Skip to main content
Log in

Manufacturer’s R &D cooperation contract: linear fee or revenue-sharing payment in a low-carbon supply chain

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies one manufacturer’s optimal co-development payment under different power structures in a low-carbon supply chain with one manufacturer, one technology firm, and one retailer. The manufacturer could collaborate with the technology firm on developing low-carbon technology through linear fee or revenue-sharing payment. Our results demonstrate that the manufacturer’s optimal payment depends on the technology firm’s low-carbon level. If the manufacturer collaborates with a relatively low-level (high-level) technology firm, she should choose linear fee (revenue-sharing) payment, regardless of power structures. If the technology firm’s low-carbon level is intermediate, the optimal payment varies with power structures. Meanwhile, the manufacturer’s optimal payment is also beneficial to the environment due to more emission reductions. Besides, no matter under which payment type, as the manufacturer’s market power becomes strong, both the manufacturer’s and the technology firm’s profits increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.climatewatchdata.org/compare-all-targets.

  2. https://www.bloomberg.com/news/articles/2020-10-27/tesla-s-chinese-battery-supplier-boosts-profit-as-pandemic-eases.

  3. https://en.byd.com/news-posts/press-release-byd-us-hybrid-develop-first-ever-hydrogen-electric-bus/.

  4. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118786352.wbieg0654.

References

  • Beat, H. (2010). Allowance price drivers in the first phase of the EU ETS. Journal of Environmental Economics and Management, 59(1), 43–56.

    Article  Google Scholar 

  • Chen, T., Klastorin, T., & Wagner, R. M. (2015). Incentive contracts in serial stochastic projects. Manufacturing & Service Operations Management, 17(3), 290–301.

    Article  Google Scholar 

  • Chen, X., & Wang, X. (2016). Effects of carbon emission reduction policies on transporation mode selections with stochastic demand. Transportation Research Part E: Logistics and Transportation Review, 90, 196–205.

    Article  Google Scholar 

  • Chen, X., Wang, X., & Zhou, M. (2019). Firms’ green R &D cooperation behaviour in a supply chain: Technological spillover, power and coordination. International Journal of Production Economics, 218, 118–134.

    Article  Google Scholar 

  • Chen, X., Yang, H., Wang, X., & Choi, T. M. (2020). Optimal carbon tax design for achieving low carbon supply chains. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03621-9.

    Article  Google Scholar 

  • Crama, P., De Reyck, B., & Degraeve, Z. (2008). Milestone payments or royalties? Contract design for R &D licensing. Operations Research, 56(6), 1539–1552.

    Article  Google Scholar 

  • Dai, R., Zhang, J., & Tang, W. (2017). Cartelization or cost-sharing? Comparison of cooperation modes in a green supply chain. Journal of Cleaner Production, 156, 159–173.

    Article  Google Scholar 

  • Dechenaux, E., Thursby, M., & Thursby, J. (2009). Shirking, sharing risk and shelving: The role of university license contracts. International Journal of Industrial Organization, 27, 80–91.

    Article  Google Scholar 

  • Dong, C., Liu, Q., & Shen, B. (2019). To be or not to be green? Strategic investment for green product development in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 131, 193–227.

    Article  Google Scholar 

  • Dong, G., Liang, L., Wei, L., Xie, J., & Yang, G. (2021). Optimization model of trade credit and asset-based securitization financing in carbon emission reduction supply chain. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04011-5.

    Article  Google Scholar 

  • Du, S., Qian, J., Liu, T., & Hu, L. (2020). Emission allowance allocation mechanism design: A low-carbon operations perspective. Annals of Operations Research, 291, 247–280.

    Article  Google Scholar 

  • Du, S., Zhu, Y., Zhu, Y., & Tang, W. (2020). Allocation policy considering firm’s time-varying emission reduction in a cap-and-trade system. Annals of Operations Research, 290, 543–565.

    Article  Google Scholar 

  • Fu, Y., Chen, Z., Liu, Z., & Yang, S. (2020). A comparison of milestone contract and royalty contract under critical value criterion in R &D alliance. Soft Computing, 24, 2447–2462.

    Article  Google Scholar 

  • Ge, Z., Hu, Q., & Xia, Y. (2014). Firms’ R &D cooperation behavior in a supply chain. Production and Operations Management, 23(4), 599–609.

    Article  Google Scholar 

  • Ghosh, D., & Shah, J. (2015). Supply chain analysis under green sensitive consumer demand and cost sharing contract. International Journal of Production Economics, 164, 319–329.

    Article  Google Scholar 

  • Ji, T., Xu, X., Yan, X., & Yu, Y. (2020). The production decisions and cap setting with wholesale price and revenue sharing contracts under cap-and-trade regulation. International Journal of Production Research, 58(1), 128–147.

    Article  Google Scholar 

  • Li, J., & Lai, K. (2021). The abatement contract for low-carbon demand in supply chain with single and multiple abatement mechanism under asymmetric information. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04152-7.

    Article  Google Scholar 

  • Li, T., Zhang, R., Zhao, S., & Liu, B. (2019). Low carbon strategy analysis under revenue-sharing and cost-sharing contracts. Journal of Cleaner Production, 212, 1462–1477.

    Article  Google Scholar 

  • Li, X. (2018). Competing retailers’ environmental investment: An analysis under different power structures. Energies, 11(2719), 1–18.

    Google Scholar 

  • Liu, J., & Ke, H. (2020). Firms’ pricing strategies under different decision sequences in dual-format online retailing. Soft Computing, 24, 7811–7826.

    Article  Google Scholar 

  • Liu, J., & Ke, H. (2021). Firms’ preferences for retailing formats considering one manufacturer’s emission reduction investment. International Journal of Production Research, 59(10), 3062–3083.

    Article  Google Scholar 

  • Liu, K., & Song, H. (2017). Contract and incentive mechanism in low-carbon R &D cooperation. Supply Chain Management: An International Journal, 22(3), 270–283.

    Article  Google Scholar 

  • Luo, Z., Chen, X., Chen, J., & Wang, X. (2017). Optimal pricing policies for differentiated brands under different supply chain power structures. European Journal of Operational Research, 259, 437–451.

    Article  Google Scholar 

  • Luo, Z., Chen, X., & Kai, M. (2018). The effect of customer value and power structure on retail supply chain product choice and pricing decisions. Omega, 77, 115–126.

    Article  Google Scholar 

  • Luo, Z., Chen, X., & Wang, X. (2016). The role of co-opetition in low carbon manufacturing. European Journal of Operational Research, 253(2), 392–403.

    Article  Google Scholar 

  • Meng, X., Yao, Z., Nie, J., Zhao, Y., & Li, Z. (2018). Low-carbon product selection with carbon tax and competition: Effects of the power structure. International Journal of Production Economics, 200, 224–230.

    Article  Google Scholar 

  • Rong, L., & Xu, M. (2020). Impact of revenue-sharing contracts on green supply chain in manufacturing industry. International Journal of Sustainable Engineering, 13(4), 316–326.

    Article  Google Scholar 

  • Tang, R., & Yang, L. (2020). Impacts of financing mechanism and power structure on supply chains under cap-and-trade regulation. Transportation Research Part E: Logistics and Transportation Review, 139, 101957.

    Article  Google Scholar 

  • Wang, J., Yan, Y., Du, H., & Zhao, R. (2020). The optimal sales format for green products considering downstream investment. International Journal of Production Research, 58(4), 1107–1126.

    Article  Google Scholar 

  • Wang, Y., & Hou, G. (2020). How sticky information and members attitudes affects the co-innovate carbon emission reduction? Journal of Cleaner Production, 266, 121996.

    Article  Google Scholar 

  • Xia, L., Bai, Y., Ghose, S., & Qin, J. (2021). Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03838-8.

    Article  Google Scholar 

  • Xia, L., Guo, T., Qin, X., Juanjuan, Y., & Zhu, N. (2018). Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system. Annals of Operations Research, 268, 149–175.

    Article  Google Scholar 

  • Xia, L., Kong, Q., Li, Y., & Qin, J. (2021). Effect of equity holding on a supply chain’s pricing and emission reduction decisions considering information sharing. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03930-7.

    Article  Google Scholar 

  • Xing, G., Xia, B., & Guo, J. (2022). Contract choice for upstream innovation in a finance-constrained supply chain. International Transactions in Operational Research, 29, 1897–1914.

    Article  Google Scholar 

  • Xu, X., Xu, X., & He, P. (2016). Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 112(20), 4093–4106.

    Article  Google Scholar 

  • Yan, Y., Zhao, R., & Lan, Y. (2019). Moving sequence preference in coopetition outsourcing supply chain: Consensus or conflict. International Journal of Production Economics, 208, 221–240.

    Article  Google Scholar 

  • Yang, L., Ji, J., Wang, M., & Wang, Z. (2018). The manufacturer’s joint decisions of channel selections and carbon emission reductions under the cap-and-trade regulation. Journal of Cleaner Production, 193, 506–523.

    Article  Google Scholar 

  • Yang, L., Qin, Z., & Ji, J. (2017). Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation. International Journal of Production Economics, 191, 286–297.

    Article  Google Scholar 

  • Yu, M., & Cao, E. (2020). Information sharing format and carbon emission abatement in a supply chain with competition. International Journal of Production Research, 58(22), 6775–6790.

    Article  Google Scholar 

  • Yu, X., Lan, Y., & Zhao, R. (2018). Cooperation royalty contract design in research and development alliances: Help vs. knowledge-sharing. European Journal of Operational Research, 268(2), 740–754.

    Article  Google Scholar 

  • Yu, X., Lan, Y., & Zhao, R. (2021). Strategic green technology innovation in a two-stage alliance: Vertical collaboration or co-development? Omega, 98, Article ID: 102116.

  • Zhang, S., Wang, C., Yu, C., & Ren, Y. (2019). Governmental cap regulation and manufacturer’s low carbon strategy in a supply chain with different power structures. Computers & Industrial Engineering, 134, 27–36.

    Article  Google Scholar 

  • Zhang, Y. J., Sun, Y. F., & Huo, B. F. (2021). The optimal product pricing and carbon emissions reduction profit allocation of CET-covered enterprises in the cooperative supply chain. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04162-5.

    Article  Google Scholar 

Download references

Funding

This work was partly supported by the National Natural Science Foundation of China (No. 41971252) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ke.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

A. Linear fee payment

When the manufacture collaborates with the technology firm through linear fee payment, the three members’ profit functions are as follows:

$$\begin{aligned}&\varPi _m^L(f,e_m,w)=w \left( a-p+r \left( e_m+e_h+s e_h\right) \right) -\frac{e_m^2}{2}-f e_h, \end{aligned}$$
(A.1)
$$\begin{aligned}&\varPi _h^L(e_h)=f e_h-\frac{e_h^2}{2 k_h},\end{aligned}$$
(A.2)
$$\begin{aligned}&\varPi _t^L(p)=(p-w) \left( a-p+r \left( e_m+e_h+s e_h\right) \right) . \end{aligned}$$
(A.3)

1.1 A-1 Proof of MS game

Here, we use backward induction to solve the problem. In stage 3, the retailer decides the retail price after the manufacturer sets the wholesale price. From Eq. (A.3), we obtain \(\frac{\partial {\varPi ^L_t}^2}{\partial p^2}=-2<0\), so \(\varPi _t^L(p)\) is concave in p. Let \(\frac{\partial \varPi _t^L}{\partial p}=a+r \left( s e_h+e_h+e_m\right) -2 p+w=0\), we obtain \(p^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m+w\right) \).

Replace \(p^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial w^2}=-1 <0\), so \(\varPi _m^L(f,e_m,w)\) is a concave function of w. Let \(\frac{\partial \varPi ^L _m}{\partial w}=\frac{1}{2} \left( a+r (s+1) e_h+r e_m-2 w\right) =0\), we have \(w^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).

Replace \(w^*\) and \(p^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial e_m^2}=\frac{1}{4} \left( r^2-4\right) <0\), so \(\varPi _m^L(e_m,w)\) is concave in \(e_m\). From Eq. (A.2), we obtain \(\frac{\partial {\varPi ^L_h}^2}{\partial e_h^2}=-\frac{1}{k_h}<0\), so \(\varPi ^L _h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^L _h}{\partial e_h}=f-\frac{e_h}{k_h}=0\) and \(\frac{\partial \varPi ^L _m}{\partial e_m}=\frac{1}{8} \left( 2 r \left( a+r (s+1) e_h\right) +2 \left( r^2-4\right) e_m\right) =0\), we obtain \(e_m^{*}=\frac{r \left( a+f r (s+1) k_h\right) }{4-r^2}\) and \(e_h^{*}=f k_h\).

Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi _m^L(f,e_m,w)\), we have \(\varPi _m^L(f)=\frac{a^2+f k_h \left( 2 \left( a r (s+1)+f \left( r^2-4\right) \right) +f r^2 (s+1)^2 k_h\right) }{2 \left( 4-r^2\right) }\). Then we get \(\frac{\partial \varPi _m^2}{\partial f^2}=\frac{k_h \left( r^2 (s+1)^2 k_h+2 \left( r^2-4\right) \right) }{4-r^2}\). When \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\frac{\partial \varPi _m^2}{\partial f^2}<0\) holds, and thus \(\varPi _m^L(f)\) is concave in f. Let \(\frac{\partial \varPi _m}{\partial f}=\frac{k_h \left( a r (s+1)+f r^2 (s+1)^2 k_h+2 f \left( r^2-4\right) \right) }{4-r^2}=0\), we obtain \(f^{LM}=\frac{a r (s+1)}{2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h}\). Replace \(f^{LM}\) with f in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.

1.2 A-2 Proof of VN game

In the VN game, the manufacturer and the retailer decide the wholesale and retail prices simultaneously in the third stage. Here, we assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eqs. (A.1) and (A.3), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial w^2}=-2<0\) and \(\frac{\partial {\varPi ^L_t}^2}{\partial m_1^2}=-2<0\), so \(\varPi _m^L(f,e_m,w)\) is concave in w, and \(\varPi _t^L(p)\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^L_m}{\partial w}=a+r \left( s e_h+e_h+e_m\right) -m_1-2 w=0\) and \(\frac{\partial \varPi ^L_t}{\partial m_1}=a+r \left( s e_h+e_h+e_m\right) -2 m_1-w=0\), we obtain \(w^*=\frac{1}{3} \left( a+r s e_h+r e_h+r e_m\right) \) and \(m^*_1=\frac{a}{3}+\frac{1}{3} r s e_h+\frac{r e_h}{3}+\frac{r e_m}{3}\).

Then, we back to the second stage and solve the manufacturer’s and the technology firm’s emission reduction decisions. Replace \(w^*\) and \(m_1^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial e_m^2}=\frac{1}{9} \left( 2 r^2-9\right) <0\) and \(\frac{\partial {\varPi ^L _h}^2}{\partial e_h^2}=-\frac{1}{k_h}<0\), so \(\varPi ^L_m(f,e_m,w)\) is concave in \(e_m\), and \(\varPi ^L_h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^L_m}{\partial e_m}=\frac{1}{18} \left( 4 r \left( a+r (s+1) e_h\right) +2 \left( 2 r^2-9\right) e_m\right) =0\) and \(\frac{\partial \varPi ^L_h}{\partial e_h}=f-\frac{e_h}{k_h}=0\), we obtain \(e_m^{*}=\frac{2 \left( a r+f r^2 s k_h+f r^2 k_h\right) }{9-2 r^2}\) and \(e_h^{*}=f k_h\).

Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^L_m\), we have \(\varPi ^L_m(f)=\frac{a^2+f k_h \left( 2 a r (s+1)+f r^2 (s+1)^2 k_h+f \left( 2 r^2-9\right) \right) }{9-2 r^2}\). Then we get \(\frac{\partial \varPi ^L_m}{\partial f}=\frac{2 k_h \left( a r (s+1)+f r^2 (s+1)^2 k_h+f \left( 2 r^2-9\right) \right) }{9-2 r^2}\) and \(\frac{\partial {\varPi ^L_m}^2}{\partial f^2}=\frac{2 k_h \left( r^2 (s+1)^2 k_h+2 r^2-9\right) }{9-2 r^2}\). When \(k_h<\frac{9-2 r^2}{r^2 (s+1)^2}\), \(\frac{\partial {\varPi ^L_m}^2}{\partial f^2}<0\), and thus \(\varPi ^L_m(f)\) is concave in f. Let \(\frac{\partial \varPi ^L_m}{\partial f}=0\), we obtain \(f^{LN}=\frac{a r (s+1)}{9-2 r^2-r^2(s+1)^2 k_h}\). Replace \(f^{LN}\) with f in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.

1.3 A-3 Proof of RS game

In the RS game, the manufacturer decides the wholesale prices after the retailer sets the retail price in the third stage. Here, we still assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eq. (A.1), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial w^2}=-2<0\), so \(\varPi _m^L(f,e_m,w)\) is concave in w. Let \(\frac{\partial \varPi ^L_m}{\partial w}=a+r \left( s e_h+e_h+e_m\right) -m_1-2 w=0\), we obtain \(w^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m-m_1\right) \). Replace \(w^*\) in Eq. (A.3), we obtain \(\frac{\partial {\varPi ^L_t}^2}{\partial m_1^2}=-1 <0\), so \(\varPi ^L_t\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^L_t}{\partial m_1}=\frac{1}{2} \left( a+r (s+1) e_h+r e_m-m_1\right) -\frac{m_1}{2}=0\), we obtain \(m^*_1=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).

Then, we back to the second stage and solve the manufacturer’s and the technology firm’s emission reduction decisions. Replace \(w^*\) and \(m1^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial e_m^2}=\frac{1}{8} \left( r^2-8\right) <0\) and \(\frac{\partial {\varPi ^L _h}^2}{\partial e_h^2}=-\frac{1}{k_h}<0\), so \(\varPi ^L _m(f,e_m,w)\) is concave in \(e_m\), and \(\varPi ^L_h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^L_m}{\partial e_m}=\frac{1}{16} \left( 2 r \left( a+r (s+1) e_h\right) +2 \left( r^2-8\right) e_m\right) =0\) and \(\frac{\partial \varPi ^L_h}{\partial e_h}=f-\frac{e_h}{k_h}=0\), we obtain \(e_m^{*}=\frac{r \left( a+f r (s+1) k_h\right) }{8-r^2}\) and \(e_h^{*}=f k_h\).

Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^L _m\), we obtain \(\varPi ^L _m(f)=\frac{a^2+f k_h \left( 2 \left( a r (s+1)+f \left( r^2-8\right) \right) +f r^2 (s+1)^2 k_h\right) }{2 \left( 8-r^2\right) }\). Then we can get \(\frac{\partial \varPi _m}{\partial f}=\frac{k_h \left( a r (s+1)+f r^2 (s+1)^2 k_h+2 f \left( r^2-8\right) \right) }{8-r^2}\) and \(\frac{\partial {\varPi ^L _m}^2}{\partial f^2}=\frac{k_h \left( r^2 (s+1)^2 k_h+2 \left( r^2-8\right) \right) }{8-r^2}\). When \(k_h<\frac{2 \left( 8-r^2\right) }{r^2 (s+1)^2}\), \(\frac{\partial \varPi _m^2}{\partial f^2}<0\), and thus \(\varPi ^L _m\) is concave in f. Let \(\frac{\partial \varPi ^L_m}{\partial f}=0\), we obtain \(f^{LR}=\frac{a r (s+1)}{2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h}\). Replace \(f^{LR}\) with f in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.

1.4 A-4 Proof of Lemma 1

We derive the effect of power structures on decisions in this lemma. Note that we compare these decisions when the three power structures all exist, namely, \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\).

  1. (a)

    We first compare the optimal linear fee f under different power structures. Taking the difference between \(f^{LM}\) and \(f^{LN}\), we have \(f^{LM}-f^{LN}=\frac{a r (s+1)}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\).

    Taking the difference between \(f^{LR}\) and \(f^{LN}\), we have \(f^{LN}-f^{LR}=\frac{7 a r (s+1)}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\). Thus \(f^{LM}>f^{LN}>f^{LR}\).

  2. (b)

    We then compare the emission reductions under different power structures. Taking the difference between \(e^{LM}_m\) and \(e^{LN}_m\), we have \(e^{LM}_m-e^{LN}_m=\frac{2 a r}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\).

    Taking the difference between \(e^{LN}_m\) and \(e^{LR}_m\), we have \(e_m^{LN}-e_m^{LR}=\frac{14 a r}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\). Thus \(e^{LM}_m>e^{LN}_m>e_m^{LR}\).

    Taking the difference between \(e^{LM}_h\) and \(e^{LN}_h\), we have \(e^{LM}_h-e^{LN}_h=\frac{a r (s+1) k_h}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\).

    Taking the difference between \(e^{LN}_h\) and \(e^{LR}_h\), we have \(e_h^{LN}-e_h^{LR}=\frac{7 a r (s+1) k_h}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\). Thus \(e^{LM}_h>e^{LN}_h>e_h^{LR}\).

1.5 A-5 Proof of Proposition 1

  1. (a)

    Taking the difference between \(\varPi _m^{LM}\) and \(\varPi _m^{LN}\), we obtain

    $$\begin{aligned} \varPi _m^{LM}-\varPi _m^{LN}=\frac{a^2}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0. \end{aligned}$$

    Taking the difference between \(\varPi _m^{LN}\) and \(\varPi _m^{LR}\), we obtain

    $$\begin{aligned} \varPi _m^{LN}-\varPi _m^{LR}=\frac{7 a^2}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0. \end{aligned}$$

    Thus \(\varPi _m^{LM}>\varPi _m^{LN}>\varPi _m^{LR}\).

    Taking the difference between \(\varPi _h^{LM}\) and \(\varPi _h^{LN}\), we obtain

    $$\begin{aligned} \varPi _h^{LM}-\varPi _h^{LN}=\frac{a^2 r^2 (s+1)^2 k_h \left( 17-2 r^2 (s+1)^2 k_h-4 r^2\right) }{2 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2 \left( 2 \left( r^2+4\right) -r^2 (s+1)^2 k_h\right) {}^2}. \end{aligned}$$

    When \(\varPi _h^{LM}-\varPi _h^{LN}>0\), we have \(k_h<\frac{17-4 r^2}{2 r^2 (s+1)^2}\) and \(\frac{17-4 r^2}{2 r^2 (s+1)^2}>\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\). Hence, when \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\varPi _h^{LM}>\varPi _h^{LN}\) holds.

    Taking the difference between \(\varPi _h^{LN}\) and \(\varPi _h^{LR}\), we obtain

    $$\begin{aligned} \varPi _h^{LN}-\varPi _h^{LR}=\frac{7 a^2 r^2 (s+1)^2 k_h \left( 2 r^2 (s+1)^2 k_h+4 r^2-25\right) }{2 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2 \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}. \end{aligned}$$

    When \(\varPi _h^{LN}-\varPi _h^{LR}>0\), we have \(k_h<\frac{25-4 r^2}{2 r^2 (s+1)^2}\) and \(\frac{25-4 r^2}{2 r^2 (s+1)^2}>\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\). Hence, when \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\varPi _h^{LN}>\varPi _h^{LR}\) holds. From what has been discussed above, we obtain \(\varPi _h^{LM}>\varPi _h^{LN}>\varPi _h^{LR}\).

  2. (b)

    Taking the ratio of \(\varPi _t^{LM}\) to \(\varPi _t^{LN}\), we obtain \(\varPi _t^{LM}/\varPi _t^{LN}=\frac{4 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2}{9 \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}\).

    Set \(\varPi _t^{LM}/\varPi _t^{LN}>1\), we obtain \(4 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2-9 \left( 2 \left( 4-r^2\right) \right. \left. -r^2 (s+1)^2 k_h\right) {}^2>0\). Then we derive \(\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}<k_h<\frac{2 \left( 21-5 r^2\right) }{5 r^2 (s+1)^2}\). According to the constraint \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), we can get \(\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}>\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}\) and \(\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}<\frac{2 \left( 21-5 r^2\right) }{5 r^2 (s+1)^2}\). Thus when \(\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), we obtain \(\varPi _t^{LM}>\varPi _t^{LN}\); when \(1<k_h<\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}\), we obtain \(\varPi _t^{LM}<\varPi _t^{LN}\).

    Taking the ratio of \(\varPi _t^{LR}\) to \(\varPi _t^{LN}\), we obtain \(\varPi _t^{LR}/\varPi _t^{LN}=\frac{32 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2}{9 \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}\).

    Set \(\varPi _t^{LR}/\varPi _t^{LN}>1\), we obtain \(32 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2-9 \left( 2 \left( 8-r^2\right) \right. \left. -r^2 (s+1)^2 k_h\right) {}^2>0\).

    Then we derive \(k_h<\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\) or \(k_h>\frac{2 \left( 72-23 r^2+42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\). In addition, \(\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\) and \(\frac{2 \left( 72-23 r^2+42 \sqrt{2}\right) }{23 r^2 (s+1)^2}>\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\). Hence, when \(k_h<\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\), we obtain \(\varPi _t^{LR}>\varPi _t^{LN}\); when \(\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), we obtain \(\varPi _t^{LR}<\varPi _t^{LN}\).

    Taking the ratio of \(\varPi _t^{LM}\) to \(\varPi _t^{LR}\), we obtain \(\varPi _t^{LM}/\varPi _t^{LR}=\frac{\left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}{8 \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}\).

    Set \(\varPi _t^{LM}/\varPi _t^{LR}>1\), we obtain \(\left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2-8 \left( 2 \left( 4-r^2\right) \right. \left. -r^2 (s+1)^2 k_h\right) {}^2>0\). Then we derive \(\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}<k_h<\frac{2 \left( 8 \left( 3+\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}\). In addition, \(\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}-\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}=-\frac{8 \left( 1+2 \sqrt{2}\right) }{7 r^2 (s+1)^2}<0\) and \(\frac{2 \left( 8 \left( 3+\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}-\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}=\frac{8 \left( 2 \sqrt{2}-1\right) }{7 r^2 (s+1)^2}>0\). Thus when \(\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\varPi _t^{LM}>\varPi _t^{LR}\); when \(1<k_h<\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}\), \(\varPi _t^{LM}<\varPi _t^{LR}\).

    Therefore, if \(k_h<k^{L}_1=\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\), we have \(\varPi _t^{LR}>\varPi _t^{LN}>\varPi _t^{LM}\); if \(k^{L}_1<k_h<k^{L}_2=\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}\), then \(\varPi _t^{LN}>\varPi _t^{LR}>\varPi _t^{LM}\); if \(k^{L}_2<k_h<k^{L}_3=\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}\), then \(\varPi _t^{LN}>\varPi _t^{LM}>\varPi _t^{LR}\); if \(k^{L}_3<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), then \(\varPi _t^{LM}>\varPi _t^{LN}>\varPi _t^{LR}\).

B. Revenue-sharing payment

When the manufacture collaborates with the technology firm through revenue-sharing payment, the three members’ profit functions are as follows:

$$\begin{aligned}&\varPi _m^S(\phi ,e_m,w)=(1-\phi )w \left( a-p+r \left( e_m+e_h+s e_h\right) \right) -\frac{e_m^2}{2}, \end{aligned}$$
(B.1)
$$\begin{aligned}&\varPi _h^S(e_h)=w \phi \left( a-p+r \left( e_m+e_h+s e_h\right) \right) -\frac{e_h^2}{2 k_h},\end{aligned}$$
(B.2)
$$\begin{aligned}&\varPi _t^S(p)=(p-w)\left( a-p+r \left( e_m+e_h+s e_h\right) \right) . \end{aligned}$$
(B.3)

1.1 B-1 Proof of MS game

The decision sequence is similar to that of “Appendix A-1”. In stage 4, the retailer decides the retail price after the manufacturer sets the wholesale price in stage 3. From Eq. (B.3), we obtain \(\frac{\partial {\varPi ^S_t}^2}{\partial p^2}=-2<0\), so \(\varPi _t^S(p)\) is concave in p. Let \(\frac{\partial \varPi _t^S}{\partial p}=a+r \left( s e_h+e_h+e_m\right) -2 p+w=0\), we obtain \(p^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m+w\right) \). Replace \(p^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial w^2}=-(1-\phi ) <0\), so \(\varPi _m^S(\phi ,e_m,w)\) is a concave function of w. Let \(\frac{\partial \varPi ^S_m}{\partial w}=-\frac{1}{2} (\phi -1) \left( a+r (s+1) e_h+r e_m-2 w\right) =0\), we have \(w^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).

Replace \(w^*\) and \(p^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial e_m^2}=\frac{1}{4} \left( r^2 (1-\phi )-4\right) <0\), so \(\varPi _m^S(\phi ,e_m,w)\) is concave in \(e_m\). From Eq. (B.2), we obtain \(\frac{\partial {\varPi ^S_h}^2}{\partial e_h^2}=\frac{1}{8} \left( 2 r^2 (s+1)^2 \phi -\frac{8}{k_h}\right) \). Set \(\frac{1}{8} \left( 2 r^2 (s+1)^2 \phi -\frac{8}{k_h}\right) <0\), we obtain \(\phi <\frac{4}{r^2 (s+1)^2 k_h}\), so \(\varPi ^S_h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^S _m}{\partial e_m}=\frac{1}{2} \left( -\frac{1}{2} r (\phi -1) \left( a+r (s+1) e_h+r e_m\right) -2 e_m\right) =0\) and \(\frac{\partial \varPi ^S _h}{\partial e_h}=\frac{1}{8} \left( 2 r (s+1) \phi \left( a+r (s+1) e_h+r e_m\right) -\frac{8 e_h}{k_h}\right) =0\), we obtain \(e_m^{*}=\frac{a r (1-\phi )}{4-r^2 (s+1)^2 \phi k_h-r^2(1-\phi )}\) and \(e_h^{*}=\frac{a r (s+1) \phi k_h}{4-r^2 (s+1)^2 \phi k_h-r^2(1-\phi )}\).

Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi _m^S\), we obtain \(\varPi _m^S(\phi )=\frac{a^2 (1-\phi ) \left( 4-r^2 (1-\phi )\right) }{2\left( 4-r^2 (s+1)^2 \phi k_h+r^2(1-\phi )\right) {}^2}\). Then we derive \(\frac{\partial \varPi ^S_m}{\partial \phi }=\frac{a^2 \left( 8-r^2 (s+1)^2 k_h \left( r^2 (\phi -1)-2 \phi +4\right) +2 r^2 (\phi -1)\right) }{\left( r^2 (s+1)^2 \phi k_h-r^2(\phi -1)-4\right) {}^3}\), \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}\)\( =\frac{a^2 r^2 \left( (s+1)^2 k_h \left( r^2 (s+1)^2 k_h \left( r^2 (2 \phi -3)-4 (\phi -3)\right) -2 r^4 (\phi -1)-32\right) +4 \left( r^2 (\phi -1)+4\right) \right) }{\left( -r^2 (s+1)^2 \phi k_h+r^2 (\phi -1)+4\right) {}^4}\).

When \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}<0\), we derive \(\phi >\phi _1=\frac{(s+1)^2 k_h \left( 3 \left( r^2-4\right) r^2 (s+1)^2 k_h-2 r^4+32\right) +4 \left( r^2-4\right) }{2 r^2 \left( (s+1)^2 k_h-1\right) \left( \left( r^2-2\right) (s+1)^2 k_h-2\right) }\). Because \(0<\phi <1\), we restrict \(\phi _1<1\) to ensure the second derivative is negative. From this, we obtain \(\frac{4}{\left( 8-r^2\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Set \(\frac{\partial \varPi ^S_m}{\partial \phi }=0\), we obtain \(\phi ^{SM}=\frac{\left( 4-r^2\right) \left( r^2 (s+1)^2 k_h-2\right) }{r^2 \left( \left( 2-r^2\right) (s+1)^2 k_h+2\right) }\). To ensure the optimal solution exists, we restrict \(\phi ^{SM}<\frac{4}{r^2 (s+1)^2 k_h}\), and then derive \(\frac{2}{\left( r^2-4\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Then, we restrict \(\phi ^{SM}<1\) and derive \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Here, \(\frac{2}{r^2 (s+1)^2}-\frac{4}{\left( 8-r^2\right) (s+1)^2}=\frac{2 \left( 8-3 r^2\right) }{r^2 \left( 8-r^2\right) (s+1)^2}>0\). Thus, from what has been discussed above, the constraint condition is \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Replace \(\phi ^{SM}\) with \(\phi \) in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.

1.2 B-2 Proof of VN game

In the VN game, the manufacturer and the retailer decide the wholesale and retail prices simultaneously in the third stage. Here, we also assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eqs. (B.1) and (B.3), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial w^2}=2 (\phi -1)<0\) and \(\frac{\partial {\varPi ^S_t}^2}{\partial m_1^2}=-2<0\), so \(\varPi _m^S(\phi ,e_m,w)\) is concave in w, and \(\varPi _t^S(p)\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^S_m}{\partial w}=(1-\phi ) \left( a+r (s+1) e_h+r e_m-m_1-2 w\right) =0\) and \(\frac{\partial \varPi ^S_t}{\partial m_1}=a+r \left( s e_h+e_h+e_m\right) -2 m_1-w=0\), we obtain \(w^*=\frac{1}{3} \left( a+r s e_h+r e_h+r e_m\right) \) and \(m^*_1=\frac{1}{3} \left( a+r s e_h+r e_h+r e_m\right) \).

Replace \(w^*\) and \(m_1^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial e_m^2}=\frac{2}{9} r^2 (1-\phi )-1<0\) and \(\frac{\partial {\varPi ^S _h}^2}{\partial e_h^2}=\frac{2}{9} r^2 (s+1)^2 \phi -\frac{1}{k_h}\). Thus \(\varPi ^S _m(\phi ,e_m,w)\) is concave in \(e_m\). Set \(\frac{2}{9} r^2 (s+1)^2 \phi -\frac{1}{k_h}<0\), we have \(\phi <\frac{9}{2 r^2 (s+1)^2 k_h}\), and thus \(\varPi ^S _h(e_h)\) is concave in \(e_h\) under this constraint. Let \(\frac{\partial \varPi ^S_m}{\partial e_m}=-\frac{2}{9} r (\phi -1) \left( a+r (s+1) e_h+r e_m\right) -e_m\) and \(\frac{\partial \varPi ^S_h}{\partial e_h}=\frac{2}{9} r (s+1) \phi \left( a+r (s+1) e_h+r e_m\right) -\frac{e_h}{k_h}=0\), we obtain \(e_m^{*}=\frac{2 a r (\phi -1)}{2 r^2 (s+1)^2 \phi k_h-2 r^2 (\phi -1)-9}\) and \(e_h^{*}=-\frac{2 a r (s+1) \phi k_h}{2 r^2 (s+1)^2 \phi k_h-2 r^2 (\phi -1)-9}\).

Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^S_m\), we obtain \(\varPi ^S_m=-\frac{a^2 (\phi -1) \left( 2 r^2 (\phi -1)+9\right) }{\left( -2 r^2 (s+1)^2 \phi k_h+2 r^2 (\phi -1)+9\right) {}^2}\). Then we derive \(\frac{\partial \varPi ^S_m}{\partial \phi }=\frac{a^2 \left( 9 \left( 2 r^2 (\phi -1)+9\right) -2 r^2 (s+1)^2 k_h \left( 4 r^2 (\phi -1)-9 (\phi -2)\right) \right) }{\left( 2 r^2 (s+1)^2 \phi k_h-2 r^2 (\phi -1)-9\right) {}^3}\), \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}\)\(=\frac{2 a^2 r^2 \left( 4 (s+1)^2 k_h \left( r^2 (s+1)^2 k_h \left( r^2 (4 \phi -6)-9 (\phi -3)\right) -4 r^4 (\phi -1)-81\right) +18 \left( 2 r^2 (\phi -1)+9\right) \right) }{\left( -2 r^2 (s+1)^2 \phi k_h+2 r^2 (\phi -1)+9\right) {}^4}\).

Set \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}<0\), we have \(\phi >\phi _2=\frac{2 (s+1)^2 k_h \left( 3 \left( 2 r^2-9\right) r^2 (s+1)^2 k_h-4 r^4+81\right) +9 \left( 2 r^2-9\right) }{2 r^2 \left( (s+1)^2 k_h-1\right) \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) }\). Because \(0<\phi <1\), we restrict \(\phi _2<1\) and derive that \(\frac{9}{2 \left( 9-r^2\right) (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\). Let \(\frac{\partial \varPi ^S_m}{\partial \phi }=0\), we obtain \(\phi ^{SN}=\frac{\left( 9-2 r^2\right) \left( 4 r^2 (s+1)^2 k_h-9\right) }{2 r^2 \left( \left( 9-4 r^2\right) (s+1)^2 k_h+9\right) }\). To ensure the optimal solution exists, we restrict \(0<\phi ^{SN}<1\) and derive \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\); then we restrict \(\phi ^{SN}<\frac{9}{2 r^2 (s+1)^2 k_h}\) and derive \(\frac{9}{2 \left( 2 r^2-9\right) (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\). Thus, from what has been discussed above, the constraint condition is \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\). Replace \(\phi ^{SN}\) with \(\phi \) in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.

1.3 B-3 Proof of RS game

Similarly, we still assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eq. (B.1), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial w^2}=-2(1-\phi ) <0\), so \(\varPi _m^S(\phi ,e_m,w)\) is concave in w. Let \(\frac{\partial \varPi ^S_m}{\partial w}=(1-\phi ) \left( a+r (s+1) e_h+r e_m-m_1-2 w\right) =0\), we obtain \(w^*=(1-\phi ) \left( a+r (s+1) e_h+r e_m \right. \left. -m_1-2 w\right) \). Replace \(w^*\) in Eq. (B.3), we obtain \(\frac{\partial {\varPi ^S_t}^2}{\partial m_1^2}=-1<0\), so \(\varPi ^S_t\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^S_t}{\partial m_1}=\frac{1}{2} \left( a+r (s+1) e_h+r e_m-m_1\right) -\frac{m_1}{2}=0\), we obtain \(m^*_1=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).

Then, we back to the first stage and solve the manufacturer’s and the technology firm’s emission reduction decisions. Replace \(w^*\) and \(m_1^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial e_m^2}=\frac{1}{8} \left( r^2 (1-\phi )-8\right) <0\) and \(\frac{\partial {\varPi ^S _h}^2}{\partial e_h^2}=\frac{1}{16} \left( 2 r^2 (s+1)^2 \phi -\frac{16}{k_h}\right) \), so \(\varPi ^S _m(\phi ,e_m,w)\) is concave in \(e_m\). Set \(\frac{1}{16} \left( 2 r^2 (s+1)^2 \phi -\frac{16}{k_h}\right) <0\), we have \(\phi <\frac{8}{r^2 (s+1)^2 k_h}\), and \(\varPi ^S_h(e_h)\) is concave in \(e_h\) under this condition. Let \(\frac{\partial \varPi ^S_m}{\partial e_m}=\frac{1}{16} \left( 2 e_m \left( r^2(1-\phi )-8\right) -2 r (\phi -1) \left( a+r (s+1) e_h\right) \right) =0\), \(\frac{\partial \varPi ^S_h}{\partial e_h}=\frac{1}{16} \left( 2 r (s+1) \phi \left( a+r (s+1) e_h+r e_m\right) -\frac{16 e_h}{k_h}\right) =0\). We obtain \(e_m^{*}=\frac{a r (\phi -1)}{r^2 (s+1)^2 \phi k_h+r^2(1-\phi ))-8}\) and \(e_h^{*}=-\frac{a r (s+1) \phi k_h}{r^2 (s+1)^2 \phi k_h+r^2 (1-\phi )-8}\).

Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^S_m\), we obtain \(\varPi ^S_m(\phi )=\frac{a^2 (1-\phi ) \left( r^2 (\phi -1)+8\right) }{2 \left( 8-r^2 (s+1)^2 \phi k_h+r^2 (\phi -1)\right) {}^2}\). Then we derive \(\frac{\partial \varPi ^S_m}{\partial \phi }=\frac{a^2 \left( 4 \left( r^2 (\phi -1)+8\right) -r^2 (s+1)^2 k_h \left( r^2 (\phi -1)-4 \phi +8\right) \right) }{\left( r^2 (s+1)^2 \phi k_h+r^2 (1-\phi )-8\right) {}^3}\), \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}\)\(=\frac{a^2 r^2 \left( -2 (s+1)^2 k_h \left( r^4 (\phi -1)+64\right) +r^2 (s+1)^4 k_h^2 \left( r^2 (2 \phi -3)-8 (\phi -3)\right) +8 \left( r^2 (\phi -1)+8\right) \right) }{\left( 8-r^2 (s+1)^2 \phi k_h+r^2 (\phi -1)\right) {}^4}\). Set \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}<0\), we derive \(\phi >\phi _3=\frac{-2 \left( 64-r^4\right) (s+1)^2 k_h+3 r^2 \left( 8-r^2\right) (s+1)^4 k_h^2+8 \left( 8-r^2\right) }{2 r^2 \left( (s+1)^2 k_h-1\right) \left( \left( 4-r^2\right) (s+1)^2 k_h+4\right) }\). Because \(0<\phi <1\), we restrict \(\phi _3<1\) and derive \(\frac{8}{\left( 16-r^2\right) (s+1)^2}<k_h<\frac{8}{r^2 (s+1)^2}\). Let \(\frac{\partial \varPi ^S_m}{\partial \phi }=0\), we obtain \(\phi ^{SR}=\frac{\left( 8-r^2\right) \left( r^2 (s+1)^2 k_h-4\right) }{r^2 \left( \left( 4-r^2\right) (s+1)^2 k_h+4\right) }\). To ensure the optimal solution exists, we restrict \(0<\phi ^{SR}<1\) and derive \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{8}{r^2 (s+1)^2}\), and under this condition, \(\phi >\phi _3\) and \(\phi <\frac{8}{r^2 (s+1)^2 k_h}\) both hold. Thus, the constraint condition is \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{8}{r^2 (s+1)^2}\). Replace \(\phi ^{SR}\) with \(\phi \) in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.

1.4 B-4 Proof of Lemma 2

Here, we compare these decisions when the MS and VN games exist, namely, \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).

  1. (a)

    Taking the difference between \(\phi ^{SM}\) and \(\phi ^{SN}\), we obtain \(\phi ^{SM}-\phi ^{SN}=\frac{(s+1)^2 k_h \left( 2 r^4 (s+1)^2 k_h-17 r^2+18\right) +18}{2 r^2 \left( \left( r^2-2\right) (s+1)^2 k_h-2\right) \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) }\). When \(\phi ^{SM}-\phi ^{SN}>0\), we derive \((s+1)^2 k_h \left( 2 r^4 (s+1)^2 k_h-17 r^2+18\right) +18>0\). Then we obtain \(k_h<\frac{17 r^2-\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}\) and \(k_h>\frac{17 r^2+\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}\). Due to \(\frac{17 r^2-\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}<0\) and \(\frac{9}{4 r^2 (s+1)^2}-\frac{17 r^2+\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}=\frac{18-8 r^2-\sqrt{145 r^4-612 r^2+324}}{4 r^4 (s+1)^2}>0\), so \(\phi ^{SM}-\phi ^{SN}>0\) always holds under the above constraint.

  2. (b)

    Taking the difference between \(e_m^{SM}\) and \(e_m^{SN}\), we obtain \(e_m^{SM}-e_m^{SR}=\frac{a r}{2 \left( 2 r^4-17 r^2+36\right) (s+1)^2 k_h}>0\).

    Taking the difference between \(e_h^{SM}\) and \(e_h^{SN}\), we obtain \(e_h^{SM}-e_h^{SN}=\frac{a r (s+1) k_h}{4 r^4 (s+1)^4 k_h^2-34 r^2 (s+1)^2 k_h+72}>0\) always holds when \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).

1.5 B-5 Proof of Proposition 2

Here, we compare the three members’ profits when the MS and VN games exist, namely, \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).

  1. (a)

    Taking the difference between \(\varPi _m^{SM}\) and \(\varPi _m^{SN}\), we obtain \(\varPi _m^{SM}-\varPi _m^{SN}=\frac{a^2 \left( \left( 36-17 r^2\right) (s+1)^2 k_h+36\right) }{8 \left( 4-r^2\right) \left( 9-2 r^2\right) (s+1)^2 k_h \left( 4-r^2 (s+1)^2 k_h\right) \left( 9-2 r^2 (s+1)^2 k_h\right) }>0\).

    Taking the difference between \(\varPi _h^{SM}\) and \(\varPi _h^{SN}\), we obtain \(\varPi _h^{SM}-\varPi _h^{SN}=\frac{a^2 \left( (s+1)^2 k_h \left( 2 \left( 36-17 r^2\right) (s+1)^2 k_h+17 r^2+36\right) -36\right) }{8 \left( 4-r^2\right) \left( 9-2 r^2\right) (s+1)^4 k_h^2 \left( 4-r^2 (s+1)^2 k_h\right) \left( 9-2 r^2 (s+1)^2 k_h\right) }>0\).

  2. (b)

    Taking the ratio of \(\varPi _t^{SM}\) to \(\varPi _t^{SN}\), we obtain \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}=\frac{4 \left( 9-2 r^2\right) ^2 \left( 9-2 r^2 (s+1)^2 k_h\right) {}^2 \left( \left( 2-r^2\right) (s+1)^2 k_h+2\right) {}^2}{9 \left( 4-r^2\right) ^2 \left( 4-r^2 (s+1)^2 k_h\right) {}^2 \left( \left( 9-4 r^2\right) (s+1)^2 k_h+9\right) {}^2}\).

    When \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}>1\), we obtain that only \(k_h>k^{S}_1=\frac{72 \left( r^2-3\right) }{\left( 23 r^4-102 r^2-\sqrt{-47 r^8+348 r^6+252 r^4-6480 r^2+11664}+108\right) (s+1)^2}\) is in the feasible region \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Hence, when \(k^{S}_1<k_h<\frac{4}{r^2 (s+1)^2}\), we have \(\varPi _t^{SM}>\varPi _t^{SN}\); when \(\frac{9}{4 r^2 (s+1)^2}<k_h<k^{S}_1\), we have \(\varPi _t^{SM}<\varPi _t^{SN}\).

1.6 B-6 Proof of Lemma 3

Here, we compare these decisions when the VN and RS games exist, namely, \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\).

  1. (a)

    Taking the difference between \(\phi ^{SN}\) and \(\phi ^{SR}\), we obtain \(\phi ^{SN}-\phi ^{SR}=\frac{7 \left( (s+1)^2 k_h \left( 2 r^4 (s+1)^2 k_h-25 r^2+36\right) +36\right) }{2 r^2 \left( \left( r^2-4\right) (s+1)^2 k_h-4\right) \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) }>0\).

  2. (b)

    Taking the difference between \(e_m^{SN}\) and \(e_m^{SR}\), we obtain \(e_m^{SN}-e_m^{SR}=\frac{7 a r}{2 \left( 2 r^4-25 r^2+72\right) (s+1)^2 k_h}>0\).

    Taking the difference between \(e_h^{SN}\) and \(e_h^{SR}\), we obtain \(e_h^{SN}-e_h^{SR}=\frac{7 a r (s+1) k_h}{4 r^4 (s+1)^4 k_h^2-50 r^2 (s+1)^2 k_h+144}>0\) always hold when \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\).

1.7 B-7 Proof of Proposition 3

Here, we compare the three members’ profits when the VN and RS games exist, namely, \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).

Taking the difference between \(\varPi _m^{SN}\) and \(\varPi _m^{SR}\), we obtain

$$\begin{aligned} \varPi _m^{SN}-\varPi _m^{SR}= & {} \frac{7 a^2 \left( \left( 72-25 r^2\right) (s+1)^2 k_h+72\right) }{8 \left( 8-r^2\right) \left( 9-2 r^2\right) (s+1)^2 k_h \left( 8-r^2 (s+1)^2 k_h\right) \left( 9-2 r^2 (s+1)^2 k_h\right) }\\&>0. \end{aligned}$$

Taking the difference between \(\varPi _h^{SN}\) and \(\varPi _h^{SR}\), we obtain

$$\begin{aligned} \varPi _h^{SN}-\varPi _h^{SR}=\frac{7 a^2 \left( (s+1)^2 k_h \left( 2 \left( 72-25 r^2\right) (s+1)^2 k_h+25 r^2+72\right) -72\right) }{8 \left( 8-r^2\right) \left( 9-2 r^2\right) (s+1)^4 k_h^2 \left( 8-r^2 (s+1)^2 k_h\right) \left( 9-2 r^2 (s+1)^2 k_h\right) }. \end{aligned}$$

When \(\varPi _h^{SN}-\varPi _h^{SR}>0\), we derive \(k_h>\frac{1}{2 (s+1)^2}\) or \(k_h<\frac{72}{\left( 25 r^2-72\right) (s+1)^2}\). Due to \(\frac{4}{r^2 (s+1)^2}-\frac{1}{2 (s+1)^2}=\frac{8-r^2}{2 r^2 (s+1)^2}>0\), so \(\varPi _h^{SN}>\varPi _h^{SR}\) always holds when \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).

Taking the ratio of \(\varPi _t^{SN}\) to \(\varPi _t^{SR}\), we obtain \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}=\frac{9 \left( r^2-8\right) ^2 \left( r^2 (s+1)^2 k_h-8\right) {}^2 \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) {}^2}{32 \left( 9-2 r^2\right) ^2 \left( 9-2 r^2 (s+1)^2 k_h\right) {}^2 \left( \left( r^2-4\right) (s+1)^2 k_h-4\right) {}^2}\).

When \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}>1\), we found that all thresholds \(k_h\) are not in the feasible region \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Hence, \(\varPi _t^{SN}>\varPi _t^{SR}\) always holds under the above constraint.

C. The manufacturer’s optimal payment

Here, we explore the manufacturer’s optimal payment by comparing the manufacturer’s profit under different payments. Meanwhile, the impact of payment type on the environment is also analyzed.

1.1 C-1 Proof of Lemma 4

We analyze the effect of payment type on the environment in the MS game. Meanwhile, the condition \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\) holds to ensure the cases LM and SM exist.

  1. (a)

    Taking the difference between \(e_m^{LM}\) and \(e_m^{SM}\), we obtain \(e_m^{LM}-e_m^{SM}=\frac{2 a r}{2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h}-\frac{2 a}{\left( 4 r-r^3\right) (s+1)^2 k_h}\). This is an increasing function with respect to \(k_h\), thus when \(k_h=\frac{2}{r^2 (s+1)^2}\), the minimum of \(e_m^{LM}-e_m^{SM}\) is \(\frac{a r}{r^4-7 r^2+12}>0\). Hence \(e_m^{LM}>e_m^{SM}\) always holds.

  2. (b)

    Taking the difference between \(e_h^{LM}\) and \(e_h^{SM}\), we obtain \(e_h^{LM}-e_h^{SM}=\frac{2 a \left( -\left( 3-r^2\right) r^2 (s+1)^2 k_h-2 r^2+8\right) }{r (s+1) \left( 4-r^2 (s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }\). Set \(e_h^{LM}-e_h^{SM}>0\), we derive \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 \left( 3-r^2\right) (s+1)^2}\). Hence, when \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 \left( 3-r^2\right) (s+1)^2}\), \(e_h^{LM}>e_h^{SM}\); when \(\frac{2 \left( 4-r^2\right) }{r^2 \left( 3-r^2\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\), \(e_h^{LM}<e_h^{SM}\).

1.2 C-2 Proof of Proposition 4

We analyze the effect of payment type on the profits in the MS game. Meanwhile, the condition \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\) holds to ensure the cases LM and SM exist.

  1. (a)

    Taking the difference between \(e_m^{LM}\) and \(e_m^{SM}\), we obtain \(\varPi _m^{LM}-\varPi _m^{SM}=\frac{a^2}{2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h}-\frac{2 a^2}{r^2 \left( 4-r^2\right) (s+1)^2 k_h \left( 4-r^2 (s+1)^2 k_h\right) }\). Let \(\varPi _m^{LM}-\varPi _m^{SM}=0\), we derive two roots are \(k_h=\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\) and \(k_h=\frac{9-2 r^2-\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\). However, only \(k_h=\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\) is in the feasible region. Hence, when \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\), \(\varPi _m^{LM}-\varPi _m^{SM}>0\); when \(\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\), \(\varPi _m^{LM}-\varPi _m^{SM}<0\).

  2. (b)

    Taking the difference between \(\varPi _t^{LM}\) and \(\varPi _t^{SM}\), we obtain \(\varPi _t^{LM}-\varPi _t^{SM}=\frac{4 a^2}{\left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}-\frac{a^2 \left( \left( 2-r^2\right) (s+1)^2 k_h+2\right) {}^2}{\left( 4-r^2\right) ^2 (s+1)^4 k_h^2 \left( 4-r^2 (s+1)^2 k_h\right) {}^2}\).

    Set \(\varPi _t^{LM}-\varPi _t^{SM}=0\), we derive four roots, but only \(k_{h1}=\frac{8-r^4+3 r^2+\sqrt{r^8-10 r^6+33 r^4-48 r^2+64}}{r^2 \left( 6-r^2\right) (s+1)^2}\) is in the feasible region. Hence, when \(\frac{2}{r^2 (s+1)^2}<k_h<k_{h1}\), \(\varPi _t^{LM}-\varPi _t^{SM}>0\); when \(k_{h1}<k_h<\frac{4}{r^2 (s+1)^2}\), \(\varPi _t^{LM}-\varPi _t^{SM}<0\), where \(k_{h1}=k^{M}_3\).

1.3 C-3 Proof of Lemmas 5 and 6

The proof is similar to that of Lemma 4, so here we omit it.

1.4 C-4 Proof of Propositions 5 and 6

The proof is similar to that of Proposition 4, so here we omit it.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ke, H. & Gao, Y. Manufacturer’s R &D cooperation contract: linear fee or revenue-sharing payment in a low-carbon supply chain. Ann Oper Res 318, 323–355 (2022). https://doi.org/10.1007/s10479-022-04869-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04869-z

Keywords

Navigation