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ABSTRACT 

Integrated scheduling of distributed manufacturing operations has implications for supply 

chain optimization and requires further investigations to facilitate its application area for 

various industry settings. This study extends the limited literature of the distributed two-stage 

production-assembly scheduling problems offering a twofold contribution. First, an original 

mathematical extension, the Distributed Two-Stage Assembly Flowshop Scheduling Problem 

with Mixed-Setup (DTSAFSP-MS) is investigated to integrate setup time constraints while 

addressing an overlooked scheduling assumption. Second, a novel extension to the Iterated 

Greedy algorithm is developed to solve this understudied scheduling problem. An extensive 

set of test instances is considered to evaluate the effectiveness of the developed solution 

algorithm comparing it with the current-best-performing algorithm in the literature. Results 

are supportive of the Meta-Lamarckian-based Iterated Greedy (MIG) as a strong benchmark 

algorithm for solving DTSAFSP-MS with the statistical tests confirming its meaningfully 

better performance compared to the state-of-the-art. 
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1. Introduction 

The competitiveness of companies depends on the performance of their supply chains (SCs). 

Given the interactions between various entities across SCs, the operational activities should 

not be planned in a stand-alone way; the players should follow a system-wide strategy to 

pursue the global best of the operational performance (Simchi-Levi et al. 2008). Production 

scheduling helps coordinate the production operations across SCs (Ying et al. 2020); 

integrated planning approaches can bring about improvements beyond optimality norms for 

individuals, which results in collective productivity. 

Production scheduling literature has witnessed substantial development with myriad 

mathematical extensions and solution algorithms to address the basic assumptions of the 

scheduling theory that limits its practicability and real-world applications (Fazel Zarandi et al. 

2020; Parente et al. 2020). Introducing job- and process-related constraints and new decision 

variables have been at the center of attention for bridging the gap between scheduling theory 

and practice. Integrated production-assembly scheduling is a prime example of growing 

popularity, which has evolved from the Two-Stage Assembly Scheduling Problem (TSASP; 

Lee et al., 1993) and the Distributed Assembly Permutation Flowshop Scheduling Problem 

(DAPFSP; Hatami et al., 2013), to integrate heterogeneous operations across distributed 

manufacturing facilities. 

In the industries where the Original Equipment Manufacturers (OEM) produce 

components and parts for a final assembly at the assembly centers, DAPFSP is a suitable 

optimization tool. In many other cases, however, the manufactured components should be 

assembled soon after the production process because of the operational limitations and 

product features, for example, when sealant/adhesives must be applied before the final 

assembly. In this situation, the Distributed Two-Stage Assembly Flowshop Scheduling 
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Problem (DTSAFSP; Xiong & Xing, 2014) best describes the real operational environment. 

The DTSAFSPs studies are comparatively limited; only a handful of published works have 

contributed to the development of this scheduling extension in flowshops with more than three 

machines (Deng et al. 2016; Lei et al. 2020; Xiong et al. 2014; Xiong and Xing 2014; G. 

Zhang and Xing 2018). 

Accounting for setup operations has been a major improvement in the scheduling field and 

a prime example of efforts for bridging the gap between theory and practice. Recent studies 

integrated the setup constraints into various classes of distributed scheduling problems 

(Hatami et al. 2015; J.-P. Huang et al. 2020, 2021; Y. Li, Li, Gao, and Meng 2020; Y. Li, Li, 

Gao, Zhang, et al. 2020; Meng and Pan 2021; Xiong et al. 2014; Ying et al. 2020); these 

studies assumed that all of the operations require setup operations, which may not be the case 

when integrated production-assembly are considered. To put it into context, let assume the 

situation where a part of the production process is done using dedicated machinery, robots, or 

human operators, like assembling parts, while the rest of the machines are multi-purpose. In 

this situation, the parts arriving for final assembly can be processed without requiring a setup. 

In this example, considering a mixed-setup setting account for operations with and without 

setup time constraints to better represent the situation. This special case of having 

Sequence-Dependent Setup Times (SDST) is prevalent in the scheduling environments with 

heterogeneous operations, e.g., parts production, assembly, and service operations. Motivated 

by this practical setting, this study proposes an original mathematical formulation for the 

Distributed Two-Stage Assembly-Flowshop Scheduling Problem with Mixed Setups 

(DTSAFSP-MS) and develops a novel metaheuristic to effectively solve the problem.  

The remainder of this manuscript is structured in four sections. Section 2 provides an 

exhaustive review of the relevant literature. Section 3 elaborates on the proposed method, i.e., 

the mathematical formulation and the solution algorithm. Section 4 is dedicated to 
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experimental results analysis to benchmark the developed solution method against the 

state-of-the-art algorithm developed to solve the distributed flowshop scheduling problems. 

Finally, Section 5 concludes this research work and provides suggestions on future research 

directions for interested readers.  

2. Literature review 

Many extensions have been introduced to address case-specific operational situations for 

broader real-world applications of the flowshop scheduling problem. Distributed flowshop 

scheduling is a prime example of increasing recognition, motivated by the fact that production 

planning and scheduling can benefit from advanced communication systems to provide 

well-informed decisions in distributed manufacturing environments (Ying et al. 2020). Given 

the complexities involved in managing distributed operations, the distributed scheduling 

problems (DSP; Jia et al., 2002, 2003) have seen considerable development. This section 

systematically reviews the published contributions searching the distributed flowshops in the 

Google Scholar database. Given a total of 93 unique research items, 54 journal papers in the 

English language are perceived as relevant and considered for a detailed review. The majority 

of these works, i.e., 42 out of 54, have been published in the past five years, showing that this 

research topic is experiencing steady growth. We first analyze the review outcomes from a 

macro perspective concerning; the production setting and the studied performance indicator 

are considered as suggested by (Neufeld et al. 2016; Ribas et al. 2010). We then dive deeper 

into the most relevant stream of the research to the present manuscript.  

Considering the optimization criterion, 41 articles considered minimizing the maximum 

completion time (makespan); the rest considered the total completion time (Ali et al. 2020; 

Wu et al. 2019; Xiong et al. 2014; G. Zhang and Xing 2018), total flow time (Y.-Y. Huang et 

al. 2021; Q.-K. Pan et al. 2019; Sang et al. 2019; Wu et al. 2018), the weighted sum of 

completion time (Jeong and Leon 2002), the weighted sum of earliness and tardiness (Jing et 
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al. 2020), total tardiness (Khare and Agrawal 2020), and total cost of delivery and tardiness 

(Yang and Xu 2020). Besides, one paper studied a multi-objective variant aiming to minimize 

maximum and mean completion times (Xiong and Xing 2014). 

Distributed scheduling has been extended for various production environments, like 

distributed flowshop with heterogeneous factories (H. Li et al. 2020; Y. Li, Li, Gao, and Meng 

2020; Meng and Pan 2021), group scheduling (Q.-K. Pan et al. 2021), hybrid flowshop (Hao 

et al. 2019; Lei and Wang 2020; Y. Li, Li, Gao, and Meng 2020; Y. Li, Li, Gao, Zhang, et al. 

2020; Ying and Lin 2018), and integrated assembly-production flowshop (Deng et al. 2016; 

Lei et al. 2020; W.-C. Lin 2018; Wu et al. 2018, 2019; Xiong et al. 2014; Xiong and Xing 

2014; G. Zhang and Xing 2018). Various production settings and practical features have also 

been integrated into the distributed flowshop to facilitate its real-world applications; blocking 

conditions (W. Li et al. 2019; G. Zhang et al. 2018; Zhao et al. 2020), limited buffer 

constraints (G. Zhang and Xing 2019), no-wait (Komaki and Malakooti 2017; H. Li et al. 

2020; S.-W. Lin and Ying 2016), no-idle (Ying et al. 2017; Zhao et al. 2021), customer 

order-priority (Meng et al. 2019), time window constraints (Jing et al. 2020), 

machine-breakdowns (Wang et al. 2016), and preventive maintenance (Mao et al. 2021) are 

the seminal examples.  

Integrated scheduling of the distributed production-assembly operations has received 

recent recognition in the scheduling literature. Extending the seminal work of (Naderi and 

Ruiz 2010), Hatami et al. (2013) introduced the Distributed Assembly 

Permutation Flowshop Scheduling Problem (DAPFSP) and developed a Variable 

Neighborhood Descent to minimize the makespan. Later, Hatami et al. (2015) applied the 

basic Iterated Greedy (IG) algorithm to solve the extended DAPFSP considering setup times 

and makespan criterion. Other researchers extended these seminal works, for example, by 

including stochastic processing time within a simulation-based optimization approach 
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(Gonzalez-Neira et al. 2017), no-idle setting optimized using Water Wave Optimization (Zhao 

et al. 2021), and a two-stage hybrid flowshop with Shuffled Frog-leaping Optimization (Lei 

and Wang 2020), all minimizing the makespan. In earlier studies, (J.-Q. Pan et al. 2018) 

improved the Best-Found Solutions (BFS) considering total flow time. Invasive Weed 

Optimization of (Sang et al. 2019) addressed the same optimization criterion with the BFSs 

being later on improved by (Huang et al., 2021). The Genetic Algorithm of (Zhang et al., 

2020) is another solution algorithm developed to solve the DAPFSPs, minimizing the 

makespan.  

Yang & Xu (2020) the first time included more than one machine in the assembly plant, 

the so-called flexible assembly. They also integrated the batch delivery setting into the 

problem and minimized the total cost of delivery and tardiness. Considering this seminal 

work, (Ying et al. 2020; G. Zhang et al. 2020) improved the BFS to the DAPFSP with flexible 

assembly, minimizing the makespan. These studies assumed that the assembly stage is 

executed in a geographical location different from the production factory and that 

sub-assemblies are not required after producing the components in the OEM. This assumption 

does not apply to the production of many products, like fire engines (Lee et al. 1993) and 

personal computers (Potts et al. 1995), where a two-stage production assembly is required at 

the OEMs plant. A general example of this situation is when the components should be 

assembled instantly after the production process because of the operational limitations, for 

example, immediate assembly after applying sealant/adhesives. Xiong & Xing (2014) 

extended the Two-Stage Assembly Scheduling Problem (TSASP; Lee et al., 1993) to account 

for this production setting in a distributed manufacturing environment. The DTSAFSP 

accounts for integrated production-assembly operations in every production site while the 

DAPFSP assumes that these operations are conducted in detached places (Figure 1). 
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(a). DTSAFSP 

 
(b). DAPFSP 

Figure 1. A visual illustration of the difference between DTSAFSP and DAPFSP. 

Unlike the DAPFSP that has seen considerable development in terms of new mathematical 

extensions and solution algorithms, the journal papers to DTSAFSPs are limited; apart from 

the two-stage three-machine assembly scheduling (W.-C. Lin 2018; Wu et al. 2018, 2019), 

which is a limited edition to the DTSAFSP, only four published works extended the seminal 

work of (Xiong and Xing 2014). Xiong et al. (2014) developed a Variable Neighborhood 

Search algorithm to minimize the total completion time in DTSAFSP with setup times. G. 

Zhang & Xing (2018) developed a Social Spider Optimization algorithm to minimize total 

completion time in DTSAFSP. Deng et al. (2016) developed a Competitive Memetic 
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Algorithm (CMA) to introduce the best-found makespan value to the DTSAFSPs, which 

outperformed the VNS algorithm and the hybrid of GA with RVNS developed by Xiong et al. 

(2014). The Cooperated Teaching-Learning-based Optimization (Lei et al. 2020) is more 

recent research that failed to outperform the CMA algorithm in terms of solution quality and 

computational time. No scheduling studies accounted for a mixed-setup situation; this 

operational situation is prevalent when different operations or production technologies in 

different factories are considered. The present study proposes a new mathematical formulation 

and a novel solution algorithm, the MIG algorithm, to solve this emerging scheduling 

extension comparing it with the best-performing algorithm, CMA. 

3. Proposed method 

3.1. Mathematical formulation 

Let assume f  homogeneous factories producing products in an SC. Each of the factories 

includes both production and assembly operations and is equipped with machinery to process 

a total of {0,  1,  2,  ...,  }=N n  jobs/products. The machines in the production stage of the 

factories are multi-purpose; hence, require setup times between two consecutive assignments. 

However, the assembly stage does not require a setup due to the use of automated assembly 

systems. Jobs follow the same routine across the SC. It is assumed that each job j N  can 

be processed on exactly one machine/stage at a given time. Moreover, setup times are 

assumed to be job sequence-dependent at the production stage while the assembly stage does 

not require setup operations. The processing times are deterministic but independent of the 

order of the job/products. It is also assumed that the assignments are executable immediately 

at the starting point of the planning period. Once assigned, the jobs can no longer be 

re-assigned to another factory. The model is hereafter denoted by 
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sd max(DPm 1) 0  mixed ST  C→ → − , where ( 1) 0→ →DPm  indicate that the distributed 

system has m  parallel machines in the production stage of each factory and one assembly 

machine completing the final assembly operations; sdmixed ST−  specifies that the production 

stage is characterized by SDSTs, while the assembly operations do not require a setup; the 

maximum completion time (makespan) of the assembly operations is denoted by maxC  

indicating the optimization criterion. 

Notations 

n   The total number of jobs. 

m   The total number of available machines in the production stage. 

f   The number of factories in the SC. 

i , j   Job index, where   ,  0, 1  2  i j , ,..., n  with 0 being a dummy job. 

k   Machine tag，   1  2  k , ,..., m . 

i , j ,kS  Setup time at the production stage indicating the preparation required for processing 

job j  after job i  on machine k . 

j ,kP  The processing time required to complete job i  on machine k  at the production 

stage. 

jAP   The processing time required for the assembly of product j . 

i , jX  Binary decision variable; 1=  if job j  is processed after job i ; 0= , otherwise. 

j ,kC  Integer decision variable indicating the completion time of job j  on machine k  

at the production stage. 

jAC  Integer decision variable indicating the completion time of job j  at the assembly 

stage 
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The Mixed-Integer Linear Programming (MILP) formulation is provided below. 

Min maxC  (1) 

Subject to: 

 ,

0,

1    1,2,...,
n

i j

i i j

X j n
= 

=    
(2) 

 ,

0

1    1,2,...,
n

i j

j

X i n
=

    
(3) 

0,

1

    
n

j

j

X f
=

=  
(4) 

,0

1

1 
n

i

i

X f
=

= −  
(5) 

 , , 1 ;  1,2,..., 1 ,  i j j iX X i n j i+   −   (6) 

( )    , , , , , ,1     0,1,..., , ,  1, 2,...,j k i k i j k j k i jC C S P M X i n j i k m + + −  −      (7) 

   , ,(1 )   1,2,..., , 1,2,...,j j k j i jAC C AP M X n k mj + −  −     (8) 

   ,(1 )  0,1,..., ,  ,  1,2,...,i i jj jAC AC AP M X i n j i k m + −  −      (9) 

 max      1,2,...,jC AC j n    (10) 

 0, 0 0    1,2,...,kC AC k m= =   (11) 

     ,X 0,1    0,1,..., , 0,1,...,i j i n j n     

(12)    ,C 0    1,2,..., , 1,2,...,j k n k mj     

      
 

0    0, 1,...,j jA nC     

The objective function in Equation (1) minimized the maximum completion time. 

Constraints (2) and (3) use binary variables to ensure that the job assignments are unique and 

that there is only one job before and after every job. Equations (4) and (5) ensure that the job 
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sequence positioned before and after the virtual job in every factory, respectively, appear 

exactly f  times. According to Constraint (6), a job cannot be arranged before and after 

another job simultaneously. M  is defined as a large positive number to establish a 

connection between the decision variables. On this basis, Constraints (7) indicate that if the 

job j  is located immediately after the job i , its completion time is greater than the 

summation of its processing time, the completion time of the preceding job, the associated 

setup time in the production stage. Constraint set (8) specifies the assembly procedure takes 

place only after completing the processing of the components in the production stage. 

Constraint (9) ensures that if the product j  is assembled after the product i , the assembly 

completion time is greater than the summation of its assembly processing time and the 

assembly completion time of the product i ; this also ensures that the sequence of product 

assembly on the same assembly machine in the factory is preserved. Constraints (10) define 

the objective function as the maximum completion time of all products on the assembly stage. 

Equation (11) specifies that the completion time of the auxiliary job on every machine is set 

equal to zero. Finally, the last constraint determines the type of decision variables. 

3.2. Solution algorithm 

The IG algorithm cannot effectively avoid the local optimality traps in the complex solution 

spaces (Ying et al. 2020). Case-specific methods have been proposed to address this 

shortcoming in various flowshop environments, like hybrid flowshop (Shao et al. 2020), 

hybrid flexible flowshop (Ozsoydan and Sagir 2021), blocking flowshop (Cheng et al. 2021), 

and no-idle permutation flowshop (Riahi et al. 2020), among others. Considering the nature of 

the scheduling problems, in particular, the distributed production-assembly setting and 

mixed-setup constraint, this study develops the MIG algorithm, which is fortified by the 

Meta-Lamarckian Learning (MLL)-based perturbation mechanism to improve the exploration 
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power of the metaheuristic with more effectively evading the local optimality traps. The 

pseudocode of the MIG algorithm is provided in Figure 2. The computational procedure 

consisting of the solution initialization, destruction & construction, the MLL-based local 

search algorithm, and the acceptance mechanisms, are explained as follows. 
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( )( )

                 ;
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 
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if then   

endif

else if    then

;
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24




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              endif

endif

return

   end

 

Figure 2. Pseudocode of the Meta-Lamarckian-based Iterated Greedy (MIG) Algorithm. 

3.2.1. Initialization/encoding module 

The solution representation method displays the job assignments to all the factories in a single 

vector. Considering an illustrative example with five jobs and two factories, a solution can be 
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represented by {3 5 1 0 2 4} = , where 3 and 2 jobs are assigned to the first and second 

factories, respectively, and 0 is used as a delimiter to separate the factory assignments. Given 

this encoding mechanism, one should initialize solutions that are feasible and acceptably 

good. The basic IG algorithms apply random initialization methods, which are ineffective for 

complex problems. The following initialization procedure is tailored for distributed 

scheduling. 

Table 1 provides the details of the above illustrative example to explain the procedure 

better. The first and second parts of the table provide the processing and sequence-dependent 

setup times (SDSTs) in the production and assembly stages, respectively, to account for a 

more generalized setting. The initialization procedure begins with calculating the completion 

time of every job at the assembly stage as an individual. That is, 

0, , ,max{ }j j k j k j
k

AC S P AP


= + + . In doing so, the completion time of jobs 1-5 is equal to 15, 16, 

18, 19, and 14, respectively. Then, selecting the job associated with the shortest completion 

time, jobs 5 and 1 are assigned to factories 1 and 2, respectively. Next, job 2 is added next to 

jobs 5 and 1 in factories 1 and 2, respectively. The partial solution  0  5 2 0 1   =  appeared 

to be a better option at this stage due to a smaller makespan value, 25. Next, the remainder of 

unallocated jobs should be added into the partial solution after trying all the possible positions 

in the vector. For this purpose, job 4 is inserted into all positions in every section of the vector 

to exhaust all possible options and calculate the fitness values. Inserting job 4 next to job 1 in 

factory 2 is found to be the best option with a makespan value of 28. Applying the same 

approach, job 3 appeared to be at its best position when it is located next to job 2 in factory 1, 

resulting in a makespan of 39. Therefore, the completed sequence  0  5 2 3 0 1 4  =  

should be selected as the initial solution. 
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Table 1. An illustrative example for the computational procedure of the MIG algorithm. 

Processing time Job 

Machine 1 2 3 4 5 

PM1 6 8 9 7 4 

PM2 6 3 5 6 7 

AM 5 6 7 7 5 

SDSTs on 

PM1/PM2 
Job 

Job 0 1 2 3 4 5 

0 0/0 3/4 2/4 2/5 1/6 3/2 

1 0/0 0/0 4/5 4/4 5/1 3/7 

2 0/0 4/4 0/0 4/3 6/3 7/1 

3 0/0 1/1 3/6 0/0 1/2 2/4 

4 0/0 4/3 2/4 1/7 0/0 4/2 

5 0/0 4/2 4/3 3/5 4/4 0/0 

 

3.2.2. Destruction module 

The destruction and construction procedures are at the heart of the IG computations, where an 

input solution to the module will be first destructed up to a certain point, and an iterative 

procedure is then applied to reconstruct a new complete solution. This research customizes the 

destruction method of (Ruiz et al. 2019), which was developed for distributed permutation 

flowshop scheduling. Given the destruction count, d , the method begins with selecting 

/ 2d    jobs with the largest total setup time from the factory with the largest maxC , which is 

hereafter labeled by cF . Next, the rest of the 1 2d /−     jobs in the remaining 1F −  

factories are extracted following the same approach. The removed jobs are then saved in a 

separate vector considering the same order they are extracted.  

Considering the illustrative example in Table 1, where  0  5 2 3 0 1 4  =  is the input 

solution, the maximum completion time of factories 1 and 2 are 39maxC =  and 28maxC = , 

hence, cF  is 1. Given a destruction count of  d = 3, 3 / 2 2=    jobs should be removed 
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from factory 1. For this purpose, the job associated with the largest total setup times in the 

production phase of factory 1, i.e., job 2, and a random job, let assume job 5, are removed 

first. Next, 1- 3 / 2 1=    jobs are selected from the remaining factories, factory 2 in this 

example, with the target being the largest total setup time, i.e., job 1. In so doing, the list of 

removed jobs in the destruction phase is   2 5 1 d = , and   3 0 4   =  is the partial 

solution with n d−  jobs. This procedure is illustrated in the destruction phase of Figure 3. In 

this example, J refers to the jobs (parts) and P indicates the products that are an assembly of 

several jobs (parts). On this basis, the first index of J corresponds to the index of P (product 

number) while the second index of J determines the component number required for 

assembling the corresponding product. 

Destruction Phase: Extract d=3 jobs from across factories 
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Construction Phase: insert the extracted jobs into the partial solution in a reverse order 
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Figure 3. A visual illustration of the destruction and construction procedures. 

3.2.3. Construction module 

In the construction phase, the deleted jobs from d  are to be reinserted into all possible 

positions in the partial solution,   ; this is done in reverse order of extraction in the 

destruction phase. For this purpose, the insertion resulting in the smallest makespan will 

dominate the greedy search at every step. After inserting a job into the best position, the jobs 

immediately before and after the newly inserted job will be displaced into all possible 

positions across factories, and the option with the smallest makespan will be selected.  

Assuming that job 1 is extracted in order from d  and inserted into all possible positions 

in   , the alternative   3 1 0 4  results in the minimum completion time. In this situation, 

the jobs before and after are 3 and 0; the delimiter that should not be extracted. Inserting 3 

into all possible positions across factories,   3 1 0 4   =  records the smallest makespan 

value. The list of unassigned jobs is now updated to  5 2 . Next, one needs to find the best 

insertion position for job 5, which is   3 1 0 4 5   = , and displace the preceding job, job 4, 

into the best position, which is   3 1 0 4 5   = . Given  2  as the last unassigned job, the 

trial and error for finding the best insertion follows the same procedure that results in 
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  3 1 0 4 2 5   = . As the last step, the jobs before and after job 2, namely jobs 4 and 5, are 

now extracted in order and inserted into all possible positions;   3 1 0 2 4 5  =  is the best 

found alternative; given that the list of unassigned jobs is now empty, the resulting job 

sequence is a complete solution and can be considered for the next step of computations, i.e., 

the local search moves. This procedure is demonstrated in the construction phase of Figure 3.  

3.2.4. MLL-based local search algorithm 

The MLL-based mechanism (Ong and Keane 2004) was introduced to improve the quality of 

the best individual in the solution population, enhancing the effectiveness of the Memetic 

Algorithms. G. Zhang et al. (2020) showed that the novel perturbation mechanism not only 

effectively avoids falling into local optimality traps but also is comparatively more efficient 

than the other hybrid approaches. Inspired by its positive implications, our study extends to 

integrate the MLL-based approach into the IG algorithm for solving a new scheduling 

extension. Four basic and two hybrid local search moves, shown in Figures 4-5, are defined 

below to formally introduce the MLL-based algorithm. 

-  Job Swap (JS) selects a random factory to exchange two random jobs. Assuming 

  3 1 0 2 4 5  =  as the job sequence after the construction phase and   2 4 5 rF =  

being the randomly selected factory, J4 and J5 are swapped as random jobs to obtain 

an alternative solution,   3 1 0 2 5 4 JS  = .  

-  Job Competitive Insertion (JCI), a random job is first removed from a random factory; it 

is then inserted into all possible positions of the same factory to find the best 

alternative. Assuming   3 1 0 2 4 5  =  and J5 of factory 2 as our random 

selection, the resulting alternatives are   3 1 0 5 2 4 JCI  =  and 
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  3 1 0 2 5 4 JCI  = . 

-  Inter-Factory Swap (IS) move considers two randomly selected factories, cF  and kF , 

and selects a random job from each. It then exchanges the position of the selected jobs. 

For instance, considering J3 and J4 as the random jobs from the first and the second 

factories,   4 1 0 2 3 5 IS  =  is the neighboring solution.  

-  Inter-Factory Competitive Insertion (ICI) removes a random job from the first random 

factory, cF , and inserts it into all possible positions in the second random factory, kF . 

For example, assuming   2 4 5 cF = ,   3 1 kF =  and J4 as the random selections, 

exhausting the insertion options results in   2 5 0 4 3 1 ICI  = , 

  2 5 0 3 4 1 ICI  = , and   2 5 0 3 1 4 ICI  = , among which the best should be 

selected. Finally, Inter-Factory Competitive Insertion consists of displacing the 

sequence assigned to one factory before and after every other factory to find a better 

alternative. 

-  The Hybrid Swap (HS); JS and IS are executed simultaneously, illustrated in Figure 

5(a), where (a). two random jobs are swapped in the first randomly selected factory, 

  2 4 5 cF = , and, immediately, (b). one job is extracted from the modified cF  and a 

random job from the second randomly selected factory,   3 1 kF = , for a second 

exchange. At this point, the perturbation will be accepted only if it results in better 

fitness values, makespan in this study. Assuming J2 and J5 for step a as well as J4 and 

J5 for step b,   3 4 0 5 1 2  =  is resulted. 

-  Hybrid Competitive Insertion (HCI) executes JCI and ICI without interruption, as 

shown in Figure 5(b). That is, two jobs are extracted from the randomly selected 
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factory, cF . The following procedure comes next; (1). The first insertion exhausts all 

the possibilities in the same factory considering the first random job; (2). The second 

randomly selected job will be inserted into all possible positions in the other randomly 

selected factory, kF . A neighboring solution will be selected only if it is a 

breakthrough. Assuming J5 and J4 are selected in step 1 of the illustrative example, J5 

is first inserted into all possible positions in the same factory, resulting in  3 1 0 5 2 . 

Then, J4 is inserted into all possible positions in the second factory. This procedure 

finds  4 3 1 0 5 2  =  as the best alternative. 
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Figure 4. A visual illustration of the basic local search moves. 

 

 

(a). Hybrid Swap 

 

(b). Hybrid Competitive Insertion 

Figure 5. A visual illustration of the hybrid local search moves. 

The MLL-based mechanism consists of the training and implementation phases. Based on 

the study of Zhang et al. (2020), the HS and HCI are executed ( )1n n −  times on the initial 

solution, respectively, in the training phase. Then, the fitness function values ( )1, 2k k = of 

HS and HCI can be calculated using Equation (13), where Cb denotes the makespan of the 

solution before executing the HS/HCI, and Ca represents the makespan of the best solution 
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after executing the HS/HCI ( )1n n −  times. On this basis, the selection probability values 

( )1, 2k k =  of HS and HCI should then be calculated using Equation (14) to conclude the 

training phase. 

( )

( ) 1

b a
k

n

C C

n



=

−

−
 (13) 

2

1

k
k

i
i





=

=



 
(14) 

Considering the best results from the non-initial solution population, the implementation 

phase applies the JS move to perturb with  4 3 1 0 5 2 =  being the result. The 

implementation procedure continues by applying the roulette wheel selection method to select 

from  ,HS HCI . The selected hybrid approach should then be applied ( )  1n n −  times. 

The resulting solutions are appraised by calculating the fitness value, makespan in this study, 

to check whether or not the overall performance is improved. It is worthwhile noting that the 

reward and selection probability values should be updated after each move, that is, 

k k new   + . This procedure should be repeated for the JCI, IS, and ICI local search 

moves. 

3.2.5. Conditional mechanisms 

Two conditional mechanisms are considered: the acceptance mechanism and the termination 

criterion. The former decides whether to accept a new solution, and the latter determines when 

to stop the search procedure.  

Traditionally, a new solution is accepted only if it performs strictly better than the old 

solution. However, this approach is prone to missing out on promising solutions when 

searching complex solution spaces. Hatami et al. (2015) introduced a competitive acceptance 
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criterion to help reduce the odds of falling within local optimality, addressing the mentioned 

shortcoming. On this basis, every new solution will be evaluated after passing the construction 

and local search procedures. This study adopts the acceptance mechanism introduced by 

(Hatami et al. 2015) to help improve the performance of the search algorithm. In this 

approach, the acceptance probability is based on Expression (15), where Relative Percentage 

Difference (RPD) is the comparative difference between the new and old solutions, which is 

calculated using Equation (16). In this definition, the smaller the RPD value, the better the 

solution quality and the higher the likelihood of accepting it. A random number between zero 

and one is first generated whenever the acceptance function is provoked. If the random 

number is smaller than 
 RPDe −

, the new solution should be accepted. Otherwise, the new 

solution will be discarded from the memory. 

 RPDrandom e −  (15) 

max max

max

( ) ( )
100

( )

C C
RPD

C

 



 −
=   (16) 

The maximum CPU time and the maximum iterations are the most widely applied 

termination condition in the scheduling literature (Cheng et al. 2021); the former is considered 

as the termination criterion of the MIG and the benchmark algorithms to ensure a fair analysis 

of the algorithms' performance. Therefore, the algorithms terminate and return the (near-) 

optimum solutions when CPU time equals 0.1 n , where the threshold increases 

proportionate to the workload. The resulting fitness values are analyzed in the numerical 

analysis section. 

4. Numerical analysis 

This section analyzes the results of the extensive numerical experiments for evaluating the 

performance of the developed solution algorithm, MIG. To proceed with the experiments, the 
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MIG algorithm is first calibrated using 120 random test instances, and the Relative 

Performance Deviation (RPD) measure is calculated using Equation (16). The smaller RPDs 

are preferred with max ( )C   and max ( )C   specifying the best-found makespan and the 

makespan under consideration, respectively. The calibration results are summarized in Table 

2, based on which a destruction value equal to 4 is considered for conducting the final 

experiments. The remainder of this section begins with a description of the configuration of 

the test instances. Results analysis and statistical test of significance follow to evaluate the 

developed solution method. The benchmark algorithms, MIG and CMA, are coded and 

compiled using C++ programming language on a personal computer with the following specs: 

Intel® Core™ i7-7700 CPU 3.60GHz, 16GB RAM, and Windows 10 Operating System. 

Besides, Gurobi 9.0.3 is used to confirm the correctness of the developed mathematical 

formulation and compared with the results obtained by the metaheuristic algorithms for small 

test instances. 

 

Table 2. Test results for calibration of the MIG algorithm (best result in bold). 

Destruction Count Relative Performance Deviation  

2 2.686 

3 2.445 

4 1.634 

5 1.853 

6 1.676 

7 1.690 

8 1.784 

 

4.1. Dataset description 

This study follows Deng et al. (2016) to configure a new set of test instances. On this basis, 

various numbers of jobs   10,  20,  50,  100,  200,  500 , machines   2,  4,  6,  8 , and 

factories   2,  3,  4,  5,  6  are considered to analyze the impact of operational parameters on 
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the scheduling outcomes. The processing and setup times are generated randomly using a 

continuous uniform distribution function with ( ) 1,  100 U  and ( ) 1,  20 U  seconds, 

respectively. Considering ten variants to each of 5 6 4f n m  =   =120 configurations, a 

total of 1200 test instances are considered for the numerical experiments. The solution 

algorithms are run ten times for solving each of the test instances; the results are provided 

below. 

4.2. Results analysis 

First, test instances with a small workload of 10 jobs are solved using the exact solution 

approach (MILP), CMA, and the MIG algorithm. The results are compared considering RPD 

and summarized in Table 3 with ‘zero’ indicating the best-obtained results. This table also 

reports the number of successful attempts in obtaining the best results and the required 

calculation time. It is observed that CMA performs relatively steadier in solving very small 

test instances. Expectedly, the computational time of the MIG and CMA algorithms for 

solving very small instances are significantly shorter than that of the exact algorithm, while 

the best solutions found by these metaheuristics are close to the exact value.  

Table 3. Exact solution results analysis over very small test instances. 

Parameter 

MIG CMA MILP 

Best RPD No. Time Best RPD No. Time Best RPD No. Time 

F
ac

to
ri

es
 (

f)
 

2 332.67 2.14 16 1.005 330.45 1.22 30 1.000 329.97 0.00 40 307.859 

3 237.05 2.45 29 1.006 236.12 1.15 37 1.000 235.77 0.00 40 32.258 

4 188.07 3.01 31 1.009 187.37 0.76 38 1.000 187.25 0.00 40 5.895 

5 162.07 3.63 22 1.013 158.95 0.56 40 1.000 158.95 0.00 40 0.527 

6 147.25 3.07 37 1.011 146.77 0.31 40 1.000 146.77 0.00 40 0.327 

M
ac

h
in

es
 (

m
) 2 190.44 3.38 29 1.012 188.66 0.96 44 1.000 188.44 0.00 50 38.001 

4 210.22 2.87 34 1.008 208.50 0.86 48 1.000 208.42 0.00 50 49.669 

6 222.92 2.96 32 1.008 220.88 0.73 47 1.000 220.72 0.00 50 74.181 

8 230.12 2.24 40 1.008 229.70 0.66 46 1.000 229.40 0.00 50 115.642 
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Next, the BFS to each of the 1200 test instances is considered for macro analysis. 

Analyzing the results considering various workloads, the number of machines in each factory, 

and the number of factories are summarized in Table 4. The overall analysis of the results 

shows that CMA performs slightly better for solving problems with small workloads, i.e., 10 

and 20 jobs. However, better solutions are yielded by MIG for instances with more than 50 

jobs. The over-performance gap between MIG and CMA increases sharply when solving 

larger test instances with about a 5 percent difference for solving the problems with 500 jobs. 

One can expect that the difference becomes even more significant when addressing very 

large-scale industrial cases. Besides, the results obtained by MIG are notably steadier for 

solving medium- and large-scale problems with standard deviations of around 10 percent of 

that resulting from CMA. Analyzing the impact of operational scale, i.e., an increase in the 

number of machines and factories, shows that MIG yields better solutions in all the categories. 

It indicates that the superiority of MIG over CMA in solving large-scale instances is more 

significant than that of the results obtained by these algorithms in solving small-scale 

instances. 

Table 4. Results analysis considering various operational parameters (best in bold). 

Parameter 
CMA MIG 

Best Ave StD Best Ave StD 

Jo
b
s 

(n
) 

10 211.94 213.60 1.66 213.42 217.35 3.13 

20 378.58 384.90 3.78 380.96 389.61 5.33 

50 886.69 897.59 6.84 888.32 898.71 6.29 

100 1751.22 1769.73 11.64 1737.92 1750.08 7.47 

200 3491.11 3517.71 17.41 3417.78 3430.57 7.63 

500 8822.22 8984.95 159.19 8417.00 8429.51 7.23 

M
ac

h
in

e

s 
(m

) 

2 2492.77 2513.30 15.30 2394.21 2403.05 5.39 

4 2582.57 2606.16 19.28 2503.52 2513.54 6.34 

6 2626.64 2671.05 43.03 2553.39 2563.84 6.19 

8 2659.20 2721.81 56.06 2585.83 2596.79 6.81 

F
ac

to
ri

es
 (

f)
 2 4407.70 4428.94 14.06 4270.33 4284.04 8.06 

3 2964.15 2997.67 36.80 2875.87 2886.77 6.57 

4 2244.45 2285.03 36.50 2176.07 2185.73 6.06 

5 1809.51 1853.60 38.50 1752.56 1760.65 5.08 

6 1525.65 1575.16 41.25 1471.34 1479.33 5.15 
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The extent of difference between the performances of the benchmark algorithms can be 

better observed by analyzing the Average Relative Performance Deviation (ARPD) values. 

According to Table 5, the difference in the results for the instances with 500 jobs is 0.15 

(MIG) to 7.43 (CMA), which showcases the superiority of MIG over the best-performing 

solution algorithm in the literature, CMA, for solving industry-scale problems. The gap 

becomes smaller with a decrease in the workload. In contrast, the impact of the change in the 

number of machines and factories appeared to be negligible because the difference between 

ARPDs resulting from MIG and CMA remains about the same over various parameter values. 

Notably, MIG shows a higher accuracy considering the number of successful attempts in 

search for the BFS. 

Table 5. Analysis of the Relative Performance Deviation (RPD) (best in bold). 

Parameter 

 

CMA  MIG 

RPD Successful Attempts  RPD Successful Attempts 

Jo
b
s 

(n
) 

10 0.80 185  2.86 135 

20 2.12 146  3.63 71 

50 1.54 117  1.71 95 

100 1.98 20  0.78 182 

200 3.04 0  0.39 200 

500 7.43 0  0.15 200 

M
ac

h
in

es
 (

m
) 2 2.88 117  1.58 216 

4 2.55 116  1.56 224 

6 2.81 112  1.63 223 

8 3.04 123  1.59 220 

F
ac

to
ri

es
 (

f)
 

2 2.17 76  0.99 175 

3 2.40 97  1.27 176 

4 2.79 92  1.66 183 

5 3.09 101  1.90 167 

6 3.64 102  2.11 182 

 

As a final step to our analysis, a paired t-test is conducted to check whether there is a 
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statistical difference between the means of two groups of fitness values considering 1200 test 

instances. Considering a confidence level of 95 percent, the null hypothesis speculates that the 

two population means are equal, that is, the difference between the two groups of fitness 

values is equal to 0. The results reported in Table 6 indicate that t-Statistic value is greater 

than t-Critical. With the p-value being less than the significance level, we can reject the null 

hypothesis. It can be confirmed that the difference between the results obtained by the MIG, 

and CMA algorithms is significant and that MIG can be now regarded as the best-performing 

algorithm for optimizing the DTSAFSP-MS variant of DSPs. 

Table 6. Paired t-test analysis of the performance difference between MIG and CMA. 

Mean StD Error DoF t-Statistic t-Critical p-value 

0.0123 0.0362 0.0010 1199 11.7886 1.9619 0.0000 

5. Conclusions 

Integrating production and assembly operations in distributed manufacturing environments is 

a notable evolution in the scheduling literature; it helps optimize SCs and has implications for 

lean manufacturing by maximizing productivity within an integrated planning procedure. This 

study provides a comprehensive review of the distributed two-stage flowshop scheduling 

literature, a new mathematical formulation, and a novel extension to the IG algorithm as its 

major contributions. An extensive numerical analysis with 1200 test instances shows that the 

MIG algorithm yielded the vast majority of the BFSs. The statistical test confirmed the 

significance of the resulting improvement, confirming MIG as a strong benchmark algorithm 

for optimizing the DTSAFSP-MS. 

This study can be extended in several directions. First, two-stage assembly production can 

be combined with the flexible assembly in a separate factory to simultaneously account for 
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sub-assemblies at OEMs and the final assembly at the mother company. Second, this research 

is limited in that the operational parameters are assumed to be deterministic. The next 

direction for future research can address this shortcoming through stochastic optimization 

and/or the use of fuzzy and gray-based methods. Third, the mixed-setup production setting 

can be tested in other scheduling environments with heterogeneous production technology and 

operations to address this basic assumption. Fourth, additional job- and process-related 

constraints can be included in the DTSAFSP-MS formulation to account for case-specific 

operational requirements. Finally, we feel that new approximation algorithms can be 

developed to improve further the BFS found in our study. For this purpose, applications of 

supervised- and unsupervised-learning-based methods are worthwhile research topics to 

address less-tangible aspects of the operations. 
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