Skip to main content

Advertisement

Log in

Surgery scheduling of pelvic fracture patients with stochastic recovery time

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Pelvic fracture is a severe trauma and is often seen in the traffic accidents, which are associated with complications or multiple injuries. Surgery is the main treatment for patients with serious conditions, while conservative treatment is adopted for older or minor-illness patients. Surgery resources, such as doctors, nurses, and operating rooms, are shared by all pelvic fracture patients. From the perspective of patient state, this paper divides patients who require surgery into two types, convalescent patients and scheduled patients. Convalescent patients’ life states are always unstable, and they require recovery time to meet the condition of surgery. The recovery time is usually stochastic due to different patient situations. Scheduled patients have stable life states, and the pelvic fracture surgical plan is scheduled days or weeks in advance. Considering the characteristics of the two types of patients, a finite-horizon Markov decision process (MDP) model is established. With data collected from the hospital, parameters are set and experiments are designed to reveal the dynamic priority rules for receiving patients into surgery. Performances of different scenarios are compared, and the optimal policies obtained from the MDP are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altman, E., Jiménez, T., & Koole, G. (2001). On optimal call admission control in a resource-sharing system. IEEE Transactions on Communications, 49(9), 1659–1668.

    Article  Google Scholar 

  • Bhattacharjee, P.., Ray, P. K., (2014). Patient flow modelling and performance analysis of healthcare delivery processes in hospitals: A review and reflections. Computers and Industrial Engineering, 78(C): 299–312.

  • Carr, S., & Duenyas, I. (2000). Optimal admission control and sequencing in a make-to-stock/ make-to-order production system. Operations Research, 48(5), 709–720.

    Article  Google Scholar 

  • Cayirli, T., & Veral, E. (2003). Outpatient scheduling in health care: A review of literature. Production and Operations Management, 12(4), 519–549.

    Article  Google Scholar 

  • Cayirli, T., Yang, K. K., & Quek, S. A. (2012). A universal appointment rule in the presence of no-shows and walk-ins. Production and Operations Management, 21(4), 682–697.

    Article  Google Scholar 

  • Geng, N., & Xie, X. (2016). Optimal dynamic outpatient scheduling for a diagnostic facility with two waiting time targets. IEEE Transactions on Automatic Control, 61(12), 3725–3739.

    Article  Google Scholar 

  • Glasserman, P., & Yao, D. (1994). Monotone Structure in Discrete-Event Systems. John Wiley and Sons.

    Google Scholar 

  • Gocgun, Y., Bresnahan, B. W., Ghate, A., & Gunn, M. L. (2011). A Markov decision process approach to multi-category patient scheduling in a diagnostic facility. Artificial Intelligence in Medicine, 53(2), 73–81.

    Article  Google Scholar 

  • Gray, A., Ch andler, H., & Sabri, O. (2018). Pelvic ring injuries: Classification and treatment. Orthopaedics and Trauma, 32(2), 80–90.

    Article  Google Scholar 

  • Green, L. V., Savin, S., & Wang, B. (2006). Managing patient service in a diagnostic medical facility. Operations Research, 54(1), 11–25.

    Article  Google Scholar 

  • Ierardi, A. M., Fontana, F., Bacuzzi, A., & Novario, R. (2015). The role of endovascular treatment of pelvic fracture bleeding in convalescent settings. European Radiology, 25(7), 1854–1864.

    Article  Google Scholar 

  • Ka andorp, G. C., & Koole, G. (2007). Optimal outpatient appointment scheduling. Health Care Management Science, 10(3), 217–229.

    Article  Google Scholar 

  • Kolisch, R., & Sickinger, S. (2008). Providing radiology health care services to stochastic dem and of different customer classes. Or Spectrum, 30(2), 375–395.

    Article  Google Scholar 

  • Lee, H. -R., Lee, T. (2017). Markov decision process model for patient admission decision at an convalescent department under a surge dem and. Flexible Services and Manufacturing Journal, pp. 1–25.

  • Muthuraman, K., & Lawley, M. (2008). A stochastic overbooking model for outpatient clinical scheduling with no-shows. IIE Transactions, 40(9), 820–837.

    Article  Google Scholar 

  • Nunes, L. G. N., Carvalho, S. V. D., Rodrigues, R. D. C. M., (2009).Markov decision process applied to the control of hospital elective admissions. Artificial Intelligence in Medicine, 47(2), 159–171.

  • Patrick, J., Puterman, M. L., & Queyranne, M. (2008). Dynamic multipriority patient scheduling for a diagnostic resource. Operations Research, 56(6), 1507–1525.

    Article  Google Scholar 

  • Pizanis, A., Pohlemann, T., Burkhardt, M., Aghayev, E., & Holstein, J. H. (2013). Convalescent stabilization of the pelvic ring: Clinical comparison between three different techniques. Injury, 44(12), 1760–1764.

    Article  Google Scholar 

  • Ramirez-Nafarrate, A., Hafizoglu, A. B., Gel, E. S., & Fowler, J. W. (2014). Optimal control policies for ambulance diversion. European Journal of Operational Research, 236(1), 298–312.

    Article  Google Scholar 

  • Tonetti, J., (2013). Management of recent unstable fractures of the pelvic ring. An update Conference supported by the Club Bassin Cotyle. (Pelvis-Acetabulum Club). Orthopaedics and Traumatology: Surgery and Research, 99(1), 77–86.

  • Topkis, D. (1978). Minimizing a submodular function on a lattice. Operations Research., 26, 305–321.

    Article  Google Scholar 

  • Trikha, V., & Gupta, H. (2011). Current management of pelvic fractures. Journal of Clinical Orthopaedics and Trauma, 2(1), 12–18.

    Article  Google Scholar 

  • Xiao, G., Dong, M., Li, J., & Sun, L. (2017). Scheduling routine and call-in clinical appointments with revisits. International Journal of Production Research, 55(6), 1767–1779.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) projects (No.1 71972146,2 71974127,3 71802031), and Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1706160). Scientific Research Program Funded by Shaanxi Provincial Education Department (No.21JK0920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qing Li and Chao Xu graduated from Tongji University in 2021 and 2020.

Appendices

Appendix: Proofs

Lemma A1:

For each profit functions \(g \in G_{t + 1}\), \(A_{t}^{\alpha } \in G_{t} ,t = 1, \ldots ,T\).

Lemma A2

For each service period \(t = 1,2, \ldots ,T + 1\), and each state \(\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in S_{t - 1}\), if there is \(r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right)\), \(r_{s} \ge g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right)\), then the following two formulas is satisfied.

Proof of Proposition 1

The optimal reward function is established as the following equation:

$$ \begin{aligned} & V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) = - c_{{t,rt_{0} }} \cdot w_{c} - s_{t} \cdot w_{s} \\&\quad\quad+ \left[ \begin{gathered} p_{{t,rt_{1} }} \cdot \left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1 + c_{{t,rt_{1} }} ,s_{t} } \right) \hfill \\ + p_{{t,rt_{1} }} \cdot p_{s} \cdot a_{t + 1} \cdot p_{{t,rt_{2} }} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1 + c_{{t,rt_{1} }} ,s_{t} + 1} \right) \hfill \\ + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + c_{{t,rt_{1} }} ,s_{t} } \right) \hfill \\ + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot p_{s} \cdot a_{t + 1} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + c_{{t,rt_{1} }} ,s_{t} + 1} \right) \hfill \\ \end{gathered} \right] \\ & \quad = - c_{{t,rt_{0} }} \cdot w_{c} - s_{t} \cdot w_{s} + p_{{t,rt_{1} }} \cdot \left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1 + c_{{t,rt_{1} }} ,s_{t} } \right) \\ & \quad \quad + p_{{t,rt_{1} }} \cdot p_{s} \cdot a_{t + 1} \cdot p_{{t,rt_{2} }} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1 + c_{{t,rt_{1} }} ,s_{t} + 1} \right) \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + c_{{t,rt_{1} }} ,s_{t} } \right) \\ & \quad \quad+ \left( {1 - p_{{t,rt_{1} }} } \right) \cdot p_{s} \cdot a_{t + 1} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + c_{{t,rt_{1} }} ,s_{t} + 1} \right) \\ \end{aligned} $$
(11)

For \(t = 1,2, \ldots ,T + 1\), \(G_{t}\) is defined as the class of profit functions on state \(S_{t}\). So for each \(g \in G_{t}\), which evaluates the states belong to \(S_{t}\), we have got the following formulas.

$$ g\left( {c_{{rt_{0} }} ,s + 1} \right) - g\left( {c_{{rt_{0} }} + 1,s} \right) \le g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - g\left( {c_{{rt_{0} }} + 2,s} \right) $$
(12)
$$ g\left( {c_{{rt_{0} }} + 1,s} \right) - g\left( {c_{{rt_{0} }} ,s + 1} \right) \le g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - g\left( {c_{{rt_{0} }} ,s + 2} \right) $$
(13)
$$ g\left( {c_{{rt_{0} }} ,s} \right) - g\left( {c_{{rt_{0} }} ,s + 1} \right) \le g\left( {c_{{rt_{0} }} + 1,s} \right) - g\left( {c_{{rt_{0} }} + 1,s + 1} \right) $$
(14)
$$ g\left( {c_{{rt_{0} }} ,s} \right) - g\left( {c_{{rt_{0} }} + 1,s} \right) \le g\left( {c_{{rt_{0} }} + 1,s} \right) - g\left( {c_{{rt_{0} }} + 2,s} \right) $$
(15)
$$ g\left( {c_{{rt_{0} }} ,s} \right) - g\left( {c_{{rt_{0} }} ,s + 1} \right) \le g\left( {c_{{rt_{0} }} ,s + 1} \right) - g\left( {c_{{rt_{0} }} ,s + 2} \right) $$
(16)

It will be shown that the class \(G_{t + 1}\) is mapped onto the class \(G_{t}\) by the action \(A_{t}^{\alpha }\):

Lemma A1:

For each profit functions \(g \in G_{t + 1}\), \(A_{t}^{\alpha } \in G_{t} ,t = 1, \ldots ,T\).

Lemma A2:

For each service period \(t = 1,2, \ldots ,T + 1\), and each state \(\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in S_{t - 1}\), if there is \(r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right)\), \(r_{s} \ge g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right)\), then the following two formulas is satisfied.

Proof of Lemma A1

Equation (2) can be written as:\(g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - g\left( {c_{{rt_{0} }} + 2,s} \right) - g\left( {c_{{rt_{0} }} ,s + 1} \right) + g\left( {c_{{rt_{0} }} + 1,s} \right) \ge 0\).

In the aspect of the following formula: \(A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right)\)

4 different conditions are considered respectively, and \(a_{t + 1}\) is assumed to be 0.

(1) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,s_{t} } \right)}\right.\\ & \quad\left.{ - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) }\right.\\ & \quad\left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - r_{c} - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - r_{c} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) &- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) - r_{s} - g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{s} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) \\ & \quad \quad- g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0 \\ \end{aligned} $$

3) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{rt_{0} }} + 2,s} \right) + r_{c} \le g\left( {c_{{rt_{0} }} + 3,s - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - r_{c} - g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) - r_{s} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) - g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 2,s} \right)s_{t} - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \ge 0 \\ \end{aligned} $$

4) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 3,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{s} - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - r_{c} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right){ + }g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) = 0 \\ \end{aligned} $$

(2) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) \\ & \quad { = }A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,0} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,1} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,0} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,0} \right) }\right. \\ & \quad \quad\left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) }\right. \\ & \quad\quad \left.{ - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right)} \right] \\ \end{aligned} $$

There are two expressions in the above formula, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,0} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 2,0} \right) + g\left( {c_{{t,rt_{0} }} + 1,0} \right) \\ \end{aligned} $$

1) If \(g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s}\)

$$ \begin{gathered} H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) \hfill \\ \ge g\left( {c_{{t,rt_{0} }} + 1,1} \right) - g\left( {c_{{t,rt_{0} }} ,1} \right) - g\left( {c_{{t,rt_{0} }} + 2,0} \right) + g\left( {c_{{t,rt_{0} }} + 1,0} \right) \ge 0 \hfill \\ \end{gathered} $$

2) If \(g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 3,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 2,0} \right) - g\left( {c_{{t,rt_{0} }} + 1,0} \right) - g\left( {c_{{t,rt_{0} }} + 2,0} \right) + g\left( {c_{{t,rt_{0} }} + 1,0} \right) = 0 \\ \end{aligned} $$

(3) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) \\ & \quad { = }A_{t}^{\alpha } g\left( {1,s + 1} \right) - A_{t}^{\alpha } g\left( {2,s} \right) - A_{t}^{\alpha } g\left( {0,s + 1} \right) + A_{t}^{\alpha } g\left( {1,s} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {3,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {2,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right)} \right] \\ \end{aligned} $$

There are two expressions in the above formula, the second one is explained detailed as the following:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {1,s_{t} } \right) + r_{c} ,g\left( {2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {0,s_{t} } \right) - r_{s} \\ \end{aligned} $$

1) If \(g\left( {1,s_{t} } \right) + r_{c} \ge g\left( {2,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] - g\left( {1,s_{t} } \right) - r_{c} \\ & \quad \quad + \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] - g\left( {0,s_{t} } \right) - r_{s} \\ & \quad \ge g\left( {1,s_{t} } \right) + r_{s} - g\left( {1,s_{t} } \right) - r_{c} + g\left( {0,s_{t} } \right) + r_{c} - g\left( {0,s_{t} } \right) - r_{s} = 0 \\ \end{aligned} $$

2) If \(g\left( {1,s_{t} } \right) + r_{c} \le g\left( {2,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] - g\left( {2,s_{t} - 1} \right) - r_{s} \\ & \quad \quad + \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] - g\left( {0,s_{t} } \right) - r_{s} \\ & \quad \ge g\left( {1,s_{t} } \right) + r_{s} - g\left( {2,s_{t} - 1} \right) - r_{s} + g\left( {1,s_{t} - 1} \right) + r_{s} - g\left( {0,s_{t} } \right) - r_{s} \ge 0 \\ \end{aligned} $$

The first expression’s prove is same as the case of \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\).

(4) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} = 0\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) \\ & \quad { = }A_{t}^{\alpha } g\left( {1,1} \right) - A_{t}^{\alpha } g\left( {2,0} \right) - A_{t}^{\alpha } g\left( {0,1} \right) + A_{t}^{\alpha } g\left( {1,0} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {3,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {0,1} \right) + H_{t + 1}^{\alpha } \left( {1,0} \right)} \right] \\ \end{aligned} $$

There are two expressions in the above formula, the first one is explained detailed as the following:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {3,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right) \\ & \quad = \max \left[ {g\left( {1,1} \right) + r_{c} ,g\left( {2,0} \right) + r_{s} } \right] - \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {2,0} \right) - r_{c} + g\left( {1,0} \right) + r_{c} \\ \end{aligned} $$

1) If \(g\left( {0,1} \right) + r_{c} \ge g\left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {3,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right) \\ & \quad = \max \left[ {g\left( {1,1} \right) + r_{c} ,g\left( {2,0} \right) + r_{s} } \right] - \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {2,0} \right) + g\left( {1,0} \right) \\ & \quad \ge g\left( {1,1} \right) + r_{c} - g\left( {0,1} \right) - r_{c} - g\left( {2,0} \right) + g\left( {1,0} \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {0,1} \right) + r_{c} \le g\left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {3,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right) \\ & \quad = \max \left[ {g\left( {1,1} \right) + r_{c} ,g\left( {2,0} \right) + r_{s} } \right] - \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {2,0} \right) + g\left( {1,0} \right) \\ & \quad \ge g\left( {2,0} \right) + r_{s} - g\left( {1,0} \right) - r_{s} - g\left( {2,0} \right) + g\left( {1,0} \right) = 0 \\ \end{aligned} $$

The second one is explained detailed as the following:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {0,1} \right) + H_{t + 1}^{\alpha } \left( {1,0} \right) \\ & \quad = \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {1,0} \right) - r_{c} - g\left( {0,0} \right) - r_{s} + g\left( {0,0} \right) + r_{c} \\ & \quad = \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] - g\left( {1,0} \right) - r_{s} \\ \end{aligned} $$

1) If \(g\left( {0,1} \right) + r_{c} \ge g\left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {0,1} \right) + H_{t + 1}^{\alpha } \left( {1,0} \right) \\ & \quad = g\left( {0,1} \right) + r_{c} - g\left( {1,0} \right) - r_{s} \ge 0 \\ \end{aligned} $$

2) If \(g\left( {0,1} \right) + r_{c} \le g\left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {0,1} \right) + H_{t + 1}^{\alpha } \left( {1,0} \right) \\ & \quad = g\left( {1,0} \right) + r_{s} - g\left( {1,0} \right) - r_{s} = 0 \\ \end{aligned} $$

From above all, it can be seen that:\(A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) \ge 0\).

So, Eq. (2) \(g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - g\left( {c_{{rt_{0} }} + 2,s} \right) - g\left( {c_{{rt_{0} }} ,s + 1} \right) + g\left( {c_{{rt_{0} }} + 1,s} \right) \ge 0\) is satisfied. The proof of Eq. (3) is same as the proof of Eq. (2).

Equation (3) can be written as:\(g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - g\left( {c_{{rt_{0} }} ,s + 2} \right) - g\left( {c_{{rt_{0} }} + 1,s} \right) + g\left( {c_{{rt_{0} }} ,s + 1} \right) \ge 0\).

In the aspect of the following formula: \(A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 2} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right)\)

4 different conditions are considered respectively, and \(a_{t + 1}\) is assumed to be 0.

(1) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 2} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) }\right. \\ & \quad \quad\left.{+ H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 2} \right) }\right. \\ & \quad\quad \left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions in the above formula, the second one is explained detailed as the following, while the first one share the similar structure.

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) - r_{c} - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - r_{c} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - r_{s} - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) - r_{s} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) \ge 0 \\ \end{aligned} $$

3) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) - r_{c} - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) - r_{s} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) + g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) \\ & \quad \ge g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right)g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0 \\ \end{aligned} $$

4) If \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 2} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - r_{c} - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - r_{s} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} + g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{s} - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - r_{c} - g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - r_{s} = 0 \\ \end{aligned} $$

(2) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 2} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) }\right. \\ &\quad \quad \left.{+ H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) }\right. \\ &\quad \quad \left.{ - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions in the above formula, the first one is explained detailed as the following:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,0} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} ,2} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 1,0} \right) - r_{c} \\ \end{aligned} $$

1) If \(g\left( {c_{{t,rt_{0} }} ,2} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,0} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} ,2} \right) - r_{c} - g\left( {c_{{t,rt_{0} }} + 1,0} \right) - r_{c} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} + g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} - g\left( {c_{{t,rt_{0} }} ,2} \right) - r_{c} - g\left( {c_{{t,rt_{0} }} + 1,0} \right) - r_{c} \ge 0 \\ \end{aligned} $$

2) If \(g\left( {c_{{t,rt_{0} }} ,2} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,2} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,0} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 1,1} \right) - r_{s} - g\left( {c_{{t,rt_{0} }} + 1,0} \right) - r_{c} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,1} \right) + g\left( {c_{{t,rt_{0} }} + 1,0} \right) - g\left( {c_{{t,rt_{0} }} + 1,1} \right) - g\left( {c_{{t,rt_{0} }} + 1,0} \right) = 0 \\ \end{aligned} $$

(3) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 2} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {2,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions in the above formula, the second one is explained detailed as the following:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {0,s_{t} + 1} \right) + g\left( {0,s_{t} } \right) \\ \end{aligned} $$

1) If \(g\left( {0,s_{t} } \right) + r_{c} \ge g\left( {1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {0,s_{t} } \right) - r_{c} - g\left( {0,s_{t} + 1} \right) + g\left( {0,s_{t} } \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] - g\left( {0,s_{t} + 1} \right) - r_{c} \\ & \quad \ge g\left( {0,s_{t} + 1} \right) + r_{c} - g\left( {0,s_{t} + 1} \right) - r_{c} = 0 \\ \end{aligned} $$

2) If \(g\left( {0,s_{t} } \right) + r_{c} \le g\left( {1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 2} \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {1,s_{t} - 1} \right) - r_{s} - g\left( {0,s_{t} + 1} \right) + g\left( {0,s_{t} } \right) \\ & \quad \ge g\left( {1,s_{t} } \right) + r_{s} - g\left( {1,s_{t} - 1} \right) - r_{s} - g\left( {0,s_{t} + 1} \right) + g\left( {0,s_{t} } \right) \ge 0 \\ \end{aligned} $$

(4) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} = 0\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 2} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,2} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {0,2} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right) + H_{t + 1}^{\alpha } \left( {0,1} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions in the above formula, the first one is explained detailed as the following:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,2} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right) \\ & \quad = \max \left[ {g\left( {1,1} \right) + r_{c} ,g\left( {2,0} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {0,2} \right) + r_{c} ,g\left( {1,1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] - g\left( {1,0} \right) - r_{c} \\ \end{aligned} $$

1) If \(g\left( {0,2} \right) + r_{c} \ge g\left( {1,1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,2} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right) \\ & \quad = \max \left[ {g\left( {1,1} \right) + r_{c} ,g\left( {2,0} \right) + r_{s} } \right] + \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {0,2} \right) - r_{c} - g\left( {1,0} \right) - r_{c} \\ & \quad \ge g\left( {1,1} \right) + r_{c} + g\left( {0,1} \right) + r_{c} - g\left( {0,2} \right) - r_{c} - g\left( {1,0} \right) - r_{c} \ge 0 \\ \end{aligned} $$

2) If \(g\left( {0,2} \right) + r_{c} \le g\left( {1,1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,2} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right) \\ & \quad = \max \left[ {g\left( {1,1} \right) + r_{c} ,g\left( {2,0} \right) + r_{s} } \right] + \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {1,1} \right) - r_{s} - g\left( {1,0} \right) - r_{c} \\ & \quad \ge g\left( {1,1} \right) + r_{c} + g\left( {1,0} \right) + r_{s} - g\left( {1,1} \right) - r_{s} - g\left( {1,0} \right) - r_{c} = 0 \\ \end{aligned} $$

For the second expression:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {0,2} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right) + H_{t + 1}^{\alpha } \left( {0,1} \right) \\ & \quad \quad \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {0,1} \right) - r_{s} - g\left( {0,0} \right) - r_{c} + g\left( {0,0} \right) + r_{s} \\ & \quad = \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] - g\left( {0,1} \right) - r_{c} \\ & \quad \ge g\left( {0,1} \right) + r_{c} - g\left( {0,1} \right) - r_{c} = 0 \\ \end{aligned} $$

Then we introduce another Lemma to prove Eq. (4).

Lemma A2

For each service period \(t = 1,2, \ldots ,T + 1\), and each state \(\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in S_{t - 1}\), if there is \(r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right)\), \(r_{s} \ge g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right)\), then the following two formulas is satisfied.

$$ r_{c} \ge A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) $$
$$ r_{s} \ge A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) $$

Proof of Lemma A2

First, we consider \(r_{c} \ge A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right)\), and \(a_{t + 1}\) is assumed to be 0. 4 different conditions are considered respectively.

$$ \begin{aligned} & r_{c} + A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \\ & \quad = r_{c} + w_{c} + p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ \end{aligned} $$

(1) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\).

In this condition, there are two expressions in the above equation, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & \left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = r_{c} + w_{c} + \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & \left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = r_{c} + w_{c} - g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{c} \\ & \quad \quad \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \ge r_{c} + w_{c} { + }g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} - g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{c} \\ & \quad { = }r_{c} + w_{c} { + }g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) > 0 \\ \end{aligned} $$

2) If \(g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & \left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = r_{c} + w_{c} - g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) - r_{s} \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \ge r_{c} + w_{c} + g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} - g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) - r_{s} \\ & \quad = r_{c} + w_{c} + g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) - g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) > 0 \\ \end{aligned} $$

(2) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\)

$$ \begin{aligned} & r_{c} + A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \\ & \quad = r_{c} + A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,0} \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,0} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right)} \right] \\ \end{aligned} $$

There are two expressions in the above equation, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & \left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) \\ & \quad = r_{c} + w_{c} + g\left( {c_{{t,rt_{0} }} ,0} \right) + r_{c} - g\left( {c_{{t,rt_{0} }} + 1,0} \right) - r_{c} \\ & \quad = r_{c} + w_{c} + g\left( {c_{{t,rt_{0} }} ,0} \right) - g\left( {c_{{t,rt_{0} }} + 1,0} \right) > 0 \\ \end{aligned} $$

(3) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & r_{c} + A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \\ & \quad = r_{c} + A_{t}^{\alpha } g\left( {0,s_{t} } \right) - A_{t}^{\alpha } g\left( {1,s_{t} } \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {2,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} } \right)} \right] \\ \end{aligned} $$

The proof of the first expression is same as the case of \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\). So, the second expression is considered.

$$ \begin{aligned} & \left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = r_{c} + w_{c} + g\left( {0,s_{t} - 1} \right) + r_{s} \\ & \quad \quad - \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad = \left\{ {\begin{array}{*{20}c} {w_{c} + r_{s} + g\left( {0,s_{t} - 1} \right) - g\left( {0,s_{t} } \right) > 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} if{\kern 1pt} {\kern 1pt} {\kern 1pt} g\left( {0,s_{t} } \right) + r_{c} \ge g\left( {1,s_{t} - 1} \right) + r_{s} } \\ {r_{c} + w_{c} + g\left( {0,s_{t} - 1} \right) - g\left( {1,s_{t} - 1} \right) > 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} if{\kern 1pt} {\kern 1pt} {\kern 1pt} g\left( {0,s_{t} } \right) + r_{c} \ge g\left( {1,s_{t} - 1} \right) + r_{s} } \\ \end{array} } \right. \\ \end{aligned} $$

(4) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} = 0\)

$$ \begin{aligned} & r_{c} + A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \\ & \quad = r_{c} + A_{t}^{\alpha } g\left( {0,0} \right) - A_{t}^{\alpha } g\left( {1,0} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {1,0} \right) - H_{t + 1}^{\alpha } \left( {2,0} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {\left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {0,0} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right)} \right] \\ \end{aligned} $$

The proof of the first expression is same as the case of \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\). So, the second expression is considered.

$$ \begin{aligned} & \left( {r_{c} + w_{c} } \right) + H_{t + 1}^{\alpha } \left( {0,0} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right) \\ & \quad = r_{c} + w_{c} + g\left( {0,0} \right) - g\left( {0,0} \right) - r_{c} = w_{c} > 0 \\ \end{aligned} $$

From the above, we can get the conclusion that \(r_{c} + A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0\). \(r_{s} + A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - A_{t}^{\alpha } g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \ge 0\) can be validated in the similar way.

The proof of Eq. (4) is conducted the same way as above.

Equation (4) can be written as:\(g\left( {c_{{rt_{0} }} + 1,s} \right) - g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - g\left( {c_{{rt_{0} }} ,s} \right) + g\left( {c_{{rt_{0} }} ,s + 1} \right) \ge 0\).

In the aspect of the following formula: \(A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right)\)

4 different conditions are considered respectively, and \(a_{t + 1}\) is assumed to be 0.

(1) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) }\right. \\ &\quad \quad \left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) }\right. \\ &\quad \quad \left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions in the above formula, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - r_{c} - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - r_{c} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - r_{s} - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) \ge 0 \\ \end{aligned} $$

3) If \(g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - r_{c} - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right){ + }g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) \ge 0 \\ \end{aligned} $$

4) If \(g\left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) + r_{s}\), and \(g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {g\left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - r_{s} - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) - r_{c} \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + g\left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - g\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \ge 0 \\ \end{aligned} $$

(2) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,0} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,0} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions in the above formula, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 2,0} \right) + r_{s} } \right] \\ & \quad \quad + g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{c} - g\left( {c_{{t,rt_{0} }} ,0} \right) - r_{c} \\ \end{aligned} $$

1) If \(g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} \ge g\left( {c_{{t,rt_{0} }} + 2,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 1,1} \right) - r_{c} + g\left( {c_{{t,rt_{0} }} + 1,0} \right) - g\left( {c_{{t,rt_{0} }} ,0} \right) \\ & \quad \ge g\left( {c_{{t,rt_{0} }} ,1} \right) - g\left( {c_{{t,rt_{0} }} + 1,1} \right) + g\left( {c_{{t,rt_{0} }} + 1,0} \right) - g\left( {c_{{t,rt_{0} }} ,0} \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {c_{{t,rt_{0} }} + 1,1} \right) + r_{c} \le g\left( {c_{{t,rt_{0} }} + 2,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) \\ & \quad = \max \left[ {g\left( {c_{{t,rt_{0} }} ,1} \right) + r_{c} ,g\left( {c_{{t,rt_{0} }} + 1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {c_{{t,rt_{0} }} + 2,0} \right) - r_{s} + g\left( {c_{{t,rt_{0} }} + 1,0} \right) - g\left( {c_{{t,rt_{0} }} ,0} \right) \\ & \quad \ge g\left( {c_{{t,rt_{0} }} + 1,0} \right) + g\left( {c_{{t,rt_{0} }} + 1,0} \right) - g\left( {c_{{t,rt_{0} }} + 2,0} \right) - g\left( {c_{{t,rt_{0} }} ,0} \right) \ge 0 \\ \end{aligned} $$

(3) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & \quad = A_{t}^{\alpha } g\left( {1,s} \right) - A_{t}^{\alpha } g\left( {1,s + 1} \right) - A_{t}^{\alpha } g\left( {0,s} \right) + A_{t}^{\alpha } g\left( {0,s + 1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {2,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right)} \right] \\ \end{aligned} $$

The proof of the first expression is same as the case of \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\). So, the second expression is considered.

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {0,s_{t} + 1} \right) + r_{c} ,g\left( {1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - g\left( {0,s_{t} - 1} \right) + g\left( {0,s_{t} } \right) \\ \end{aligned} $$

1) If \(g\left( {0,s_{t} + 1} \right) + r_{c} \ge g\left( {1,s_{t} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {0,s_{t} + 1} \right) - r_{c} - g\left( {0,s_{t} - 1} \right) + g\left( {1,s_{t} } \right) \\ & \quad \ge g\left( {0,s_{t} } \right) - g\left( {0,s_{t} + 1} \right) - g\left( {0,s_{t} - 1} \right) + g\left( {0,s_{t} } \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {0,s_{t} + 1} \right) + r_{c} \le g\left( {1,s_{t} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) \\ & \quad = \max \left[ {g\left( {0,s_{t} } \right) + r_{c} ,g\left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {1,s_{t} } \right) - r_{s} - g\left( {0,s_{t} - 1} \right) + g\left( {0,s_{t} } \right) \\ & \quad \ge g\left( {1,s_{t} - 1} \right) - g\left( {1,s_{t} } \right) - g\left( {0,s_{t} - 1} \right) + g\left( {0,s_{t} } \right) \ge 0 \\ \end{aligned} $$

(4) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} = 0\)

$$ \begin{aligned} & A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s} \right) + A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s + 1} \right) \\ & \quad = A_{t}^{\alpha } g\left( {1,0} \right) - A_{t}^{\alpha } g\left( {1,1} \right) - A_{t}^{\alpha } g\left( {0,0} \right) + A_{t}^{\alpha } g\left( {0,1} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 1}^{\alpha } \left( {1,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {0,0} \right) + H_{t + 1}^{\alpha } \left( {0,1} \right)} \right] \\ \end{aligned} $$

There are two expressions in the above equation, the first one is explained detailed as the following,

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right) \\ & \quad = \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {g\left( {1,1} \right) + r_{c} ,g\left( {2,0} \right) + r_{s} } \right] \\ & \quad \quad + g\left( {1,0} \right) + r_{c} - g\left( {0,0} \right) - r_{c} \\ \end{aligned} $$

1) If \(g\left( {1,1} \right) + r_{c} \ge g\left( {2,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right) \\ & \quad = \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {1,1} \right) - r_{c} + g\left( {1,0} \right) - g\left( {0,0} \right) \\ & \quad \ge g\left( {0,1} \right) - g\left( {1,1} \right) + g\left( {1,0} \right) - g\left( {0,0} \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {1,1} \right) + r_{c} \le g\left( {2,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {2,1} \right) - H_{t + 1}^{\alpha } \left( {1,0} \right) + H_{t + 1}^{\alpha } \left( {1,1} \right) \\ & \quad = \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - g\left( {2,0} \right) - r_{s} + g\left( {1,0} \right) - g\left( {0,0} \right) \\ & \quad \ge g\left( {1,0} \right) - g\left( {2,0} \right) + g\left( {1,0} \right) - g\left( {0,0} \right) \ge 0 \\ \end{aligned} $$

For the second expression:

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {0,0} \right) + H_{t + 1}^{\alpha } \left( {0,1} \right) \\ & \quad = g\left( {0,0} \right) + r_{c} + g\left( {0,0} \right) + r_{s} - g\left( {0,0} \right) \\ & \quad \quad - \max \left[ {g\left( {0,1} \right) + r_{c} ,g\left( {1,0} \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(g\left( {0,1} \right) + r_{c} \ge g\left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {0,0} \right) + H_{t + 1}^{\alpha } \left( {0,1} \right) \\ & \quad = g\left( {0,0} \right) + r_{c} + g\left( {0,0} \right) + r_{s} - g\left( {0,0} \right) - g\left( {0,1} \right) - r_{c} \\ & \quad = g\left( {0,0} \right) + r_{s} - g\left( {0,1} \right) \ge 0 \\ \end{aligned} $$

2) If \(g\left( {0,1} \right) + r_{c} \le g\left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {1,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) - H_{t + 1}^{\alpha } \left( {0,0} \right) + H_{t + 1}^{\alpha } \left( {0,1} \right) \\ & \quad = g\left( {0,0} \right) + r_{c} + g\left( {0,0} \right) + r_{s} - g\left( {0,0} \right) - g\left( {1,0} \right) - r_{s} \\ & \quad = g\left( {0,0} \right) + r_{c} - g\left( {1,0} \right) \\ \end{aligned} $$

By the Lemma A2, we can see that \(g\left( {0,0} \right) + r_{c} - g\left( {1,0} \right) \ge 0\).

By adding Eq. (2) and Eq. (4), we can get \(g\left( {c_{{rt_{0} }} ,s} \right){ + }g\left( {c_{{rt_{0} }} + 2,s} \right) \le 2 \cdot g\left( {c_{{rt_{0} }} + 1,s} \right)\); by adding Eq. (3) and Eq. (4), we can get \(g\left( {c_{{rt_{0} }} ,s} \right){ + }g\left( {c_{{rt_{0} }} ,s{ + }2} \right) \le 2 \cdot g\left( {c_{{rt_{0} }} ,s{ + }1} \right)\). So, we have the following two formulas.

$$ A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s} \right){ + }A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 2,s} \right) \le 2 \cdot A_{t}^{\alpha } g\left( {c_{{rt_{0} }} + 1,s} \right) $$
$$ A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s} \right){ + }A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s{ + }2} \right) \le 2 \cdot A_{t}^{\alpha } g\left( {c_{{rt_{0} }} ,s{ + }1} \right) $$

From the above, the proof of Lemma A1 is finished. Next we will prove the Proposition.

(1) In each service period \(t\), the optimal actions of capacity allocation is determined by the following operators:

$$ \begin{aligned} & H_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) = \\ & \quad \left\{ {\begin{array}{*{20}l} {\max \left[ {V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) + r_{c} ,V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) + r_{s} } \right],{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} if{\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1,s_{t} \ge 1,} \hfill \\ {V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) + r_{c} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} if{\kern 1pt} c_{{t,rt_{0} }} \ge 1,s_{t} = 0,} \hfill \\ {V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) + r_{s} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} if{\kern 1pt} c_{{t,rt_{0} }} = 0,s_{t} \ge 1,} \hfill \\ {V_{t}^{\alpha } \left( {0,0} \right),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} if{\kern 1pt} c_{{t,rt_{0} }} = s_{t} = 0.} \hfill \\ \end{array} } \right. \\ \end{aligned} $$

When both types of patients are waiting in the queue, the optimal choice is influenced by the parameters of the two types and the current revenue of different actions. In the case of \(c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\), the scheduled patient will be selected for surgery if and only if \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) + r_{c} \le V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) + r_{s}\), that is \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) \le r_{s} - r_{c}\). From Eq. (2), it can be seen that \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right)\) is a decreasing function of \(c_{{t,rt_{0} }}\), so let \(\Delta V_{t}^{\alpha } = V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right)\), \(c_{t}^{ * } \left( s \right)\) is introduced and defined as:

$$c_{t}^{ * } \left( s \right) = \left\{ {\begin{array}{ll} {\min \left( {c_{{t,rt_{0} }} |V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) < r_{c} - r_{s} } \right),}&{\Delta V_{t}^{\alpha } < r_{c} - r_{s} } \\ {t + 1,}&{ \Delta V_{t}^{\alpha } \ge r_{c} - r_{s} } \\ \end{array} } \right.$$

. Thus, the scheduled patient will be selected for surgery if and only if \(c < c_{t}^{ * } \left( s \right)\).

(2) Then \(c_{t}^{ * } \left( s \right)\) and \(c_{t}^{ * } \left( {s + 1} \right)\) are compared. From Eq. (3) and the definition of \(c_{t}^{ * } \left( s \right)\), we can get the following formula:

$$ V_{t}^{\alpha } \left( {c_{t}^{ * } \left( {s + 1} \right) + 1,s_{t} - 1} \right) - V_{t}^{\alpha } \left( {c_{t}^{ * } \left( {s + 1} \right),s_{t} } \right) \ge V_{t}^{\alpha } \left( {c_{t}^{ * } \left( {s + 1} \right) + 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{t}^{ * } \left( {s + 1} \right),s_{t} + 1} \right) $$

That is \(V_{t}^{\alpha } \left( {c_{t}^{ * } \left( {s + 1} \right) + 1,s_{t} - 1} \right) - V_{t}^{\alpha } \left( {c_{t}^{ * } \left( {s + 1} \right),s_{t} } \right) \ge r_{c} - r_{s}\), so \(c_{t}^{ * } \left( s \right) \le c_{t}^{ * } \left( {s + 1} \right)\).

Proof of Proposition 3

In order to prove that ‘the critical index \(c_{t}^{ * } \left( s \right)\) is a nonincreasing function of \(k_{c}\) when the penalty function is the linear form \(f\left( {c_{t} ,s_{t} } \right) = - c_{t} \cdot k_{c} - s_{t} \cdot k_{s}\)’, two different values of penalty cost \(k_{c}\) and \(\tilde{k}_{c}\) of convalescent patients are introduced, and \(k_{c} < \tilde{k}_{c}\). In this case, \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right)\) and \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right)\) are the optimal reward functions with the different penalty cost. The critical index \(c_{t}^{ * } \left( s \right)\) is a nonincreasing function of \(k_{c}\) if the following formula:

$$ \begin{aligned} &V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \le V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) \\ & \quad- V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \end{aligned}$$

is satisfied for each service period \(t\) and each state \(\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in S_{t}\).

When \(t = T + 1\),

$$ \begin{gathered} V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) - V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) \hfill \\\quad + V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) = k_{c} - \tilde{k}_{c} < 0 \hfill \\ \end{gathered} $$

For other service period \(t = 1,2, \ldots ,T\),

$$ \begin{aligned} & V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \\& \quad- V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ \begin{gathered} H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} ,k_{c} } \right) \hfill \\ - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} ,\tilde{k}_{c} } \right) \hfill \\ \end{gathered} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ \begin{gathered} H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \hfill \\ - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \hfill \\ \end{gathered} \right] \\ \end{aligned} $$

different conditions are considered respectively, and \(a_{t + 1}\) is assumed to be 0.

In this condition, there are two expressions in the above equation, the second one is explained detailed as the following, while the first one share the similar structure.

(1) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \\ & \quad - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} } \right] \\ \end{aligned} $$

(1) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s}\) and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \\ & \quad - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{s} } \right] \\ & \quad \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) - r_{c} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) - r_{c} \le 0 \\ \end{aligned} $$

(2) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s}\) and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \\ & \quad - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{s} } \right] \\ & \quad \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) - r_{s} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) - r_{c} \\ \end{aligned} $$

It is known that

$$\begin{aligned} &V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) - V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) \\&\quad- V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) + V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) \le 0 \end{aligned}$$
$$\begin{aligned} &V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) - V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) \\&\quad- V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) \le 0 \end{aligned}$$

By adding up the above two formulas, the following formula is got:

$$ \begin{aligned} & V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) - V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) \\ & \quad - V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) + V_{T + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) \le 0 \\ \end{aligned} $$

So,

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \\&\quad - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) - r_{s} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) - r_{c} \le 0 \\ \end{aligned} $$

3) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s}\) and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \\&\quad - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{s} } \right] \\ & \quad \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) - r_{c} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) - r_{s} = 0 \\ \end{aligned} $$

4) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,k_{c} } \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s}\) and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) \\&\quad - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) + r_{s} } \right] \\ & \quad \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,k_{c} } \right) + r_{s} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1,k_{c} } \right) - r_{s} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} ,\tilde{k}_{c} } \right) - r_{s} \le 0 \\ \end{aligned} $$

(2) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\)

$$ \begin{gathered} H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0,\tilde{k}_{c} } \right) \hfill \\ = \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,k_{c} } \right) + r_{s} } \right] \hfill \\ - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,\tilde{k}_{c} } \right) + r_{s} } \right] \hfill \\ - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,k_{c} } \right) - r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,\tilde{k}_{c} } \right) + r_{c} \hfill \\ \end{gathered} $$

1) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1,k_{c} } \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,k_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0,\tilde{k}_{c} } \right) \\ & \quad \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1,k_{c} } \right) + r_{c} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1,\tilde{k}_{c} } \right) - r_{c} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,k_{c} } \right) - r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,\tilde{k}_{c} } \right) + r_{c} \le 0 \\ \end{aligned} $$

2) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1,k_{c} } \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,k_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0,\tilde{k}_{c} } \right) \\ & \quad \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,k_{c} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,\tilde{k}_{c} } \right) - r_{s} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,k_{c} } \right) - r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0,\tilde{k}_{c} } \right) + r_{c} = 0 \\ \end{aligned} $$

(3) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {0,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} ,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = V_{t + 1}^{\alpha } \left( {0,s_{t} ,k_{c} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} ,\tilde{k}_{c} } \right) - r_{s} \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {0,s_{t} ,k_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {1,s_{t} - 1,k_{c} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {0,s_{t} ,\tilde{k}_{c} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(V_{t + 1}^{\alpha } \left( {0,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {0,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} ,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad \le V_{t + 1}^{\alpha } \left( {0,s_{t} ,k_{c} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} ,\tilde{k}_{c} } \right) - r_{s} \\ & \quad \quad + V_{t + 1}^{\alpha } \left( {0,s_{t} ,\tilde{k}_{c} } \right) + r_{c} - V_{t + 1}^{\alpha } \left( {0,s_{t} ,k_{c} } \right) - r_{c} = 0 \\ \end{aligned} $$

2) If \(V_{t + 1}^{\alpha } \left( {0,s_{t} ,\tilde{k}_{c} } \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {0,s_{t} + 1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} ,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} ,\tilde{k}_{c} } \right) \\ & \quad = V_{t + 1}^{\alpha } \left( {0,s_{t} ,k_{c} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} ,\tilde{k}_{c} } \right) - r_{s} \\ & \quad \quad + V_{t + 1}^{\alpha } \left( {1,s_{t} - 1,\tilde{k}_{c} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {1,s_{t} - 1,k_{c} } \right) - r_{s} \le 0 \\ \end{aligned} $$

(4) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} = 0\)

$$ \begin{aligned} & H_{t + 1}^{\alpha } \left( {0,1,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {1,0,k_{c} } \right) - H_{t + 1}^{\alpha } \left( {0,1,\tilde{k}_{c} } \right) + H_{t + 1}^{\alpha } \left( {1,0,\tilde{k}_{c} } \right) \\ & \quad = V_{t + 1}^{\alpha } \left( {0,0,k_{c} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,0,k_{c} } \right) - r_{c} \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {0,0,\tilde{k}_{c} } \right) - r_{s} + V_{t + 1}^{\alpha } \left( {0,0,\tilde{k}_{c} } \right) + r_{c} = 0 \\ \end{aligned} $$

Thus, from the above, we can get the conclusion that:

$$\begin{aligned} V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,k_{c} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,k_{c} } \right) &\le V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1,\tilde{k}_{c} } \right) \\ & \quad- V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} ,\tilde{k}_{c} } \right) \end{aligned}$$

So, ‘the critical index \(c_{t}^{ * } \left( s \right)\) is a nondecreasing function of \(k_{s}\)’ can be proved in the similar way.

Proof of Proposition 4

\(G_{it} ,i = 1,2,3\) is defined as the classes of profit functions on state \(S_{t}\). For each \(\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in S_{t}\), and \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\), \(s_{t} \ge 1\), \(t = 1,2, \ldots ,T + 1\), we define the following three conditions. For each \(g\left( {c_{{rt_{0} }} ,s} \right) \in G_{1t}\), \(g\left( {c_{{rt_{0} }} - 1,s} \right) - g\left( {c_{{rt_{0} }} ,s - 1} \right) \le r_{s} - r_{c}\); for each \(g\left( {c_{{rt_{0} }} ,s} \right) \in G_{2t}\), \(g\left( {c_{{rt_{0} }} - 1,s} \right) - g\left( {c_{{rt_{0} }} ,s - 1} \right) \ge r_{s} - r_{c}\); for each \(g\left( {c_{{rt_{0} }} ,s} \right) \in G_{3t}\), \(g\left( {c_{{rt_{0} }} - 1,s} \right) - g\left( {c_{{rt_{0} }} ,s - 1} \right) = g\left( {c_{{rt_{0} }} - 1,s + 1} \right) - g\left( {c_{{rt_{0} }} ,s} \right)\).

It can be observed that: if the optimal reward function \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right)\) belongs to \(G_{1t}\), the optimal choice is to serve scheduled patients at the \(t\) th service period; if the optimal reward function \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right)\) belongs to \(G_{2t}\), the optimal choice is to serve convalescent patients at the \(t\) th service period; while the optimal reward function \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right)\) belongs to \(G_{3t}\), the optimal choice on which type of patient to serve at the \(t\) th service period is influenced by the number of convalescent patients waiting in the line.

By this equation \(H_{T + 1}^{\alpha } \left( {c_{{T + 1,rt_{0} }} ,s_{T + 1} } \right) = V_{T + 1}^{\alpha } \left( {c_{{T + 1,rt_{0} }} ,s_{T + 1} } \right) = f\left( {c_{{T + 1,rt_{0} }} ,s_{T + 1} } \right)\), and \(a_{t + 1}\) is assumed to be 0, then the following formula is got.

(1) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{T - 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + V_{T - 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \\ & \quad = \left[ { - \left( {s_{t} + 1} \right) \cdot \left( {w_{s} + k_{s} } \right) - c_{{t,rt_{0} }} \cdot \left( {w_{c} + k_{c} } \right) - p_{{t,rt_{1} }} \cdot k_{c} } \right] \\ & \quad \quad - \left[ { - s_{t} \cdot \left( {w_{s} + k_{s} } \right) - \left( {c_{{t,rt_{0} }} + 1} \right) \cdot \left( {w_{c} + k_{c} } \right) - p_{{t,rt_{1} }} \cdot k_{c} } \right] \\ & \quad \quad - \left[ { - \left( {s_{t} + 1} \right) \cdot w_{s} - c_{{t,rt_{0} }} \cdot w_{c} + p_{{t,rt_{1} }} \cdot H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) }\right.\\ & \quad \quad \left.{- \left( {1 - p_{{t,rt_{1} }} } \right) \cdot H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right)} \right] \\ & \quad \quad + \left[ { - s_{t} \cdot w_{s} - \left( {c_{{t,rt_{0} }} + 1} \right) \cdot w_{c} + p_{{t,rt_{1} }} \cdot H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right)}\right.\\ & \quad \quad \left.{ + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ & \quad \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left[ {H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right)} \right] \\ & \quad \quad - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ & \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left[ {V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ & \quad \quad - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) - V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right)} \right] \\ & \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left( {w_{c} + k_{c} - w_{s} - k_{s} } \right) - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left( {w_{c} + k_{c} - w_{s} - k_{s} } \right) \\ & \quad = w_{s} - w_{c} \ge 0 \\ \end{aligned} $$

(2) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\)

$$ \begin{aligned} & V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - V_{T - 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) + V_{T - 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) \\ & \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left[ {H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) - H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right)} \right] \\ & \quad \quad - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - H_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right)} \right] \\ & \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left[ {V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right)} \right] \\ & \quad \quad - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) - V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right)} \right] \\ & \quad = w_{s} - w_{c} \ge 0 \\ \end{aligned} $$

(3) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & V_{T}^{\alpha } \left( {0,s_{t} + 1} \right) - V_{T}^{\alpha } \left( {1,s_{t} } \right) - V_{T - 1}^{\alpha } \left( {0,s_{t} + 1} \right) + V_{T - 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left[ {H_{T}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{T}^{\alpha } \left( {2,s_{t} } \right)} \right]\\&\quad - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{T}^{\alpha } \left( {0,s_{t} + 1} \right) - H_{T}^{\alpha } \left( {1,s_{t} } \right)} \right] \\ & \quad = p_{{t,rt_{1} }} \cdot \left( {w_{s} - w_{c} } \right) + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left( {w_{c} + r_{c} - r_{s} - k_{s} } \right) \ge 0 \\ \end{aligned} $$

(4) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} = 0\)

$$ \begin{aligned} & V_{T}^{\alpha } \left( {0,1} \right) - V_{T}^{\alpha } \left( {1,0} \right) - V_{T - 1}^{\alpha } \left( {0,1} \right) + V_{T - 1}^{\alpha } \left( {1,0} \right) \\ & \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left[ {H_{T}^{\alpha } \left( {1,1} \right) - H_{T}^{\alpha } \left( {2,0} \right)} \right] - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{T}^{\alpha } \left( {0,1} \right) - H_{T}^{\alpha } \left( {1,0} \right)} \right] \\ & \quad = k_{c} - k_{s} - p_{{t,rt_{1} }} \cdot \left( {w_{c} + k_{c} - w_{s} - k_{s} } \right) - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left( {r_{s} - r_{c} } \right) \\ & \quad = \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left( {r_{c} + k_{c} - r_{s} - k_{s} } \right) + p_{{t,rt_{1} }} \cdot \left( {w_{s} - w_{c} } \right) \ge 0 \\ \end{aligned} $$

So, \(V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - V_{T}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{T - 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + V_{T - 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0\). Then for other service period \(t\) and each state \(\left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in S\), we want to show that \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0\). 4 different conditions are considered respectively and \(a_{t + 1}\) is assumed to be 0.

(1) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right)}\right.\\& \quad \quad\left.{ - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) }\right.\\& \quad \quad\left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s}\), and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{c} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - r_{c} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0 \\ \end{aligned} $$

2) If \(V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s}\), and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{c} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{s} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) = 0 \\ \end{aligned} $$

3) If \(V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} \le V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s}\), and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) - r_{s} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - r_{c} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right)\\& \quad \quad - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) \ge 0 \\ \end{aligned} $$

4) If \(V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} \le V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s}\), and \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} } \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) - r_{s} - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - r_{s} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) \\&\quad \quad- V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,s_{t} - 1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0 \\ \end{aligned} $$

(2) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} = 0\)

$$ \begin{aligned} & V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) + V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right) }\right.\\& \quad \quad \left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 2,0} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) }\right.\\& \quad \quad \left.{- H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions, the second one is explained detailed as the following, while the first one share the similar structure.

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{c} \\ \end{aligned} $$

1) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) - r_{c} - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{c} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) \ge 0 \\ \end{aligned} $$

2) If \(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) - H_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,1} \right) + H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,0} \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - r_{s} - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - r_{c} + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + r_{c} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) + V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) - V_{t + 2}^{\alpha } \left( {c_{{t,rt_{0} }} ,0} \right) = 0 \\ \end{aligned} $$

(3) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} \ge 1\)

$$ \begin{aligned} & V_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) - V_{t + 1}^{\alpha } \left( {1,s_{t} } \right) - V_{t}^{\alpha } \left( {0,s_{t} + 1} \right) + V_{t}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 2}^{\alpha } \left( {1,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {2,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {1,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {2,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 2}^{\alpha } \left( {0,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions, the second one is explained detailed as the following, while the first expression’s prove is same as the case of \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 1\) and \(s_{t} \ge 1\).

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {0,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - r_{s} \\ & \quad \quad - \max \left[ {V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ \end{aligned} $$

1) If \(V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) + r_{c} \ge V_{t + 2}^{\alpha } \left( {1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {0,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - r_{s} - V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) - r_{c} \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \ge V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) + V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) = 0 \\ \end{aligned} $$

2) If \(V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) + r_{c} \le V_{t + 2}^{\alpha } \left( {1,s_{t} - 1} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {0,s_{t} + 1} \right) - H_{t + 2}^{\alpha } \left( {1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) + H_{t + 1}^{\alpha } \left( {1,s_{t} } \right) \\ & \quad = V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - r_{s} - V_{t + 2}^{\alpha } \left( {1,s_{t} - 1} \right) - r_{s} \\ & \quad \quad + \max \left[ {V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {1,s_{t} - 1} \right) + r_{s} } \right] \\ & \quad \ge V_{t + 1}^{\alpha } \left( {1,s_{t} - 1} \right) + V_{t + 2}^{\alpha } \left( {0,s_{t} } \right) - V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - V_{t + 2}^{\alpha } \left( {1,s_{t} - 1} \right) \ge 0 \\ \end{aligned} $$

(4) \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 0\) and \(s_{t} = 0\)

$$ \begin{aligned} & V_{t + 1}^{\alpha } \left( {0,1} \right) - V_{t + 1}^{\alpha } \left( {1,0} \right) - V_{t}^{\alpha } \left( {0,1} \right) + V_{t}^{\alpha } \left( {1,0} \right) \\ & \quad = p_{{t,rt_{1} }} \cdot \left[ {H_{t + 2}^{\alpha } \left( {1,1} \right) - H_{t + 2}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {H_{t + 2}^{\alpha } \left( {0,1} \right) - H_{t + 2}^{\alpha } \left( {1,0} \right) - H_{t + 1}^{\alpha } \left( {0,1} \right) + H_{t + 1}^{\alpha } \left( {1,0} \right)} \right] \\ \end{aligned} $$

In this condition, there are two expressions, the first one is explained detailed as the following, while the second one share the similar structure.

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {1,1} \right) - H_{t + 2}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {0,1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - \max \left[ {V_{t + 1}^{\alpha } \left( {0,1} \right) + r_{c} ,V_{t + 1}^{\alpha } \left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 2}^{\alpha } \left( {1,0} \right) - r_{c} + V_{t + 1}^{\alpha } \left( {1,0} \right) + r_{c} \\ \end{aligned} $$

1) If \(V_{t + 1}^{\alpha } \left( {0,1} \right) + r_{c} \ge V_{t + 1}^{\alpha } \left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {1,1} \right) - H_{t + 2}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {0,1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {0,1} \right) - r_{c} - V_{t + 2}^{\alpha } \left( {1,0} \right) - r_{c} + V_{t + 1}^{\alpha } \left( {1,0} \right) + r_{c} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {0,1} \right) + V_{t + 1}^{\alpha } \left( {1,0} \right) - V_{t + 1}^{\alpha } \left( {0,1} \right) - V_{t + 2}^{\alpha } \left( {1,0} \right) \ge 0 \\ \end{aligned} $$

2) If \(V_{t + 1}^{\alpha } \left( {0,1} \right) + r_{c} \le V_{t + 1}^{\alpha } \left( {1,0} \right) + r_{s}\)

$$ \begin{aligned} & H_{t + 2}^{\alpha } \left( {1,1} \right) - H_{t + 2}^{\alpha } \left( {2,0} \right) - H_{t + 1}^{\alpha } \left( {1,1} \right) + H_{t + 1}^{\alpha } \left( {2,0} \right) \\ & \quad = \max \left[ {V_{t + 2}^{\alpha } \left( {0,1} \right) + r_{c} ,V_{t + 2}^{\alpha } \left( {1,0} \right) + r_{s} } \right] \\ & \quad \quad - V_{t + 1}^{\alpha } \left( {1,0} \right) - r_{s} - V_{t + 2}^{\alpha } \left( {1,0} \right) - r_{c} + V_{t + 1}^{\alpha } \left( {1,0} \right) + r_{c} \\ & \quad \ge V_{t + 2}^{\alpha } \left( {1,0} \right) + V_{t + 1}^{\alpha } \left( {1,0} \right) - V_{t + 1}^{\alpha } \left( {1,0} \right) - V_{t + 2}^{\alpha } \left( {1,0} \right) = 0 \\ \end{aligned} $$

From the above, we can get the conclusion that:\(V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) + V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \ge 0\).

In the second part, we will show the proof of ‘There exists a critical index \(c_{t}^{ * } \left( s \right)\), and \(c_{t + 1}^{ * } \left( s \right) \le c_{t}^{ * } \left( s \right)\)’.

At the \(t\) th service period, when \(t = T\), the following equation is got: \(V_{T}^{\alpha } \left( {c_{{T,rt_{0} }} - 1,s_{T} } \right) - V_{T}^{\alpha } \left( {c_{{T,rt_{0} }} ,s_{T} - 1} \right) = w_{c} + k_{c} - w_{s} - k_{s} \ge r_{s} - r_{c} ,\forall \left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in S_{T}\). So, for \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 0\), \(V_{T}^{\alpha } \left( {c_{{T,rt_{0} }} ,s_{T} } \right) \in G_{2t}\), \(V_{T}^{\alpha } \left( {c_{{T,rt_{0} }} ,s_{T} } \right) \in G_{3t}\), and \(c_{t}^{ * } \left( s \right)\) can be set to 0.

At the \(t + 1\) th service period, if \({\kern 1pt} {\kern 1pt} c_{{t + 1,rt_{0} }} \ge c_{t + 1}^{ * } \left( s \right)\), \(V_{t + 1}^{\alpha } \left( {c_{{t + 1,rt_{0} }} ,s_{t + 1} } \right) \in G_{2,t + 1} ,G_{3,t + 1}\); if \({\kern 1pt} {\kern 1pt} c_{{t + 1,rt_{0} }} < c_{t + 1}^{ * } \left( s \right)\), \(V_{t + 1}^{\alpha } \left( {c_{{t + 1,rt_{0} }} ,s_{t + 1} } \right) \in G_{1,t + 1}\). In order to prove that \(c_{t + 1}^{ * } \left( s \right) \le c_{t}^{ * } \left( s \right)\) is satisfied in each \(t\) th service period, we define \(U_{t + 1} \left( {c_{{t + 1,rt_{0} }} ,s_{t + 1} } \right) = V_{t + 1}^{\alpha } \left( {c_{{t + 1,rt_{0} }} - 1,s_{t + 1} } \right) - V_{t + 1}^{\alpha } \left( {c_{{t + 1,rt_{0} }} ,s_{t + 1} - 1} \right)\), for \({\kern 1pt} {\kern 1pt} c_{{t + 1,rt_{0} }} > c_{t + 1}^{ * } \left( s \right)\),

$$ \begin{aligned} & V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) \\ & \quad = - w_{s} + w_{c} + p_{{t,rt_{1} }} \cdot \left[ {\left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) + p_{s} \cdot a_{t + 1} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right)} \right] \\ & \quad \quad - p_{{t,rt_{1} }} \cdot \left[ {\left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) + p_{s} \cdot a_{t + 1} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right)} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {\left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) + p_{s} \cdot a_{t + 1} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right)} \right] \\ & \quad - \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ {\left( {1 - p_{s} \cdot a_{t + 1} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) + p_{s} \cdot a_{t + 1} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right)} \right] \\ \\ \end{aligned} $$

\(a_{t + 1}\) is assumed to be 1, so there is:

$$ \begin{aligned} & V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) \\ & \quad = - w_{s} + w_{c} + p_{{t,rt_{1} }} \cdot \left[ \begin{gathered} \left( {1 - p_{s} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} - 1} \right) \hfill \\ + p_{s} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} + 1,s_{t} } \right) \hfill \\ \end{gathered} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ \begin{gathered} \left( {1 - p_{s} } \right) \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) \hfill \\ + p_{s} \cdot H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) - H_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) \hfill \\ \end{gathered} \right] \\ \end{aligned} $$

If \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 2\), then

$$ \begin{aligned} & V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) - r_{s} + r_{c} \\ & \quad = - w_{s} + w_{c} + p_{{t,rt_{1} }} \cdot \left[ \begin{gathered} \left( {1 - p_{s} } \right) \cdot \left( {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right)} \right) \hfill \\ + p_{s} \cdot \left( {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} + 1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right)} \right) \hfill \\ \end{gathered} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ \begin{gathered} \left( {1 - p_{s} } \right) \cdot \left( {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 2,s_{t} } \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} - 1} \right)} \right) \hfill \\ + p_{s} \cdot \left( {V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 2,s_{t} + 1} \right) - V_{t + 1}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right)} \right) \hfill \\ \end{gathered} \right] - r_{s} + r_{c} \\ & \quad = - w_{s} + w_{c} + p_{{t,rt_{1} }} \cdot U_{t + 1} \left( {c_{{t + 1,rt_{0} }} ,s_{t + 1} } \right) \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot U_{t + 1} \left( {c_{{t + 1,rt_{0} }} - 1,s_{t + 1} } \right) - r_{s} + r_{c} \\ \end{aligned} $$

If \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 1\), then

$$ \begin{aligned} & V_{t}^{\alpha } \left( {0,s_{t} } \right) - V_{t}^{\alpha } \left( {1,s_{t} - 1} \right) - r_{s} + r_{c} \\ & \quad = - w_{s} + w_{c} + p_{{t,rt_{1} }} \cdot \left[ \begin{gathered} \left( {1 - p_{s} } \right) \cdot \left( {V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - V_{t + 1}^{\alpha } \left( {1,s_{t} - 1} \right)} \right) \hfill \\ + p_{s} \cdot \left( {V_{t + 1}^{\alpha } \left( {0,s_{t} + 1} \right) - V_{t + 1}^{\alpha } \left( {1,s_{t} } \right)} \right) \hfill \\ \end{gathered} \right] \\ & \quad \quad + \left( {1 - p_{{t,rt_{1} }} } \right) \cdot \left[ \begin{gathered} \left( {1 - p_{s} } \right) \cdot \left( {V_{t + 1}^{\alpha } \left( {0,s_{t} - 1} \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} - 1} \right) - r_{c} } \right) \hfill \\ + p_{s} \cdot \left( {V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) + r_{s} - V_{t + 1}^{\alpha } \left( {0,s_{t} } \right) - r_{c} } \right) \hfill \\ \end{gathered} \right] - r_{s} + r_{c} \\ & \quad = - w_{s} + w_{c} + p_{{t,rt_{1} }} \cdot U_{t + 1} \left( {1,s_{t + 1} } \right) + \left( {1 - p_{{t,rt_{1} }} } \right)\left( {r_{s} - r_{c} } \right) \\ \end{aligned} $$

When \({\kern 1pt} {\kern 1pt} c_{{t + 1,rt_{0} }} > c_{t + 1}^{ * } \left( s \right)\), \(U_{t + 1} \left( {c_{{t + 1,rt_{0} }} - 1,s_{t + 1} } \right)\), \(U_{t + 1} \left( {c_{{t + 1,rt_{0} }} ,s_{t + 1} } \right)\), and \(U_{t + 1} \left( {c_{{t + 1,rt_{0} }} + 1,s_{t + 1} } \right)\) are all not depend on the number of \(s_{t}\), so in the case \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} = 1\) of and \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge 2\), there is \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in G_{3t}\).

From inequation (2): \(g\left( {c_{{rt_{0} }} ,s + 1} \right) - g\left( {c_{{rt_{0} }} + 1,s} \right) \le g\left( {c_{{rt_{0} }} + 1,s + 1} \right) - g\left( {c_{{rt_{0} }} + 2,s} \right)\), it can be seen that \(U_{t + 1} \left( {c_{{t + 1,rt_{0} }} - 1,s_{t + 1} } \right)\), \(U_{t + 1} \left( {c_{{t + 1,rt_{0} }} ,s_{t + 1} } \right)\), and \(U_{t + 1} \left( {c_{{t + 1,rt_{0} }} + 1,s_{t + 1} } \right)\) increase with the number of \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }}\), so for \({\kern 1pt} {\kern 1pt} c_{{t + 1,rt_{0} }} > c_{t + 1}^{ * } \left( s \right)\), there exists \(c_{t}^{ * } \left( s \right)\) so that for \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} \ge c_{t}^{ * } \left( s \right)\), \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in G_{2t}\), and for \({\kern 1pt} {\kern 1pt} c_{{t,rt_{0} }} < c_{t}^{ * } \left( s \right)\), \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in G_{1t}\). Besides, if \(w_{c} \ge w_{s}\), \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} - 1,s_{t} } \right) - V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} - 1} \right) - r_{s} + r_{c} \ge 0\) is always satisfied when \(V_{t}^{\alpha } \left( {c_{{t,rt_{0} }} ,s_{t} } \right) \in G_{2t}\). Thus, in this case, convalescent patients will be served whenever there is scheduled patients waiting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Su, Q. & Xu, C. Surgery scheduling of pelvic fracture patients with stochastic recovery time. Ann Oper Res 318, 277–321 (2022). https://doi.org/10.1007/s10479-022-04850-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04850-w

Keywords

Navigation