
1

Meta-Lamarckian-based Iterated Greedy for Optimizing

Distributed Two-stage Assembly Flowshops with Mixed-Setup

Pourya Pourhejazy1, Chen-Yang Cheng2, Kuo-Ching Ying*,2, Nguyen Hoai Nam2,3

1
Department of Industrial Engineering, UiT- The Arctic University of Norway, Lodve Langsgate 2, Narvik 8514, Norway

2
Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 106, Taiwan

3
Gudeng Precision Industrial Co., LTD, New Taipei City 236, Taiwan

ABSTRACT

Integrated scheduling of distributed manufacturing operations has implications for supply

chain optimization and requires further investigations to facilitate its application area for

various industry settings. This study extends the limited literature of the distributed two-stage

production-assembly scheduling problems offering a twofold contribution. First, an original

mathematical extension, the Distributed Two-Stage Assembly Flowshop Scheduling Problem

with Mixed-Setup (DTSAFSP-MS) is investigated to integrate setup time constraints while

addressing an overlooked scheduling assumption. Second, a novel extension to the Iterated

Greedy algorithm is developed to solve this understudied scheduling problem. An extensive

set of test instances is considered to evaluate the effectiveness of the developed solution

algorithm comparing it with the current-best-performing algorithm in the literature. Results

are supportive of the Meta-Lamarckian-based Iterated Greedy (MIG) as a strong benchmark

algorithm for solving DTSAFSP-MS with the statistical tests confirming its meaningfully

better performance compared to the state-of-the-art.

Keywords: Production management; Distributed manufacturing; Two-stage assembly

flowshop; Makespan; Metaheuristics

* Corresponding Author. Tel.: +886 2 2771 2171; fax: +886 2 2731 7168

E-mail address: kcying@ntut.edu.tw (K.-C. Ying).

 2

1. Introduction

The competitiveness of companies depends on the performance of their supply chains (SCs).

Given the interactions between various entities across SCs, the operational activities should

not be planned in a stand-alone way; the players should follow a system-wide strategy to

pursue the global best of the operational performance (Simchi-Levi et al. 2008). Production

scheduling helps coordinate the production operations across SCs (Ying et al. 2020);

integrated planning approaches can bring about improvements beyond optimality norms for

individuals, which results in collective productivity.

Production scheduling literature has witnessed substantial development with myriad

mathematical extensions and solution algorithms to address the basic assumptions of the

scheduling theory that limits its practicability and real-world applications (Fazel Zarandi et al.

2020; Parente et al. 2020). Introducing job- and process-related constraints and new decision

variables have been at the center of attention for bridging the gap between scheduling theory

and practice. Integrated production-assembly scheduling is a prime example of growing

popularity, which has evolved from the Two-Stage Assembly Scheduling Problem (TSASP;

Lee et al., 1993) and the Distributed Assembly Permutation Flowshop Scheduling Problem

(DAPFSP; Hatami et al., 2013), to integrate heterogeneous operations across distributed

manufacturing facilities.

In the industries where the Original Equipment Manufacturers (OEM) produce

components and parts for a final assembly at the assembly centers, DAPFSP is a suitable

optimization tool. In many other cases, however, the manufactured components should be

assembled soon after the production process because of the operational limitations and

product features, for example, when sealant/adhesives must be applied before the final

assembly. In this situation, the Distributed Two-Stage Assembly Flowshop Scheduling

 3

Problem (DTSAFSP; Xiong & Xing, 2014) best describes the real operational environment.

The DTSAFSPs studies are comparatively limited; only a handful of published works have

contributed to the development of this scheduling extension in flowshops with more than three

machines (Deng et al. 2016; Lei et al. 2020; Xiong et al. 2014; Xiong and Xing 2014; G.

Zhang and Xing 2018).

Accounting for setup operations has been a major improvement in the scheduling field and

a prime example of efforts for bridging the gap between theory and practice. Recent studies

integrated the setup constraints into various classes of distributed scheduling problems

(Hatami et al. 2015; J.-P. Huang et al. 2020, 2021; Y. Li, Li, Gao, and Meng 2020; Y. Li, Li,

Gao, Zhang, et al. 2020; Meng and Pan 2021; Xiong et al. 2014; Ying et al. 2020); these

studies assumed that all of the operations require setup operations, which may not be the case

when integrated production-assembly are considered. To put it into context, let assume the

situation where a part of the production process is done using dedicated machinery, robots, or

human operators, like assembling parts, while the rest of the machines are multi-purpose. In

this situation, the parts arriving for final assembly can be processed without requiring a setup.

In this example, considering a mixed-setup setting account for operations with and without

setup time constraints to better represent the situation. This special case of having

Sequence-Dependent Setup Times (SDST) is prevalent in the scheduling environments with

heterogeneous operations, e.g., parts production, assembly, and service operations. Motivated

by this practical setting, this study proposes an original mathematical formulation for the

Distributed Two-Stage Assembly-Flowshop Scheduling Problem with Mixed Setups

(DTSAFSP-MS) and develops a novel metaheuristic to effectively solve the problem.

The remainder of this manuscript is structured in four sections. Section 2 provides an

exhaustive review of the relevant literature. Section 3 elaborates on the proposed method, i.e.,

the mathematical formulation and the solution algorithm. Section 4 is dedicated to

 4

experimental results analysis to benchmark the developed solution method against the

state-of-the-art algorithm developed to solve the distributed flowshop scheduling problems.

Finally, Section 5 concludes this research work and provides suggestions on future research

directions for interested readers.

2. Literature review

Many extensions have been introduced to address case-specific operational situations for

broader real-world applications of the flowshop scheduling problem. Distributed flowshop

scheduling is a prime example of increasing recognition, motivated by the fact that production

planning and scheduling can benefit from advanced communication systems to provide

well-informed decisions in distributed manufacturing environments (Ying et al. 2020). Given

the complexities involved in managing distributed operations, the distributed scheduling

problems (DSP; Jia et al., 2002, 2003) have seen considerable development. This section

systematically reviews the published contributions searching the distributed flowshops in the

Google Scholar database. Given a total of 93 unique research items, 54 journal papers in the

English language are perceived as relevant and considered for a detailed review. The majority

of these works, i.e., 42 out of 54, have been published in the past five years, showing that this

research topic is experiencing steady growth. We first analyze the review outcomes from a

macro perspective concerning; the production setting and the studied performance indicator

are considered as suggested by (Neufeld et al. 2016; Ribas et al. 2010). We then dive deeper

into the most relevant stream of the research to the present manuscript.

Considering the optimization criterion, 41 articles considered minimizing the maximum

completion time (makespan); the rest considered the total completion time (Ali et al. 2020;

Wu et al. 2019; Xiong et al. 2014; G. Zhang and Xing 2018), total flow time (Y.-Y. Huang et

al. 2021; Q.-K. Pan et al. 2019; Sang et al. 2019; Wu et al. 2018), the weighted sum of

completion time (Jeong and Leon 2002), the weighted sum of earliness and tardiness (Jing et

 5

al. 2020), total tardiness (Khare and Agrawal 2020), and total cost of delivery and tardiness

(Yang and Xu 2020). Besides, one paper studied a multi-objective variant aiming to minimize

maximum and mean completion times (Xiong and Xing 2014).

Distributed scheduling has been extended for various production environments, like

distributed flowshop with heterogeneous factories (H. Li et al. 2020; Y. Li, Li, Gao, and Meng

2020; Meng and Pan 2021), group scheduling (Q.-K. Pan et al. 2021), hybrid flowshop (Hao

et al. 2019; Lei and Wang 2020; Y. Li, Li, Gao, and Meng 2020; Y. Li, Li, Gao, Zhang, et al.

2020; Ying and Lin 2018), and integrated assembly-production flowshop (Deng et al. 2016;

Lei et al. 2020; W.-C. Lin 2018; Wu et al. 2018, 2019; Xiong et al. 2014; Xiong and Xing

2014; G. Zhang and Xing 2018). Various production settings and practical features have also

been integrated into the distributed flowshop to facilitate its real-world applications; blocking

conditions (W. Li et al. 2019; G. Zhang et al. 2018; Zhao et al. 2020), limited buffer

constraints (G. Zhang and Xing 2019), no-wait (Komaki and Malakooti 2017; H. Li et al.

2020; S.-W. Lin and Ying 2016), no-idle (Ying et al. 2017; Zhao et al. 2021), customer

order-priority (Meng et al. 2019), time window constraints (Jing et al. 2020),

machine-breakdowns (Wang et al. 2016), and preventive maintenance (Mao et al. 2021) are

the seminal examples.

Integrated scheduling of the distributed production-assembly operations has received

recent recognition in the scheduling literature. Extending the seminal work of (Naderi and

Ruiz 2010), Hatami et al. (2013) introduced the Distributed Assembly

Permutation Flowshop Scheduling Problem (DAPFSP) and developed a Variable

Neighborhood Descent to minimize the makespan. Later, Hatami et al. (2015) applied the

basic Iterated Greedy (IG) algorithm to solve the extended DAPFSP considering setup times

and makespan criterion. Other researchers extended these seminal works, for example, by

including stochastic processing time within a simulation-based optimization approach

 6

(Gonzalez-Neira et al. 2017), no-idle setting optimized using Water Wave Optimization (Zhao

et al. 2021), and a two-stage hybrid flowshop with Shuffled Frog-leaping Optimization (Lei

and Wang 2020), all minimizing the makespan. In earlier studies, (J.-Q. Pan et al. 2018)

improved the Best-Found Solutions (BFS) considering total flow time. Invasive Weed

Optimization of (Sang et al. 2019) addressed the same optimization criterion with the BFSs

being later on improved by (Huang et al., 2021). The Genetic Algorithm of (Zhang et al.,

2020) is another solution algorithm developed to solve the DAPFSPs, minimizing the

makespan.

Yang & Xu (2020) the first time included more than one machine in the assembly plant,

the so-called flexible assembly. They also integrated the batch delivery setting into the

problem and minimized the total cost of delivery and tardiness. Considering this seminal

work, (Ying et al. 2020; G. Zhang et al. 2020) improved the BFS to the DAPFSP with flexible

assembly, minimizing the makespan. These studies assumed that the assembly stage is

executed in a geographical location different from the production factory and that

sub-assemblies are not required after producing the components in the OEM. This assumption

does not apply to the production of many products, like fire engines (Lee et al. 1993) and

personal computers (Potts et al. 1995), where a two-stage production assembly is required at

the OEMs plant. A general example of this situation is when the components should be

assembled instantly after the production process because of the operational limitations, for

example, immediate assembly after applying sealant/adhesives. Xiong & Xing (2014)

extended the Two-Stage Assembly Scheduling Problem (TSASP; Lee et al., 1993) to account

for this production setting in a distributed manufacturing environment. The DTSAFSP

accounts for integrated production-assembly operations in every production site while the

DAPFSP assumes that these operations are conducted in detached places (Figure 1).

 7

(a). DTSAFSP

(b). DAPFSP

Figure 1. A visual illustration of the difference between DTSAFSP and DAPFSP.

Unlike the DAPFSP that has seen considerable development in terms of new mathematical

extensions and solution algorithms, the journal papers to DTSAFSPs are limited; apart from

the two-stage three-machine assembly scheduling (W.-C. Lin 2018; Wu et al. 2018, 2019),

which is a limited edition to the DTSAFSP, only four published works extended the seminal

work of (Xiong and Xing 2014). Xiong et al. (2014) developed a Variable Neighborhood

Search algorithm to minimize the total completion time in DTSAFSP with setup times. G.

Zhang & Xing (2018) developed a Social Spider Optimization algorithm to minimize total

completion time in DTSAFSP. Deng et al. (2016) developed a Competitive Memetic

 8

Algorithm (CMA) to introduce the best-found makespan value to the DTSAFSPs, which

outperformed the VNS algorithm and the hybrid of GA with RVNS developed by Xiong et al.

(2014). The Cooperated Teaching-Learning-based Optimization (Lei et al. 2020) is more

recent research that failed to outperform the CMA algorithm in terms of solution quality and

computational time. No scheduling studies accounted for a mixed-setup situation; this

operational situation is prevalent when different operations or production technologies in

different factories are considered. The present study proposes a new mathematical formulation

and a novel solution algorithm, the MIG algorithm, to solve this emerging scheduling

extension comparing it with the best-performing algorithm, CMA.

3. Proposed method

3.1. Mathematical formulation

Let assume f homogeneous factories producing products in an SC. Each of the factories

includes both production and assembly operations and is equipped with machinery to process

a total of {0, 1, 2, ..., }=N n jobs/products. The machines in the production stage of the

factories are multi-purpose; hence, require setup times between two consecutive assignments.

However, the assembly stage does not require a setup due to the use of automated assembly

systems. Jobs follow the same routine across the SC. It is assumed that each job j N can

be processed on exactly one machine/stage at a given time. Moreover, setup times are

assumed to be job sequence-dependent at the production stage while the assembly stage does

not require setup operations. The processing times are deterministic but independent of the

order of the job/products. It is also assumed that the assignments are executable immediately

at the starting point of the planning period. Once assigned, the jobs can no longer be

re-assigned to another factory. The model is hereafter denoted by

 9

sd max(DPm 1) 0 mixed ST C→ → − , where (1) 0→ →DPm indicate that the distributed

system has m parallel machines in the production stage of each factory and one assembly

machine completing the final assembly operations; sdmixed ST− specifies that the production

stage is characterized by SDSTs, while the assembly operations do not require a setup; the

maximum completion time (makespan) of the assembly operations is denoted by maxC

indicating the optimization criterion.

Notations

n The total number of jobs.

m The total number of available machines in the production stage.

f The number of factories in the SC.

i , j Job index, where   , 0, 1 2 i j , ,..., n with 0 being a dummy job.

k Machine tag，   1 2 k , ,..., m .

i , j ,kS Setup time at the production stage indicating the preparation required for processing

job j after job i on machine k .

j ,kP The processing time required to complete job i on machine k at the production

stage.

jAP The processing time required for the assembly of product j .

i , jX Binary decision variable; 1= if job j is processed after job i ; 0= , otherwise.

j ,kC Integer decision variable indicating the completion time of job j on machine k

at the production stage.

jAC Integer decision variable indicating the completion time of job j at the assembly

stage

 10

The Mixed-Integer Linear Programming (MILP) formulation is provided below.

Min maxC (1)

Subject to:

 ,

0,

1 1,2,...,
n

i j

i i j

X j n
= 

=  
(2)

 ,

0

1 1,2,...,
n

i j

j

X i n
=

  
(3)

0,

1

n

j

j

X f
=

=
(4)

,0

1

1
n

i

i

X f
=

= −
(5)

 , , 1 ; 1,2,..., 1 , i j j iX X i n j i+   −  (6)

()    , , , , , ,1 0,1,..., , , 1, 2,...,j k i k i j k j k i jC C S P M X i n j i k m + + −  −     (7)

   , ,(1) 1,2,..., , 1,2,...,j j k j i jAC C AP M X n k mj + −  −    (8)

   ,(1) 0,1,..., , , 1,2,...,i i jj jAC AC AP M X i n j i k m + −  −     (9)

 max 1,2,...,jC AC j n   (10)

 0, 0 0 1,2,...,kC AC k m= =  (11)

     ,X 0,1 0,1,..., , 0,1,...,i j i n j n   

(12)    ,C 0 1,2,..., , 1,2,...,j k n k mj   

 

0 0, 1,...,j jA nC   

The objective function in Equation (1) minimized the maximum completion time.

Constraints (2) and (3) use binary variables to ensure that the job assignments are unique and

that there is only one job before and after every job. Equations (4) and (5) ensure that the job

 11

sequence positioned before and after the virtual job in every factory, respectively, appear

exactly f times. According to Constraint (6), a job cannot be arranged before and after

another job simultaneously. M is defined as a large positive number to establish a

connection between the decision variables. On this basis, Constraints (7) indicate that if the

job j is located immediately after the job i , its completion time is greater than the

summation of its processing time, the completion time of the preceding job, the associated

setup time in the production stage. Constraint set (8) specifies the assembly procedure takes

place only after completing the processing of the components in the production stage.

Constraint (9) ensures that if the product j is assembled after the product i , the assembly

completion time is greater than the summation of its assembly processing time and the

assembly completion time of the product i ; this also ensures that the sequence of product

assembly on the same assembly machine in the factory is preserved. Constraints (10) define

the objective function as the maximum completion time of all products on the assembly stage.

Equation (11) specifies that the completion time of the auxiliary job on every machine is set

equal to zero. Finally, the last constraint determines the type of decision variables.

3.2. Solution algorithm

The IG algorithm cannot effectively avoid the local optimality traps in the complex solution

spaces (Ying et al. 2020). Case-specific methods have been proposed to address this

shortcoming in various flowshop environments, like hybrid flowshop (Shao et al. 2020),

hybrid flexible flowshop (Ozsoydan and Sagir 2021), blocking flowshop (Cheng et al. 2021),

and no-idle permutation flowshop (Riahi et al. 2020), among others. Considering the nature of

the scheduling problems, in particular, the distributed production-assembly setting and

mixed-setup constraint, this study develops the MIG algorithm, which is fortified by the

Meta-Lamarckian Learning (MLL)-based perturbation mechanism to improve the exploration

 12

power of the metaheuristic with more effectively evading the local optimality traps. The

pseudocode of the MIG algorithm is provided in Figure 2. The computational procedure

consisting of the solution initialization, destruction & construction, the MLL-based local

search algorithm, and the acceptance mechanisms, are explained as follows.

2

1 MIG(d)

2 = NEH _heuristic ; / /

3 ; / /

4

best

Solution Initialization

Best Solution Storage

d Destruc



 =

=

procedure

_

5 ; / /

6 1 / /

7

tion count

Temporary Storage

i d Destruction procedure

remove a r

 



 =

=

 =

for to do

8 / / ;

9 1 / /

10 π ;

andomly selected job

is the partial solution

i d Construction procedure

insert the job into







=

 =

endfor

for to do

()

()

() ()

11

12 Training_phase ; / / _

13 Working_phase ;

14 / /

15

max max

MLL based Local Search

C C Acceptance Mechanism

 

 

 

 =

 =

 

endfor

 if then

() ()

()()

 ;

16

17 ;

18

19 exp

20

max maxC C

rando RPm D

 

 

 



=

 

 =

=

−

if then

endif

else if then

;

21

22

23

24







 endif

endif

return

 end

Figure 2. Pseudocode of the Meta-Lamarckian-based Iterated Greedy (MIG) Algorithm.

3.2.1. Initialization/encoding module

The solution representation method displays the job assignments to all the factories in a single

vector. Considering an illustrative example with five jobs and two factories, a solution can be

 13

represented by {3 5 1 0 2 4} = , where 3 and 2 jobs are assigned to the first and second

factories, respectively, and 0 is used as a delimiter to separate the factory assignments. Given

this encoding mechanism, one should initialize solutions that are feasible and acceptably

good. The basic IG algorithms apply random initialization methods, which are ineffective for

complex problems. The following initialization procedure is tailored for distributed

scheduling.

Table 1 provides the details of the above illustrative example to explain the procedure

better. The first and second parts of the table provide the processing and sequence-dependent

setup times (SDSTs) in the production and assembly stages, respectively, to account for a

more generalized setting. The initialization procedure begins with calculating the completion

time of every job at the assembly stage as an individual. That is,

0, , ,max{ }j j k j k j
k

AC S P AP


= + + . In doing so, the completion time of jobs 1-5 is equal to 15, 16,

18, 19, and 14, respectively. Then, selecting the job associated with the shortest completion

time, jobs 5 and 1 are assigned to factories 1 and 2, respectively. Next, job 2 is added next to

jobs 5 and 1 in factories 1 and 2, respectively. The partial solution  0 5 2 0 1   = appeared

to be a better option at this stage due to a smaller makespan value, 25. Next, the remainder of

unallocated jobs should be added into the partial solution after trying all the possible positions

in the vector. For this purpose, job 4 is inserted into all positions in every section of the vector

to exhaust all possible options and calculate the fitness values. Inserting job 4 next to job 1 in

factory 2 is found to be the best option with a makespan value of 28. Applying the same

approach, job 3 appeared to be at its best position when it is located next to job 2 in factory 1,

resulting in a makespan of 39. Therefore, the completed sequence  0 5 2 3 0 1 4  =

should be selected as the initial solution.

 14

Table 1. An illustrative example for the computational procedure of the MIG algorithm.

Processing time Job

Machine 1 2 3 4 5

PM1 6 8 9 7 4

PM2 6 3 5 6 7

AM 5 6 7 7 5

SDSTs on

PM1/PM2
Job

Job 0 1 2 3 4 5

0 0/0 3/4 2/4 2/5 1/6 3/2

1 0/0 0/0 4/5 4/4 5/1 3/7

2 0/0 4/4 0/0 4/3 6/3 7/1

3 0/0 1/1 3/6 0/0 1/2 2/4

4 0/0 4/3 2/4 1/7 0/0 4/2

5 0/0 4/2 4/3 3/5 4/4 0/0

3.2.2. Destruction module

The destruction and construction procedures are at the heart of the IG computations, where an

input solution to the module will be first destructed up to a certain point, and an iterative

procedure is then applied to reconstruct a new complete solution. This research customizes the

destruction method of (Ruiz et al. 2019), which was developed for distributed permutation

flowshop scheduling. Given the destruction count, d , the method begins with selecting

/ 2d   jobs with the largest total setup time from the factory with the largest maxC , which is

hereafter labeled by cF . Next, the rest of the 1 2d /−    jobs in the remaining 1F −

factories are extracted following the same approach. The removed jobs are then saved in a

separate vector considering the same order they are extracted.

Considering the illustrative example in Table 1, where  0 5 2 3 0 1 4  = is the input

solution, the maximum completion time of factories 1 and 2 are 39maxC = and 28maxC = ,

hence, cF is 1. Given a destruction count of d = 3, 3 / 2 2=   jobs should be removed

 15

from factory 1. For this purpose, the job associated with the largest total setup times in the

production phase of factory 1, i.e., job 2, and a random job, let assume job 5, are removed

first. Next, 1- 3 / 2 1=   jobs are selected from the remaining factories, factory 2 in this

example, with the target being the largest total setup time, i.e., job 1. In so doing, the list of

removed jobs in the destruction phase is   2 5 1 d = , and   3 0 4   = is the partial

solution with n d− jobs. This procedure is illustrated in the destruction phase of Figure 3. In

this example, J refers to the jobs (parts) and P indicates the products that are an assembly of

several jobs (parts). On this basis, the first index of J corresponds to the index of P (product

number) while the second index of J determines the component number required for

assembling the corresponding product.

Destruction Phase: Extract d=3 jobs from across factories

R
em

o
v
e

tw
o
 j

o
b
s

fr
o
m

 f
ac

to
ry

 1
 a

n
d
 1

jo
b
 f

ro
m

 f
ac

to
ry

 2

Construction Phase: insert the extracted jobs into the partial solution in a reverse order

 16

In
se

rt
 j

o
b
 1

 i
n
to

 a
ll

 p
o
ss

ib
le

 p
o
si

ti
o
n
s

In
se

rt
 j

o
b
 5

 i
n
to

 a
ll

 p
o
si

ti
o
n
s

In
se

rt
 j

o
b
 2

 i
n
to

 a
ll

 p
o
si

ti
o
n
s

 17

S
to

p
 i

f
al

l
jo

b
s

ar
e

re
in

se
rt

ed

Figure 3. A visual illustration of the destruction and construction procedures.

3.2.3. Construction module

In the construction phase, the deleted jobs from d are to be reinserted into all possible

positions in the partial solution,   ; this is done in reverse order of extraction in the

destruction phase. For this purpose, the insertion resulting in the smallest makespan will

dominate the greedy search at every step. After inserting a job into the best position, the jobs

immediately before and after the newly inserted job will be displaced into all possible

positions across factories, and the option with the smallest makespan will be selected.

Assuming that job 1 is extracted in order from d and inserted into all possible positions

in   , the alternative   3 1 0 4 results in the minimum completion time. In this situation,

the jobs before and after are 3 and 0; the delimiter that should not be extracted. Inserting 3

into all possible positions across factories,   3 1 0 4   = records the smallest makespan

value. The list of unassigned jobs is now updated to  5 2 . Next, one needs to find the best

insertion position for job 5, which is   3 1 0 4 5   = , and displace the preceding job, job 4,

into the best position, which is   3 1 0 4 5   = . Given  2 as the last unassigned job, the

trial and error for finding the best insertion follows the same procedure that results in

 18

  3 1 0 4 2 5   = . As the last step, the jobs before and after job 2, namely jobs 4 and 5, are

now extracted in order and inserted into all possible positions;   3 1 0 2 4 5  = is the best

found alternative; given that the list of unassigned jobs is now empty, the resulting job

sequence is a complete solution and can be considered for the next step of computations, i.e.,

the local search moves. This procedure is demonstrated in the construction phase of Figure 3.

3.2.4. MLL-based local search algorithm

The MLL-based mechanism (Ong and Keane 2004) was introduced to improve the quality of

the best individual in the solution population, enhancing the effectiveness of the Memetic

Algorithms. G. Zhang et al. (2020) showed that the novel perturbation mechanism not only

effectively avoids falling into local optimality traps but also is comparatively more efficient

than the other hybrid approaches. Inspired by its positive implications, our study extends to

integrate the MLL-based approach into the IG algorithm for solving a new scheduling

extension. Four basic and two hybrid local search moves, shown in Figures 4-5, are defined

below to formally introduce the MLL-based algorithm.

- Job Swap (JS) selects a random factory to exchange two random jobs. Assuming

  3 1 0 2 4 5  = as the job sequence after the construction phase and   2 4 5 rF =

being the randomly selected factory, J4 and J5 are swapped as random jobs to obtain

an alternative solution,   3 1 0 2 5 4 JS  = .

- Job Competitive Insertion (JCI), a random job is first removed from a random factory; it

is then inserted into all possible positions of the same factory to find the best

alternative. Assuming   3 1 0 2 4 5  = and J5 of factory 2 as our random

selection, the resulting alternatives are   3 1 0 5 2 4 JCI  = and

 19

  3 1 0 2 5 4 JCI  = .

- Inter-Factory Swap (IS) move considers two randomly selected factories, cF and kF ,

and selects a random job from each. It then exchanges the position of the selected jobs.

For instance, considering J3 and J4 as the random jobs from the first and the second

factories,   4 1 0 2 3 5 IS  = is the neighboring solution.

- Inter-Factory Competitive Insertion (ICI) removes a random job from the first random

factory, cF , and inserts it into all possible positions in the second random factory, kF .

For example, assuming   2 4 5 cF = ,   3 1 kF = and J4 as the random selections,

exhausting the insertion options results in   2 5 0 4 3 1 ICI  = ,

  2 5 0 3 4 1 ICI  = , and   2 5 0 3 1 4 ICI  = , among which the best should be

selected. Finally, Inter-Factory Competitive Insertion consists of displacing the

sequence assigned to one factory before and after every other factory to find a better

alternative.

- The Hybrid Swap (HS); JS and IS are executed simultaneously, illustrated in Figure

5(a), where (a). two random jobs are swapped in the first randomly selected factory,

  2 4 5 cF = , and, immediately, (b). one job is extracted from the modified cF and a

random job from the second randomly selected factory,   3 1 kF = , for a second

exchange. At this point, the perturbation will be accepted only if it results in better

fitness values, makespan in this study. Assuming J2 and J5 for step a as well as J4 and

J5 for step b,   3 4 0 5 1 2  = is resulted.

- Hybrid Competitive Insertion (HCI) executes JCI and ICI without interruption, as

shown in Figure 5(b). That is, two jobs are extracted from the randomly selected

 20

factory, cF . The following procedure comes next; (1). The first insertion exhausts all

the possibilities in the same factory considering the first random job; (2). The second

randomly selected job will be inserted into all possible positions in the other randomly

selected factory, kF . A neighboring solution will be selected only if it is a

breakthrough. Assuming J5 and J4 are selected in step 1 of the illustrative example, J5

is first inserted into all possible positions in the same factory, resulting in  3 1 0 5 2 .

Then, J4 is inserted into all possible positions in the second factory. This procedure

finds  4 3 1 0 5 2  = as the best alternative.

 21

Figure 4. A visual illustration of the basic local search moves.

(a). Hybrid Swap

(b). Hybrid Competitive Insertion

Figure 5. A visual illustration of the hybrid local search moves.

The MLL-based mechanism consists of the training and implementation phases. Based on

the study of Zhang et al. (2020), the HS and HCI are executed ()1n n − times on the initial

solution, respectively, in the training phase. Then, the fitness function values ()1, 2k k = of

HS and HCI can be calculated using Equation (13), where Cb denotes the makespan of the

solution before executing the HS/HCI, and Ca represents the makespan of the best solution

 22

after executing the HS/HCI ()1n n − times. On this basis, the selection probability values

()1, 2k k = of HS and HCI should then be calculated using Equation (14) to conclude the

training phase.

()

() 1

b a
k

n

C C

n



=

−

−
 (13)

2

1

k
k

i
i





=

=



(14)

Considering the best results from the non-initial solution population, the implementation

phase applies the JS move to perturb with  4 3 1 0 5 2 = being the result. The

implementation procedure continues by applying the roulette wheel selection method to select

from  ,HS HCI . The selected hybrid approach should then be applied () 1n n − times.

The resulting solutions are appraised by calculating the fitness value, makespan in this study,

to check whether or not the overall performance is improved. It is worthwhile noting that the

reward and selection probability values should be updated after each move, that is,

k k new   + . This procedure should be repeated for the JCI, IS, and ICI local search

moves.

3.2.5. Conditional mechanisms

Two conditional mechanisms are considered: the acceptance mechanism and the termination

criterion. The former decides whether to accept a new solution, and the latter determines when

to stop the search procedure.

Traditionally, a new solution is accepted only if it performs strictly better than the old

solution. However, this approach is prone to missing out on promising solutions when

searching complex solution spaces. Hatami et al. (2015) introduced a competitive acceptance

 23

criterion to help reduce the odds of falling within local optimality, addressing the mentioned

shortcoming. On this basis, every new solution will be evaluated after passing the construction

and local search procedures. This study adopts the acceptance mechanism introduced by

(Hatami et al. 2015) to help improve the performance of the search algorithm. In this

approach, the acceptance probability is based on Expression (15), where Relative Percentage

Difference (RPD) is the comparative difference between the new and old solutions, which is

calculated using Equation (16). In this definition, the smaller the RPD value, the better the

solution quality and the higher the likelihood of accepting it. A random number between zero

and one is first generated whenever the acceptance function is provoked. If the random

number is smaller than
 RPDe −

, the new solution should be accepted. Otherwise, the new

solution will be discarded from the memory.

 RPDrandom e − (15)

max max

max

() ()
100

()

C C
RPD

C

 



 −
=  (16)

The maximum CPU time and the maximum iterations are the most widely applied

termination condition in the scheduling literature (Cheng et al. 2021); the former is considered

as the termination criterion of the MIG and the benchmark algorithms to ensure a fair analysis

of the algorithms' performance. Therefore, the algorithms terminate and return the (near-)

optimum solutions when CPU time equals 0.1 n , where the threshold increases

proportionate to the workload. The resulting fitness values are analyzed in the numerical

analysis section.

4. Numerical analysis

This section analyzes the results of the extensive numerical experiments for evaluating the

performance of the developed solution algorithm, MIG. To proceed with the experiments, the

 24

MIG algorithm is first calibrated using 120 random test instances, and the Relative

Performance Deviation (RPD) measure is calculated using Equation (16). The smaller RPDs

are preferred with max ()C  and max ()C  specifying the best-found makespan and the

makespan under consideration, respectively. The calibration results are summarized in Table

2, based on which a destruction value equal to 4 is considered for conducting the final

experiments. The remainder of this section begins with a description of the configuration of

the test instances. Results analysis and statistical test of significance follow to evaluate the

developed solution method. The benchmark algorithms, MIG and CMA, are coded and

compiled using C++ programming language on a personal computer with the following specs:

Intel® Core™ i7-7700 CPU 3.60GHz, 16GB RAM, and Windows 10 Operating System.

Besides, Gurobi 9.0.3 is used to confirm the correctness of the developed mathematical

formulation and compared with the results obtained by the metaheuristic algorithms for small

test instances.

Table 2. Test results for calibration of the MIG algorithm (best result in bold).

Destruction Count Relative Performance Deviation

2 2.686

3 2.445

4 1.634

5 1.853

6 1.676

7 1.690

8 1.784

4.1. Dataset description

This study follows Deng et al. (2016) to configure a new set of test instances. On this basis,

various numbers of jobs   10, 20, 50, 100, 200, 500 , machines   2, 4, 6, 8 , and

factories   2, 3, 4, 5, 6 are considered to analyze the impact of operational parameters on

 25

the scheduling outcomes. The processing and setup times are generated randomly using a

continuous uniform distribution function with () 1, 100 U and () 1, 20 U seconds,

respectively. Considering ten variants to each of 5 6 4f n m  =   =120 configurations, a

total of 1200 test instances are considered for the numerical experiments. The solution

algorithms are run ten times for solving each of the test instances; the results are provided

below.

4.2. Results analysis

First, test instances with a small workload of 10 jobs are solved using the exact solution

approach (MILP), CMA, and the MIG algorithm. The results are compared considering RPD

and summarized in Table 3 with ‘zero’ indicating the best-obtained results. This table also

reports the number of successful attempts in obtaining the best results and the required

calculation time. It is observed that CMA performs relatively steadier in solving very small

test instances. Expectedly, the computational time of the MIG and CMA algorithms for

solving very small instances are significantly shorter than that of the exact algorithm, while

the best solutions found by these metaheuristics are close to the exact value.

Table 3. Exact solution results analysis over very small test instances.

Parameter

MIG CMA MILP

Best RPD No. Time Best RPD No. Time Best RPD No. Time

F
ac

to
ri

es
 (

f)

2 332.67 2.14 16 1.005 330.45 1.22 30 1.000 329.97 0.00 40 307.859

3 237.05 2.45 29 1.006 236.12 1.15 37 1.000 235.77 0.00 40 32.258

4 188.07 3.01 31 1.009 187.37 0.76 38 1.000 187.25 0.00 40 5.895

5 162.07 3.63 22 1.013 158.95 0.56 40 1.000 158.95 0.00 40 0.527

6 147.25 3.07 37 1.011 146.77 0.31 40 1.000 146.77 0.00 40 0.327

M
ac

h
in

es
 (

m
) 2 190.44 3.38 29 1.012 188.66 0.96 44 1.000 188.44 0.00 50 38.001

4 210.22 2.87 34 1.008 208.50 0.86 48 1.000 208.42 0.00 50 49.669

6 222.92 2.96 32 1.008 220.88 0.73 47 1.000 220.72 0.00 50 74.181

8 230.12 2.24 40 1.008 229.70 0.66 46 1.000 229.40 0.00 50 115.642

 26

Next, the BFS to each of the 1200 test instances is considered for macro analysis.

Analyzing the results considering various workloads, the number of machines in each factory,

and the number of factories are summarized in Table 4. The overall analysis of the results

shows that CMA performs slightly better for solving problems with small workloads, i.e., 10

and 20 jobs. However, better solutions are yielded by MIG for instances with more than 50

jobs. The over-performance gap between MIG and CMA increases sharply when solving

larger test instances with about a 5 percent difference for solving the problems with 500 jobs.

One can expect that the difference becomes even more significant when addressing very

large-scale industrial cases. Besides, the results obtained by MIG are notably steadier for

solving medium- and large-scale problems with standard deviations of around 10 percent of

that resulting from CMA. Analyzing the impact of operational scale, i.e., an increase in the

number of machines and factories, shows that MIG yields better solutions in all the categories.

It indicates that the superiority of MIG over CMA in solving large-scale instances is more

significant than that of the results obtained by these algorithms in solving small-scale

instances.

Table 4. Results analysis considering various operational parameters (best in bold).

Parameter
CMA MIG

Best Ave StD Best Ave StD

Jo
b
s

(n
)

10 211.94 213.60 1.66 213.42 217.35 3.13

20 378.58 384.90 3.78 380.96 389.61 5.33

50 886.69 897.59 6.84 888.32 898.71 6.29

100 1751.22 1769.73 11.64 1737.92 1750.08 7.47

200 3491.11 3517.71 17.41 3417.78 3430.57 7.63

500 8822.22 8984.95 159.19 8417.00 8429.51 7.23

M
ac

h
in

e

s
(m

)

2 2492.77 2513.30 15.30 2394.21 2403.05 5.39

4 2582.57 2606.16 19.28 2503.52 2513.54 6.34

6 2626.64 2671.05 43.03 2553.39 2563.84 6.19

8 2659.20 2721.81 56.06 2585.83 2596.79 6.81

F
ac

to
ri

es
 (

f)
 2 4407.70 4428.94 14.06 4270.33 4284.04 8.06

3 2964.15 2997.67 36.80 2875.87 2886.77 6.57

4 2244.45 2285.03 36.50 2176.07 2185.73 6.06

5 1809.51 1853.60 38.50 1752.56 1760.65 5.08

6 1525.65 1575.16 41.25 1471.34 1479.33 5.15

 27

The extent of difference between the performances of the benchmark algorithms can be

better observed by analyzing the Average Relative Performance Deviation (ARPD) values.

According to Table 5, the difference in the results for the instances with 500 jobs is 0.15

(MIG) to 7.43 (CMA), which showcases the superiority of MIG over the best-performing

solution algorithm in the literature, CMA, for solving industry-scale problems. The gap

becomes smaller with a decrease in the workload. In contrast, the impact of the change in the

number of machines and factories appeared to be negligible because the difference between

ARPDs resulting from MIG and CMA remains about the same over various parameter values.

Notably, MIG shows a higher accuracy considering the number of successful attempts in

search for the BFS.

Table 5. Analysis of the Relative Performance Deviation (RPD) (best in bold).

Parameter

CMA MIG

RPD Successful Attempts RPD Successful Attempts

Jo
b
s

(n
)

10 0.80 185 2.86 135

20 2.12 146 3.63 71

50 1.54 117 1.71 95

100 1.98 20 0.78 182

200 3.04 0 0.39 200

500 7.43 0 0.15 200

M
ac

h
in

es
 (

m
) 2 2.88 117 1.58 216

4 2.55 116 1.56 224

6 2.81 112 1.63 223

8 3.04 123 1.59 220

F
ac

to
ri

es
 (

f)

2 2.17 76 0.99 175

3 2.40 97 1.27 176

4 2.79 92 1.66 183

5 3.09 101 1.90 167

6 3.64 102 2.11 182

As a final step to our analysis, a paired t-test is conducted to check whether there is a

 28

statistical difference between the means of two groups of fitness values considering 1200 test

instances. Considering a confidence level of 95 percent, the null hypothesis speculates that the

two population means are equal, that is, the difference between the two groups of fitness

values is equal to 0. The results reported in Table 6 indicate that t-Statistic value is greater

than t-Critical. With the p-value being less than the significance level, we can reject the null

hypothesis. It can be confirmed that the difference between the results obtained by the MIG,

and CMA algorithms is significant and that MIG can be now regarded as the best-performing

algorithm for optimizing the DTSAFSP-MS variant of DSPs.

Table 6. Paired t-test analysis of the performance difference between MIG and CMA.

Mean StD Error DoF t-Statistic t-Critical p-value

0.0123 0.0362 0.0010 1199 11.7886 1.9619 0.0000

5. Conclusions

Integrating production and assembly operations in distributed manufacturing environments is

a notable evolution in the scheduling literature; it helps optimize SCs and has implications for

lean manufacturing by maximizing productivity within an integrated planning procedure. This

study provides a comprehensive review of the distributed two-stage flowshop scheduling

literature, a new mathematical formulation, and a novel extension to the IG algorithm as its

major contributions. An extensive numerical analysis with 1200 test instances shows that the

MIG algorithm yielded the vast majority of the BFSs. The statistical test confirmed the

significance of the resulting improvement, confirming MIG as a strong benchmark algorithm

for optimizing the DTSAFSP-MS.

This study can be extended in several directions. First, two-stage assembly production can

be combined with the flexible assembly in a separate factory to simultaneously account for

 29

sub-assemblies at OEMs and the final assembly at the mother company. Second, this research

is limited in that the operational parameters are assumed to be deterministic. The next

direction for future research can address this shortcoming through stochastic optimization

and/or the use of fuzzy and gray-based methods. Third, the mixed-setup production setting

can be tested in other scheduling environments with heterogeneous production technology and

operations to address this basic assumption. Fourth, additional job- and process-related

constraints can be included in the DTSAFSP-MS formulation to account for case-specific

operational requirements. Finally, we feel that new approximation algorithms can be

developed to improve further the BFS found in our study. For this purpose, applications of

supervised- and unsupervised-learning-based methods are worthwhile research topics to

address less-tangible aspects of the operations.

References

Ali, A., Gajpal, Y., & Elmekkawy, T. Y. (2020). Distributed permutation flowshop scheduling

problem with total completion time objective. OPSEARCH, 1–23.

https://doi.org/10.1007/s12597-020-00484-3

Cheng, C.-Y., Pourhejazy, P., Ying, K.-C., & Huang, S.-Y. (2021). New Benchmark Algorithm

for Minimizing Total Completion Time in blocking flowshops with sequence-dependent

setup times. Applied Soft Computing, 107229.

https://doi.org/10.1016/j.asoc.2021.107229

Deng, J., Wang, L., Wang, S., & Zheng, X. (2016). A competitive memetic algorithm for the

distributed two-stage assembly flow-shop scheduling problem. International Journal of

Production Research, 54(12), 3561–3577.

https://doi.org/10.1080/00207543.2015.1084063

Fazel Zarandi, M. H., Sadat Asl, A. A., Sotudian, S., & Castillo, O. (2020). A state of the art

review of intelligent scheduling. Artificial Intelligence Review, 53(1), 501–593.

https://doi.org/10.1007/s10462-018-9667-6

Gonzalez-Neira, E. M., Ferone, D., Hatami, S., & Juan, A. A. (2017). A biased-randomized

simheuristic for the distributed assembly permutation flowshop problem with stochastic

processing times. Simulation Modelling Practice and Theory, 79, 23–36.

https://doi.org/10.1016/j.simpat.2017.09.001

Hao, J.-H., Li, J.-Q., Du, Y., Song, M.-X., Duan, P., & Zhang, Y.-Y. (2019). Solving

distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization

algorithm. Ieee Access, 7, 66879–66894. https://doi.org/10.1109/ACCESS.2019.2917273

Hatami, S., Ruiz, R., & Andrés-Romano, C. (2013). The Distributed Assembly Permutation

Flowshop Scheduling Problem. International Journal of Production Research, 51(17),

5292–5308. https://doi.org/10.1080/00207543.2013.807955

Hatami, S., Ruiz, R., & Andrés-Romano, C. (2015). Heuristics and metaheuristics for the

 30

distributed assembly permutation flowshop scheduling problem with sequence dependent

setup times. International Journal of Production Economics, 169, 76–88.

https://doi.org/10.1016/j.ijpe.2015.07.027

Huang, J.-P., Pan, Q.-K., & Gao, L. (2020). An effective iterated greedy method for the

distributed permutation flowshop scheduling problem with sequence-dependent setup

times. Swarm and Evolutionary Computation, 59, 100742.

https://doi.org/10.1016/j.swevo.2020.100742

Huang, J.-P., Pan, Q.-K., Miao, Z.-H., & Gao, L. (2021). Effective constructive heuristics and

discrete bee colony optimization for distributed flowshop with setup times. Engineering

Applications of Artificial Intelligence, 97, 104016.

https://doi.org/10.1016/j.engappai.2020.104016

Huang, Y.-Y., Pan, Q.-K., Huang, J.-P., Suganthan, P. N., & Gao, L. (2021). An improved

iterated greedy algorithm for the distributed assembly permutation flowshop scheduling

problem. Computers & Industrial Engineering, 152, 107021.

Jeong, I.-J., & Leon, V. J. (2002). A distributed scheduling methodology for a two-machine

flowshop using cooperative interaction via multiple coupling agents. Journal of

Manufacturing Systems, 21(2), 126–139.

Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2002). Web-based Multi-functional

Scheduling System for a Distributed Manufacturing Environment. Concurrent

Engineering, 10(1), 27–39. https://doi.org/10.1177/1063293X02010001054

Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2003). A modified genetic algorithm

for distributed scheduling problems. Journal of Intelligent Manufacturing, 14(3–4),

351–362. https://doi.org/10.1023/A:1024653810491

Jing, X.-L., Pan, Q.-K., Gao, L., & Wang, Y.-L. (2020). An effective Iterated Greedy

algorithm for the distributed permutation flowshop scheduling with due windows.

Applied Soft Computing, 96, 106629.

Khare, A., & Agrawal, S. (2020). Effective heuristics and metaheuristics to minimise total

tardiness for the distributed permutation flowshop scheduling problem. International

Journal of Production Research, 1–17.

Komaki, M., & Malakooti, B. (2017). General variable neighborhood search algorithm to

minimize makespan of the distributed no-wait flow shop scheduling problem. Production

Engineering, 11(3), 315–329.

Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the

3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5),

616–625. https://doi.org/10.1287/mnsc.39.5.616

Lei, D., Su, B., & Li, M. (2020). Cooperated teaching-learning-based optimisation for

distributed two-stage assembly flow shop scheduling. International Journal of

Production Research, 1–14. https://doi.org/10.1080/00207543.2020.1836422

Lei, D., & Wang, T. (2020). Solving distributed two-stage hybrid flowshop scheduling using a

shuffled frog-leaping algorithm with memeplex grouping. Engineering Optimization,

52(9), 1461–1474. https://doi.org/10.1080/0305215X.2019.1674295

Li, H., Li, X., & Gao, L. (2020). A discrete artificial bee colony algorithm for the distributed

heterogeneous no-wait flowshop scheduling problem. Applied Soft Computing, 106946.

Li, W., Li, J., Gao, K., Han, Y., Niu, B., Liu, Z., & Sun, Q. (2019). Solving robotic distributed

flowshop problem using an improved iterated greedy algorithm. International Journal of

Advanced Robotic Systems, 16(5), 1729881419879819.

Li, Y., Li, X., Gao, L., & Meng, L. (2020). An improved artificial bee colony algorithm for

distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent

setup times. Computers & Industrial Engineering, 147, 106638.

https://doi.org/10.1016/j.cie.2020.106638

 31

Li, Y., Li, X., Gao, L., Zhang, B., Pan, Q.-K., Tasgetiren, M. F., & Meng, L. (2020). A discrete

artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with

sequence-dependent setup times. International Journal of Production Research, 1–20.

https://doi.org/10.1080/00207543.2020.1753897

Lin, S.-W., & Ying, K.-C. (2016). Minimizing makespan for solving the distributed no-wait

flowshop scheduling problem. Computers & Industrial Engineering, 99, 202–209.

Lin, W.-C. (2018). Minimizing the Makespan for a Two-Stage Three-Machine Assembly Flow

Shop Problem with the Sum-of-Processing-Time Based Learning Effect. Discrete

Dynamics in Nature and Society, 2018, 1–15. https://doi.org/10.1155/2018/8170294

Mao, J., Pan, Q., Miao, Z., & Gao, L. (2021). An effective multi-start iterated greedy

algorithm to minimize makespan for the distributed permutation flowshop scheduling

problem with preventive maintenance. Expert Systems with Applications, 169, 114495.

https://doi.org/10.1016/j.eswa.2020.114495

Meng, T., & Pan, Q.-K. (2021). A distributed heterogeneous permutation flowshop scheduling

problem with lot-streaming and carryover sequence-dependent setup time. Swarm and

Evolutionary Computation, 60, 100804. https://doi.org/10.1016/j.swevo.2020.100804

Meng, T., Pan, Q.-K., & Wang, L. (2019). A distributed permutation flowshop scheduling

problem with the customer order constraint. Knowledge-Based Systems, 184, 104894.

Naderi, B., & Ruiz, R. (2010). The distributed permutation flowshop scheduling problem.

Computers & Operations Research, 37(4), 754–768.

https://doi.org/10.1016/j.cor.2009.06.019

Neufeld, J. S., Gupta, J. N. D., & Buscher, U. (2016). A comprehensive review of flowshop

group scheduling literature. Computers & Operations Research, 70, 56–74.

https://doi.org/10.1016/j.cor.2015.12.006

Ong, Y. S., & Keane, A. J. (2004). Meta-Lamarckian learning in memetic algorithms. IEEE

transactions on evolutionary computation, 8(2), 99–110.

Ozsoydan, F. B., & Sagir, M. (2021). Iterated greedy algorithms enhanced by hyper-heuristic

based learning for hybrid flexible flowshop scheduling problem with sequence dependent

setup times: a case study at a manufacturing plant. Computers & Operations Research,

125, 105044. https://doi.org/10.1016/j.cor.2020.105044

Pan, J.-Q., Zou, W.-Q., & Duan, J.-H. (2018). A Discrete Artificial Bee Colony for Distributed

Permutation Flowshop Scheduling Problem with Total Flow Time Minimization. In 2018

37th Chinese Control Conference (CCC) (pp. 8379–8383). IEEE.

https://doi.org/10.23919/ChiCC.2018.8482716

Pan, Q.-K., Gao, L., & Wang, L. (2021). An Effective Cooperative Co-Evolutionary

Algorithm for Distributed Flowshop Group Scheduling Problems. IEEE Transactions on

Cybernetics, 1–14. https://doi.org/10.1109/TCYB.2020.3041494

Pan, Q.-K., Gao, L., Wang, L., Liang, J., & Li, X.-Y. (2019). Effective heuristics and

metaheuristics to minimize total flowtime for the distributed permutation flowshop

problem. Expert Systems with Applications, 124, 309–324.

Parente, M., Figueira, G., Amorim, P., & Marques, A. (2020). Production scheduling in the

context of Industry 4.0: review and trends. International Journal of Production Research,

58(17), 5401–5431. https://doi.org/10.1080/00207543.2020.1718794

Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., & Zwaneveld, C.

M. (1995). The Two-Stage Assembly Scheduling Problem: Complexity and

Approximation. Operations Research, 43(2), 346–355.

https://doi.org/10.1287/opre.43.2.346

Riahi, V., Chiong, R., & Zhang, Y. (2020). A new iterated greedy algorithm for no-idle

permutation flowshop scheduling with the total tardiness criterion. Computers and

Operations Research, 117. https://doi.org/10.1016/j.cor.2019.104839

 32

Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow

shop scheduling problems from a production system and a solutions procedure

perspective. Computers & Operations Research, 37(8), 1439–1454.

https://doi.org/10.1016/j.cor.2009.11.001

Ruiz, R., Pan, Q.-K., & Naderi, B. (2019). Iterated Greedy methods for the distributed

permutation flowshop scheduling problem. Omega, 83, 213–222.

https://doi.org/10.1016/j.omega.2018.03.004

Sang, H.-Y., Pan, Q.-K., Li, J.-Q., Wang, P., Han, Y.-Y., Gao, K.-Z., & Duan, P. (2019).

Effective invasive weed optimization algorithms for distributed assembly permutation

flowshop problem with total flowtime criterion. Swarm and evolutionary computation,

44, 64–73.

Shao, W., Shao, Z., & Pi, D. (2020). Modeling and multi-neighborhood iterated greedy

algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based

Systems, 194, 105527. https://doi.org/10.1016/j.knosys.2020.105527

Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E., & Shankar, R. (2008). Designing and

managing the supply chain: concepts, strategies and case studies. Tata McGraw-Hill

Education.

Wang, K., Huang, Y., & Qin, H. (2016). A fuzzy logic-based hybrid estimation of distribution

algorithm for distributed permutation flowshop scheduling problems under machine

breakdown. Journal of the Operational Research Society, 67(1), 68–82.

https://doi.org/10.1057/jors.2015.50

Wu, C.-C., Chen, J.-Y., Lin, W.-C., Lai, K., Bai, D., & Lai, S.-Y. (2019). A two-stage

three-machine assembly scheduling flowshop problem with both two-agent and learning

phenomenon. Computers & Industrial Engineering, 130, 485–499.

https://doi.org/10.1016/j.cie.2019.02.047

Wu, C.-C., Chen, J.-Y., Lin, W.-C., Lai, K., Liu, S.-C., & Yu, P.-W. (2018). A two-stage

three-machine assembly flow shop scheduling with learning consideration to minimize

the flowtime by six hybrids of particle swarm optimization. Swarm and Evolutionary

Computation, 41, 97–110. https://doi.org/10.1016/j.swevo.2018.01.012

Xiong, F., & Xing, K. (2014). Meta-heuristics for the distributed two-stage assembly

scheduling problem with bi-criteria of makespan and mean completion time.

International Journal of Production Research, 52(9), 2743–2766.

https://doi.org/10.1080/00207543.2014.884290

Xiong, F., Xing, K., Wang, F., Lei, H., & Han, L. (2014). Minimizing the total completion

time in a distributed two stage assembly system with setup times. Computers &

Operations Research, 47, 92–105. https://doi.org/10.1016/j.cor.2014.02.005

Yang, S., & Xu, Z. (2020). The distributed assembly permutation flowshop scheduling

problem with flexible assembly and batch delivery. International Journal of Production

Research, 1–19. https://doi.org/10.1080/00207543.2020.1757174

Ying, K.-C., & Lin, S.-W. (2018). Minimizing makespan for the distributed hybrid flowshop

scheduling problem with multiprocessor tasks. Expert Systems with Applications, 92,

132–141. https://doi.org/10.1016/j.eswa.2017.09.032

Ying, K.-C., Lin, S.-W., Cheng, C.-Y., & He, C.-D. (2017). Iterated reference greedy

algorithm for solving distributed no-idle permutation flowshop scheduling problems.

Computers & Industrial Engineering, 110, 413–423.

Ying, K.-C., Pourhejazy, P., Cheng, C.-Y., & Syu, R.-S. (2020). Supply chain-oriented

permutation flowshop scheduling considering flexible assembly and setup times.

International Journal of Production Research, 58(20), 1–24.

https://doi.org/10.1080/00207543.2020.1842938

Zhang, G., & Xing, K. (2018). Memetic social spider optimization algorithm for scheduling

 33

two-stage assembly flowshop in a distributed environment. Computers & Industrial

Engineering, 125, 423–433. https://doi.org/10.1016/j.cie.2018.09.007

Zhang, G., & Xing, K. (2019). Differential evolution metaheuristics for distributed

limited-buffer flowshop scheduling with makespan criterion. Computers & Operations

Research, 108, 33–43.

Zhang, G., Xing, K., & Cao, F. (2018). Discrete differential evolution algorithm for

distributed blocking flowshop scheduling with makespan criterion. Engineering

Applications of Artificial Intelligence, 76, 96–107.

Zhang, G., Xing, K., Zhang, G., & He, Z. (2020). Memetic Algorithm With Meta-Lamarckian

Learning and Simplex Search for Distributed Flexible Assembly Permutation Flowshop

Scheduling Problem. IEEE Access, 8, 96115–96128.

https://doi.org/10.1109/ACCESS.2020.2996305

Zhang, X., Li, X. T., & Yin, M. H. (2020). An enhanced genetic algorithm for the distributed

assembly permutation flowshop scheduling problem. International Journal of

Bio-Inspired Computation, 15(2), 113. https://doi.org/10.1504/IJBIC.2020.106443

Zhao, F., Zhang, L., Cao, J., & Tang, J. (2021). A cooperative water wave optimization

algorithm with reinforcement learning for the distributed assembly no-idle flowshop

scheduling problem. Computers & Industrial Engineering, 153, 107082.

Zhao, F., Zhao, L., Wang, L., & Song, H. (2020). An ensemble discrete differential evolution

for the distributed blocking flowshop scheduling with minimizing makespan criterion.

Expert Systems with Applications, 160, 113678.

