, or 5. The maximum number of parameter reductions for a

@ Springer

442 Annals of Operations Research (2022) 309:425-451

parameter red. | tree pairs
0 236

1 217

2 133
3 89
4 34
5 17
6 6
7 3
skew tree pairs
50 169
70 163
90 167

Fig. 11 Left: Distribution of all 499 tree pairs of the main dataset that were reduced by at least one application
of Reduction 3, 4, or 5. Right: Summary of all tree pairs that were reduced by at least one application of
Reduction 3, 4, or 5 depending on the total number of such reductions and the skew of the tree pairs over all
735 tree pairs

single tree pair is seven. A histogram that presents the distribution of the 499 tree pairs over
all combinations of £k € {5,10,15,...,35} and r = {50, 100, 150, ..., 350} as well as a
table that summarizes the frequency of parameter reductions over all 735 tree pairs is shown
in Fig. 11. Each of the 3 tree pairs that have undergone seven parameter reductions have a
parameter combination with + > 250 and k > 30. Figure 11 indicates that the number of
tree pairs that have triggered at least one parameter reduction increases as both # and k grow.
To confirm this trend, we have also analyzed the amount of parameter reductions for all tree
pairs of the larger trees dataset. For this dataset, all 90 tree pairs have been reduced by at
least one application of Reduction 3, 4, or 5 and the maximum number of such reductions
applied to a single tree pair is ten. The associated tree pair has the parameter combination
t = 3000 and k = 35. These results show that not only the ordinary new reductions that
preserve the TBR distance (these are Reductions 6 and 7) enhance the power of the subtree
and chain reduction but that the same holds for the other three reductions.

It is known that two of the parameter-reducing reductions, Reductions 4 and 5, trigger an
immediate subsequent application of the subtree rule, but beyond this it is too difficult to argue
analytically why any of the reduction rules should trigger each other. This is because the seven
reduction rules target rather different local structures, and after applying a reduction rule the
local structure is either destroyed or remains incompatible with other reduction rules. The
phenomenon of parameter reduction occurring repeatedly for a single pair of trees is therefore
quite possibly caused by multiple parts of the trees triggering reduction rules independently.
Understanding whether this is indeed what happens, or whether prioritizing certain reduction
rules over others works well in practice, requires further empirical research.

5.5 The quality of the dyp lower bound

To evaluate the quality of d{f,lp, which we have used as a lower bound on the TBR dis-
tance throughout our experimental study, we have compared df,lP(T, T’y and drgr(T, T)

@ Springer

Annals of Operations Research (2022) 309:425-451 443

drer(T,T") — dilP (T,T") | tree pairs
0 635

1 57

2 4

3 1

skew tree pairs

50 23

70 19

90 20

Fig. 12 Left: Distribution of all 62 tree pairs (7', T”) with deP(T, T’) < drgr(T, T'). Right: Summary of

the difference between drgr and dlf/IP over all 697 tree pairs with known TBR distance, and summary of all
62 tree pairs whose dyjp lower bound is less than their TBR distance depending on the skew of these tree pairs

for all 697 tree pairs (T, T’) for which we could calculate the TBR distance exactly (see
Sect. 5.1). Only 62 (that is 8.9%) out of 697 tree pairs of the main dataset have dlf,[P(T, T <
drer(T, T'). Among these 62 pairs, a majority of 92% have drgr (T, T') — df,IP(T, TH =1.
The maximum difference between dtgr (7, T’) and df,[P(T, T') is 3 over all 62 tree pairs.
A histogram that presents the distribution of these 62 tree pairs over all parameter combina-
tions of k € {5,10,15,...,35} and t = {50, 100, 150, ..., 350} is shown in Fig. 12. The
tree pair with drgr(T, T') — dlf,[P(T, T') = 3 has the parameter combinations ¢ = 350
and k = 35. In comparison, 48 out of all 90 tree pairs of the large trees dataset have
dt p(T,T") < drpr(T, T'). However, the maximum difference between drpr(7, T') and
dgp (T, T') remains 3. These results verify that dff,ﬂ, is an effective lower for computing dTgr
and that the difference between dgr(7T, T’) and deP(T, T’) grows very slowly, even for
large trees with up to 3000 leaves.

Another point worth drawing attention to, is the efficiency of computing df,[P. In our main
dataset df,lp was, for 679 tree pairs, after 10 s greater than or equal to the best lower bound
that uSPR had computed after 5 min of iterative deepening.

6 Discussion: shattered forests?

Recall that there were 38 pairs of trees for which neither uSPR nor Tubro could compute dtgr
in 5 min. These all had high dtgr (k > 25). One of the most striking tractability insights from
the experiments is that, amongst these instances, 24 had only 50 taxa. Indeed, Fig. 5 suggests
that, within the group of 38 instances, and for fixed k, trees with fewer taxa are more likely
to confound the solvers than trees with more taxa. This is noteworthy and, as explained in
Sect. 5.1, it is not obvious why uSPR or Tubro would exhibit this behavior. Less surprisingly,
instances with ¢ = 50 and high TBR distance (k € {30, 35}) are largely unaffected by the
seven reduction rules (see Sect. 5.2), while all other parameter combinations exhibit higher
levels of reduction. The emerging picture is that tree pairs with a small number of taxa ¢

@ Springer

444 Annals of Operations Research (2022) 309:425-451

but (very) high TBR distance relative to ¢, are both hard to solve, and hard to reduce. The
common factor here, we suspect, is that for such pairs of trees a maximum agreement forest
will necessarily have many components, of which many will be small. Manual inspection
of such instances suggests that many components of the forest indeed contain only a single,
or perhaps two, taxa. Such “shattered” forests will only very occasionally trigger the seven
reduction rules. Apparently, such forests and their lack of topological structure can also cause
both the combinatorial branching strategy of uSPR and the ILP-based branching of Tubro
severe problems. FPT algorithms such as uSPR are not designed to run quickly when the
parameter in question (here, dtgr) is high, and the focus when developing such algorithms
is usually to ensure fast running time when the size of the instance is large relative to the
parameter. Here we have a high parameter combined with small instances. This requires
further research and different algorithmic techniques.

It is probably relevant that such instances increasingly start to resemble random pairs of
trees; the literature on the expected number of components in maximum agreement forests
of random pairs of trees is therefore worth exploring (Atkins and McDiarmid 2019).

7 Conclusions and future work

In this article we have demonstrated that reduction rules for TBR distance have the potential
to significantly reduce the size of instances, and that theoretically stronger reduction rules do
have clear added value in practice. Our experimental results also highlight that the empirical
bound on the size of the TBR kernel is significantly lower than that predicted in the worst-case
(15k — 9 and 11k — 9 respectively, for the two different sets of reduction rules). Lastly, we
have shown that parameter reduction occurs quite often, and that a sampling strategy based
on sampling convex characters quickly yields strong lower bounds on dtgR.

In addition to the phenomenon of “shattered forests” raised in the previous section, a
number of interesting questions have emerged from our work concerning (i) kernelization
and (ii) the actual computation of TBR distance. Regarding kernelization, it is natural to
ask why the empirical kernel bound is much better than the worst-case bound. Clearly, the
carefully-constructed tight instances described in Kelk and Linz (2019, 2020) are unlikely to
occur in an experimental setting such as ours. Such phenomena are pervasive in theoretical
computer science. Nevertheless, can we rigorously explain why the experimentally-generated
instances can be more successfully reduced? One way to tackle this would be to search for
additional parameters which, when combined with drpr, produce a more accurate prediction
of the obtained kernel size. We currently do not have any concrete candidates for what these
parameters could be, but understanding how the tight instances from Kelk and Linz (2019,
2020) differ from those in our experimental setting, and quantifying this dissimilarity, is
likely to yield insights in this direction. Next, it is natural to ask: is it possible, by developing
new rules, to obtain a kernel smaller than 11k — 9, and does it make sense to implement these
rules in practice? Breaking the 11k — 9 barrier is likely to be primarily a theoretical exercise,
guided by the limits of the counting arguments in Kelk and Linz (2020). However, perhaps
an empirical examination of how solvers such as uSPR tackle fully reduced instances could
offer some extra clues, at least on the question of whether any future reduction rules will be
effective in practice.

On the computational side, there is still room for improvement. While the combination of
uSPR and Tubro is capable of solving most of the trees in our experimental dataset, there still
exist pairs of sometimes small trees where neither uSPR or Tubro can compute dtpr in 5 min.

@ Springer

Annals of Operations Research (2022) 309:425-451 445

Perhaps the branching factor in the FPT branching algorithm underpinning uSPR (Chen et al.
2015; Whidden and Matsen 2018) can be lowered by a deeper study of the combinatorics of
agreement forests. It also seems important to understand why certain pairs of trees trigger
multiple parameter reductions. On the engineering side we are optimistic that more advanced
ILP engineering techniques can be used to speed up Tubro. Future research should focus on
continuing the strategy of blending and merging existing techniques into an ensemble that we
adopted in this article. These techniques include kernelization to reduce the size of instances
(and to generate useful combinatorial insights, such as chain preservation), fast generation
of lower and upper bounds, FPT branching algorithms, ILP, and other exponential-time
algorithms. In this article the techniques were coupled fairly loosely. We anticipate that an
ensemble in which the techniques are more deeply integrated, i.e. interleaved, will yield
further speedups. This is a challenging engineering task, but also a challenging mathematical
one, since it is not always easy to translate intermediate solutions or bounds produced by one
of the techniques to another. For example, as soon as a branching algorithm starts cutting
edges in the trees, the instance becomes a more general type of instance: a pair of forests,
rather than a pair of trees. To adapt the reduction rules from Kelk and Linz (2020) to forests
will require a significant theoretical effort.

Acknowledgements We would like to thank the participants of the Algorithms and Complexity in Phylogenet-
ics seminar in 2019 (Dagstuhl Seminar 19443) and Schloss Dagstuhl for hosting the seminar. We also thank
A. Alhazmi for useful conversations on the topic of this paper and an anonymous referee for their helpful
comments.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Tubro: Using kernelization and Integer Linear Programming to
compute dygr

As is well known, kernelization does not in itself solve a problem, it simply reduces it in
size. To solve the kernel an (efficient) exponential-time algorithm is required. Throughout
the experimental section we mainly used uSPR to compute TBR distances, and this was
primarily to be able to compute f (k) values (i.e. estimates of the empirical kernel size). As
part of our work, we experimented not just with kernelization but also with an alternative
exact algorithm for computing the TBR distance exactly. The result is our package Tubro,
which incorporates all seven reductions and can, if desired, output the reduced trees to be
solved by another package. However, it also incorporates its own exact algorithm, based on
augmenting a core Integer Linear Programming (ILP) formulation with certain additional
features. Before we present the ILP formulation, and describe the various augmentations as
well as Tubro’s strengths and weaknesses, we need a couple new definitions.

Let T be a phylogenetic tree on X. A quartet is a phylogenetic tree with exactly four
leaves. For example, if {a, b, ¢, d} C X , we say that ab|cd is a quartet of T if the path from
a to b does not intersect the path from ¢ to d in T'. Note that, if ab|cd is not a quartet of T,

@ Springer

http://creativecommons.org/licenses/by/4.0/

446 Annals of Operations Research (2022) 309:425-451

then either ac|bd or ad|bc is a quartet of T'. If ab|cd is a quartet of T', we say that T displays
ablcd. As a consequence, T displays exactly (Z) quartets.

A.1 A polynomial-size Integer Linear Programming formulation for MAF

The ILP formulation we use is adapted from Wu (2009). Both our formulation and the
formulation in Wu (2009) are based on the idea of cutting a minimum number of edges in one
of the trees, such that an agreement forest is obtained. To this end, decision variables represent
which edges are cut. The formulation in Wu (2009) works on rooted binary phylogenetic
trees, leading to two different types of constraints. Here we are working with unrooted binary
phylogenetic trees. As we shall see this allows us to obtain a simplified ILP in which there is
only one type of constraint. We start by describing the formulation and proving its correctness.

Let T and T’ be the two phylogenetic trees on X with n = | X|. We select arbitrarily one
of the trees; here we take 7. Let E(T) be the set of edges in T. For two taxa x,y € X,
let Pr(xy) be the edges on the unique path from x to y in 7. Furthermore, let Q be the set
consisting of those quartets which are displayed by 7 but not by 7’. For each e € E(T) the
ILP contains a binary decision variable x,, so 2n — 3 such variables in total. There is one
constraint for each quartet in Q. The number of constraints thus depends on how different T’
and T’ are, but is in any case O (n*). The ILP formulation has a Hitting Set flavor:

minimize E Xe

ecE(T)
subject to Z Xe > 1 for each ab|cd € Q
e€ Py (ab)UPr(cd)
and xe € {0, 1} foreach e € E(T)

Rather than proving (only) that the optima of the ILP coincides with dyap(T, T'), we prove
the following slightly more general statement, which allows also non-optimal solutions to
the ILP to be mapped to agreement forests. This is crucial to extract valid agreement forests
even if it takes too long for the ILP solver to reach optimality.

Theorem 2 Let T and T’ be two phylogenetic trees on X. An agreement forest F for T
and T’ with |F| = t induces a feasible solution to the ILP with objective function value
t — 1. Furthermore, a feasible solution to the ILP with objective function value t' induces an
agreement forest F of T and T’ with |F| < t' + 1 components.

Proof Let F be an agreement forest of 7 and 7' containing r components. By the definition
of an agreement forest, there exists a subset Er of E(T) with |Er| = ¢t — 1 such that deleting
exactly the edges of Er in T results in a graph that contains ¢ connected components and
the partition of X induced by the taxa in these components is exactly equal to F. Note that
EF is not necessarily unique. We argue that setting the decision variables corresponding to
EF to 1, and all other decision variables to 0, yields a feasible solution to the ILP. Towards
a contradiction, assume that this is not the case. Then there is a quartet ab|cd such that T
displays ab|cd, T’ does not display ab|cd, and none of the decision variables corresponding to
edgesin P(ab)U P(cd) are set to 1. Observe that, for each component B € F, {a, b, ¢, d} ;t_
B, because otherwise T|B # T'|B contradicting that F is an agreement forest for 7 and
T'.So {a, b, ¢, d} intersects at least two components of F.If {a, b} C B and {c,d} C B/,
where B # B’, then because T[B] and T[B’] (resp. T'[B] and T'[B’]) are vertex-disjoint
in T (resp. T’) both T and T’ display ab|cd; again a contradiction. In fact, the only two
possibilities are (1) that each taxon in {a, b, ¢, d} intersects a different component of F', and

@ Springer

Annals of Operations Research (2022) 309:425-451 447

(2) three of {a, b, c, d} occur in a component B and the remaining taxon in B’, where B’ # B.
Hence, regardless which of (1) and (2) applies, a and b occur in different components of F
and/or ¢ and d occur in different components of F. Suppose without loss of generality that a
and b occur in different components of F. Then P(ab) N Er # ¢ which implies that there
exists an edge in P (ab) whose corresponding decision variable is set to 1; yielding a final
contradiction.

For the second statement, assume that we have a feasible solution to the ILP with objective
function value t". Let E; be the edges of T corresponding to decision variables that have been
set to 1 in this solution. Let P be the partition of X induced by the connected components
of E(T)\E after deleting any connected components that do not contain any taxa, if they
existt. Clearly, | P| < ¢’ + 1, since the deletion of an edge increases the number of connected
components by at most one. We claim that P is in fact an agreement forest of 7 and 7T”.
Once again towards a contradiction, assume this is not the case. Suppose that condition (1) in
the definition of an agreement forest is violated. Then, there exists a block B € P such that
|B| > 4and T|B # T'|B. It follows that there exist 4 taxa {a, b, ¢, d} C B such that, without
loss of generality, ab|cd is displayed by T'| B (and hence by T') but not by 7’| B (and hence not
by T'). But none of the edges on T[B] are in E;. In particular, none of the edges on the path
from a to b and none of the edges on the path from ¢ to d in T have been cut, contradicting
the feasibility of the ILP solution. Now, suppose that condition (2) is violated. Recall that,
in T, the images of B and B’ do not intersect, by construction. Thus there exist two distinct
blocks B, B’ € P such that the two embeddings 7'[B] and T'[B’] are not vertex-disjoint in
T’. In fact, they are not edge-disjoint, due to the fact that 7’ is binary. In turn, this implies
that |B|, |B’| > 2. Let e = {u, v} be any edge in T’ that is shared by T7'[B] and T'[B’].
Deleting e naturally induces a partition of B into B, and B,,, where B, (resp. B,) are those
taxa in B that are closer in 7" to u than v (resp. closer in 7’ to v than u). Observe that each
of B, and B, contains at least one taxon. Let B}, and B, be defined analogously with respect
to B’. Furthermore, leta € B,, b € By, c € B, andd € B,. Since T[B] and T[B’] do not
intersect in T, and {a, b} € B, and {c, d} C B/, it follows that T displays ab|cd. However,
T’ displays ac|bd, because there is a path from a to ¢ passing through u and a path from b
to d passing through v and these two paths are disjoint. Hence, the ILP included a constraint
to cut at least one edge on the paths in 7 from a to b and from c to d. But no such edge was
cut, because {a, b} € B and {c, d} € B’; a contradiction.]

The next corollary is an immediate consequence of Theorem 2.
Corollary 1 The optimum value computed by the ILP equals drgr (T, T') = dyap(T, T')—1.

Note that, if it is known a priori that there exists a maximum agreement forest in which
a certain edge e of T is not cut, this can easily be enforced by adding the constraint x, = 0
(or better by removing x, from the set of decision variables). As we shall see in due course,
Tubro can make good use of this, for example to stipulate that it is unnecessary to cut edges
in preserved common chains even if the chains themselves cannot be further reduced. More
complex restrictions on feasible solutions, such as “at least one of edge e and ¢’ must be cut”,
can easily be added using standard ILP modeling techniques.

4 An optimal solution to the ILP never induces such taxa-free connected components, but a sub-optimal
solution might.

@ Springer

448 Annals of Operations Research (2022) 309:425-451

A.2 High-level description of Tubro

Tubro is highly configurable, with many options that can be switched on or off. The core
functionality can be summarized as follows.

First, the instance is kernelized by applying all seven reductions.

Next, the ILP formulation described in the previous section is generated.

The ILP formulation is simplified using chain preservation (see below).

A simple greedy algorithm is applied to produce an agreement forest that is not-necessarily

maximum, which gives an upper bound on drgr. This is the classical greedy algorithm

for Hitting Set instances (Chvatal 1979): select a decision variable not yet set to 1 which
intersects with a maximum number of unsatisfied constraints (cq. resolves a maximum
number of as yet unresolved quartet conflicts which are quartets displayed by only one of

T and T).

5. The ILP is fed to the ILP solver (Gurobi 2020). In the experiments we used Gurobi version
8.1.1. and warm-started it with the upper bound from the greedy algorithm described in
Step 4.

6. While Gurobi is solving, the dyip lower bound sampling strategy algorithmis run in parallel

and every time an improved lower bound is found, this is communicated to Gurobi.

o=

The chain preservation mentioned above in Step 3 leverages (Kelk and Linz 2020, Theorem
5), which is as follows:

Theorem 3 Let T and T' be two phylogenetic trees on X. Let K be an (arbitrary) set of
mutually taxa-disjoint chains that are common to T and T'. Then there exists a maximum
agreement forest F of T and T’ such that

1. every n-chain in K withn > 3 is preserved in F, and
2. every 2-chain in K that is pendant in at least one of T and T’ is preserved in F.

In Kelk and Linz (2020) the theorem was used as part of a more comprehensive argument
to prove the correctness of several of the new reduction rules introduced there. Interestingly,
even after all reduction rules have been applied to exhaustion, there can exist common chains
that, although they cannot be reduced further in length, still obey the above theorem. As a
result, it is safe to assume the existence of a maximum agreement forest in which no such
chain is split across two or more components of this forest. Translated into the language of
ILP, this means that for each edge e contained in such a chain, we can a priori set x, = 0
in the ILP. These variables can thus be removed from the ILP, simplifying the system. Tubro
uses a simple greedy strategy to select a set of mutually taxa-disjoint chains with maximum
total length, thus optimizing the number of variables that can be removed. In our analysis of
the main dataset, chain preservation was switched on.

Although a full explanation is beyond the scope of this paper, we observed that chain
preservation does remove quite a lot of variables, even in fully reduced instances. To illustrate
this, we performed a secondary experiment on all fully-reduced instances from the main
dataset where the original trees had 50, 100, or 150 taxa. This was in total 315 tree pairs.
We observed that on average the number of variables in the ILP was reduced by 26.29%
(standard deviation of 8.77) when chain preservation was switched on, compared to when
it was switched off. This suggests that a significant number of common chains survive, that
cannot be further reduced by the new reduction rules, but which do fall under the chain
preservation theorem. Indeed, the counting argument used in Kelk and Linz (2020) to obtain
the 11k —9 upper bound on kernel size is based on the possibility of O (k) irreducible 3-chains

@ Springer

Annals of Operations Research (2022) 309:425-451 449

or 2-chains existing. These chains cannot be reduced by the existing reduction rules, but (for
those that fall under the chain preservation theorem for a given set of mutually taxa-disjoint
chains) we can still algorithmically exploit the fact that they are preserved in some maximum
agreement forest, by stipulating that the edges in the chains should not be cut.

A.3 Optional extra: cluster reduction

Let T and T’ be two phylogenetic trees on X. For Y C X with |[Y| > 2and |X — Y| > 2, we
say that Y is a cluster of T if there exists a single edge in 7 whose deletion disconnects T’
into two parts such that the leaves of one part are bijectively labeled by elements in Y while
the leaves of the other part are bijectively labeled by elements in X — Y. Now, let Y be a
cluster of both T and 7"; this is often referred to as a common cluster. In Bordewich et al.
(2017) a divide-and-conquer reduction rule is presented which, at a high level, computes
dmar(T, T') by computing dvar(T|Y, T'|Y) and dyar(T|X — Y, T'| X — Y) separately. It
can be shown that dyapr(T, T) is either equal to,

dvar(T|Y, T'|Y) + dvar(T|X — Y, T'|X —Y) ey
or
dvar(T|Y, T'Y) + dvar(T|IX =Y, T'|X = Y) — 1. (@)

Deciding whether (1) or (2) holds, first requires the addition of a “placeholder” taxon p;
into T|Y and T'|Y which represents the location of the X — Y side of the trees. Similarly, a
placeholder taxon p; is added to T|X — Y and T'| X — Y which represents the location of the
Y side of the trees. It is then necessary to query whether there exists a maximum agreement
forest for the pj-augmented instance (respectively, the p»-augmented instance) that isolates
p1 (respectively, p) in a singleton component. Depending on the outcome, a distinction can
be made between (1) and (2); for full details see (Bordewich et al. 2017). Tubro answers
these queries by first solving two separate ILPs for the p;-augmented instance; one in which
the edge entering p; is definitely cut, and one where the decision whether to cut this edge is
left to the ILP. Symmetrically, it then solves two ILPs for the p>-augmented instance. Hence,
for a cluster Y that is common to T and 7", four ILPs need to be solved in total. There are a
number of additional subtle technicalities concerning the interaction of the placeholder taxon
and the reduction rules from Kelk and Linz (2020) but these are out of scope of the current
article.

The decomposition of one ILP into four ILPs sounds rather cumbersome, but given that
the bottleneck for Tubro’s performance is the number of taxa in an instance—recall that the
ILP has size O(|X|*)—the cluster reduction can potentially cause a significant speedup if
|Y| and | X — Y| are roughly the same, and/or the reduction activates multiple times.

We did not switch on the cluster reduction when applying Tubro to the 89 instances
that uSPR could not solve (post-kernelization) after 5 min. However, we did briefly check
whether the cluster reduction might have helped with these 89 instances. We observed that
86 of the instances had no common cluster. The 3 instances that did have a common cluster
had parameter combinations (¢, s, k) of (250, 50, 35), (300, 50, 35) and (200, 70, 35). For
these tree pairs, we observed that the clusters were heavily imbalanced, meaning that |Y| was
small and | X — Y| was large. This limited the practical impact of the cluster reduction since,
for the larger tree pair on X — Y, it was still necessary to construct a prohibitively large ILP.

@ Springer

450 Annals of Operations Research (2022) 309:425-451

References

Alber, J., Betzler, N., & Niedermeier, R. (2006). Experiments on data reduction for optimal domination in
networks. Annals of Operations Research, 146(1), 105-117.

Allen, B., & Steel, M. (2001). Subtree transfer operations and their induced metrics on evolutionary trees.
Annals of Combinatorics, 5, 1-15.

Atkins, R., & McDiarmid, C. (2019). Extremal distances for subtree transfer operations in binary trees. Annals
of Combinatorics, 23(1), 1-26.

Bordewich, M., Scornavacca, C., Tokac, N., & Weller, M. (2017). On the fixed parameter tractability of
agreement-based phylogenetic distances. Journal of Mathematical Biology, 74(1-2), 239-257.

Chen, J.,Fan,J.-H., & Sze, S.-H. (2015). Parameterized and approximation algorithms for maximum agreement
forest in multifurcating trees. Theoretical Computer Science, 562, 496-512.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations Research,
4(3), 233-235.

Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., et al. (2015). Parameterized
algorithms (1st ed.). Springer.

Downey, R., & Fellows, M. (2013). Fundamentals of parameterized complexity (Vol. 4). Springer.

Fellows, M., Jaffke, L., Kirdly, A.I., Rosamond, F., & Weller, M. (2018). What is known about vertex cover
kernelization? In H. J. Bockenhauer, D. Komm, & W. Unger (Eds.), Adventures Between Lower Bounds
and Higher Altitudes: Essays Dedicated (pp.330-356). Cham: Springer International Publishing. https://
doi.org/10.1007/978-3-319-98355-4_19.

Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates.

Ferizovic, D., Hespe, D., Lamm, S., Mnich, M., Schulz, C., & Strash, D. (2020). Engineering kernelization
for maximum cut. In 2020 Proceedings of the Twenty-Second Workshop on Algorithm Engineering and
Experiments (ALENEX) (pp. 27-41). SIAM.

Fischer, M., & Kelk, S. (2016). On the maximum parsimony distance between phylogenetic trees. Annals of
Combinatorics, 20(1), 87-113.

Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specific tree topology.
Systematic Biology, 20(4), 406-416.

Fomin, F.,, Lokshtanov, D., Saurabh, S., & Zehavi, M. (2019). Kernelization: Theory of Parameterized Pre-
processing. Cambridge University Press.

Harding, E. (1971). The probabilities of rooted tree-shapes generated by random bifurcation. Advances in
Applied Probability, 3(1), 44-77.

Hein, J., Jiang, T., Wang, L., & Zhang, K. (1996). On the complexity of comparing evolutionary trees. Discrete
Applied Mathematics, 71(1-3), 153—-169.

Henzinger, M., Noe, A., Schulz, C. (2020). Shared-memory branch-and-reduce for multiterminal cuts. In 2020
Proceedings of the Twenty-Second Workshop on Algorithm Engineering and Experiments (ALENEX) (pp.
42-55). SIAM.

Hickey, G., Dehne, F., Rau-Chaplin, A., & Blouin, C. (2008). SPR distance computation for unrooted trees.
Evolutionary Bioinformatics, 4, EBO-S419.

Huson, D., Rupp, R., & Scornavacca, C. (2011). Phylogenetic networks: Concepts, algorithms and applica-
tions. Cambridge University Press.

Kelk, S., & Fischer, M. (2017). On the complexity of computing mp distance between binary phylogenetic
trees. Annals of Combinatorics, 21(4), 573-604.

Kelk, S., Fischer, M., Moulton, V., & Wu, T. (2016). Reduction rules for the maximum parsimony distance on
phylogenetic trees. Theoretical Computer Science, 646, 1-15.

Kelk, S., & Linz, S. (2019). A tight kernel for computing the tree bisection and reconnection distance between
two phylogenetic trees. SIAM Journal on Discrete Mathematics, 33(3), 1556-1574.

Kelk, S., & Linz, S. (2020). New reduction rules for the tree bisection and reconnection distance. Annals of
Combinatorics, 24(3), 475-502.

Kelk, S., & Stamoulis, G. (2017). A note on convex characters, fibonacci numbers and exponential-time
algorithms. Advances in Applied Mathematics, 84, 34—46.

Kuhner, M., & Yamato, J. (2015). Practical performance of tree comparison metrics. Systematic Biology, 64(2),
205-214.

Li, Z., Zeh, N. (2017). Computing maximum agreement forests without cluster partitioning is folly. In 257h
Annual European Symposium on Algorithms (ESA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik.

LLC Gurobi Optimization. (2020). Gurobi optimizer reference manual.

Mertzios, G., Nichterlein, A., & Niedermeier, R. (2020). The power of linear-time data reduction for maximum
matching. Algorithmica, 82, 3521-3565.

@ Springer

https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/978-3-319-98355-4_19

Annals of Operations Research (2022) 309:425-451 451

Moulton, V., & Wu, T. (2015). A parsimony-based metric for phylogenetic trees. Advances in Applied Math-
ematics, 66, 22-45.

Richards, E., Brown, J., Barley, A., Chong, R., & Thomson, R. (2018). Variation across mitochondrial gene
trees provides evidence for systematic error: How much gene tree variation is biological? Systematic
Biology, 67(5), 847-860.

Semple, C., & Steel, M. (2003). Phylogenetics. Oxford University Press.

St John, K. (2017). The shape of phylogenetic treespace. Systematic Biology, 66(1), e83.

van lersel, L., Kelk, S., & Scornavacca, C. (2016). Kernelizations for the hybridization number problem on
multiple nonbinary trees. Journal of Computer and System Sciences, 82(6), 1075-1089.

Whidden, C., Beiko, R. G., & Zeh, N. (2013). Fixed-parameter algorithms for maximum agreement forests.
SIAM Journal on Computing, 42(4), 1431-1466.

Whidden, C., & Matsen, F. (2018). Calculating the unrooted subtree prune-and-regraft distance. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 16(3), 898-911.

Whidden, C., Zeh, N., & Beiko, R. G. (2014). Supertrees based on the subtree prune-and-regraft distance.
Systematic Biology, 63(4), 566-581.

Wu, Y. (2009). A practical method for exact computation of subtree prune and regraft distance. Bioinformatics,
25(2), 190-196.

Yoshida, R., Fukumizu, K., & Vogiatzis, C. (2019). Multilocus phylogenetic analysis with gene tree clustering.
Annals of Operations Research, 276(1-2), 293-313.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Rim van Wersch' - Steven Kelk' - Simone Linz? - Georgios Stamoulis’

B Georgios Stamoulis
georgios.stamoulis @maastrichtuniversity.nl

Rim van Wersch
rim@hyperboreanventures.com

Steven Kelk
steven.kelk @maastrichtuniversity.nl

Simone Linz
s.linz@auckland.ac.nz

Department of Data Science and Knowledge Engineering (DKE), Maastricht University,
Maastricht, The Netherlands

School of Computer Science, University of Auckland, Auckland, New Zealand

@ Springer

http://orcid.org/0000-0001-7248-8197

	Reflections on kernelizing and computing unrooted agreement forests
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Description of the subtree, chain and other reduction rules

	3 Maximum Parsimony distance and a new approach to computing lower bounds on TBR distance
	4 Experimental framework
	4.1 uSPR
	4.2 Tubro
	4.3 High-level description of the experiments

	5 Results and analysis
	5.1 The availability of exact TBR distances/difficult trees
	5.2 Average percentage of remaining taxa
	5.3 Empirical kernel size
	5.4 Parameter reductions
	5.5 The quality of the dMetapost lower bound

	6 Discussion: shattered forests?
	7 Conclusions and future work
	Acknowledgements
	A Tubro: Using kernelization and Integer Linear Programming to compute dTBR
	A.1 A polynomial-size Integer Linear Programming formulation for MAF
	A.2 High-level description of Tubro
	A.3 Optional extra: cluster reduction

	References

