
Noname manuscript No.
(will be inserted by the editor)

Solving the Integrated Bin Allocation and Collection
Routing Problem for Municipal Solid Waste: a
Benders Decomposition Approach

Arthur Mahéo · Diego Gabriel Rossit ·
Philip Kilby

Received: date / Accepted: date

Abstract The municipal solid waste system is a complex reverse logistic chain
which comprises several optimisation problems. Although these problems are
interdependent – i.e., the solution to one of the problems restricts the solution to
the other – they are usually solved sequentially in the related literature because
each is usually a computationally complex problem. We address two of the
tactical planning problems in this chain by means of a Benders decomposition
approach: determining the location and/or capacity of garbage accumulation
points, and the design and schedule of collection routes for vehicles. Our approach
manages to solve medium-sized real-world instances in the city of Bahía Blanca,
Argentina, showing smaller computing times than solving a full MIP model.

Keywords Municipal solid waste · Reverse supply chain · Integrated allocation-
routing problem · Benders decomposition algorithm · valid inequalities · mixed
integer programming

1 Introduction

Regardless of their size, city councils have the duty to provide efficient service
to their constituents. Municipal Solid Waste (MSW) management is one such a
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crucial service. When mishandled, this problem may produce serious economic,
environmental and social impacts (Asefi et al., 2019; Hoornweg and Bhada,
2012).

In this paper, we will focus on a less traditional MSW design called Garbage
Accumulation Points (GAPs). Instead of providing a “door-to-door” pickup of
garbage, constituents have to drop their garbage at specific facility – the GAPs.
These facilities can range from collective community bins to recycling centres.

Although the decision between using a “door-to-door” or a “GAP-based”
waste collection system is site-specific (Rossit and Nesmachnow, 2022), there are
recent studies that showed that the GAP-based system is more efficient in terms of
transporting cost since the distances travelled by vehicles are reduced (Blazquez
and Paredes, 2020) which can also lead to a smaller environmental impact
through the reduction of greenhouse gas (GHG) emissions and other air pollution-
related metrics (Gilardino et al., 2017). The savings in the overall MSW system
that can be achieved with a reduction in the transportation costs can be even
more important in countries that experience relatively high logistic costs, such
as Argentina (Broz et al., 2018; Musante, 2021), where the computational
experimentation of this work is performed.

When using GAPs, MSW management comprises the following design
decisions:
– The design of a pre-collection network, which consists in defining the location

and capacity of GAPs.
– The design and schedule of routes for collection vehicles.
The geographical distribution of GAPs affects the actual route that the collection
vehicles must perform. Additionally, the storage capacity of these sites will
define the visit frequency in order to avoid overflow. Finally, the availability
and type of vehicles1 affect the distribution and capacity of the GAPs in a
(global) optimal solution. Thus, there is a trade-off between the cost of the
installation of GAPs and the routing cost; solving both simultaneously is often
beneficial (Hemmelmayr et al., 2013).

However, solutions in the literature (Ghiani et al., 2014; Rossit and Nes-
machnow, 2022; Han and Ponce, 2015) often address each separately – see
Section 2. This is due to the complexity of tackling MSW as a whole. Indeed,
only solving the design of routes is tantamount to solving a Vehicle Routing
Problem (VRP) (Toth and Vigo, 2002), a well-known NP-hard problem.

In this paper, we propose the following contributions to the field of MSW
management with GAPs:
– A novel mathematical model which combines the allocation of bin combina-

tions to GAPs and defining collection routes (Section 3).
– A Benders decomposition-based approach to tackle the resulting problem
(Section 4).

The problem we are tackling is an “inventory routing problem” (Campbell et al.,
1998). The resulting formulation is a mixed-integer program (MIP) which is

1 Mainly capacity, but could also be cost.
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still too large to be tractable. However, we can see it as a combination of two
problems:

1. a routing problem, similar to a vehicle routing problem (Toth and Vigo,
2002); and,

2. an allocation problem, similar to a nonlinear resource allocation problem
(Bretthauer and Shetty, 1995), in which the used amount of resource (bin)
should be minimised, though not limited.

This natural decomposition lead us to use Benders decomposition (Benders, 1962),
a well-suited method for problems with this structure. Benders decomposition
works by solving such problems in an iterative fashion. First, it solves the
difficult part to generate a candidate solution. It then checks this solution against
the dual of the easy part. From the dual solution, it either terminates, when
the dual solution’s objective value is equal to an incumbent; or, it generates
constraints, called “Benders cuts,” which are added to the difficult part and the
problem is solved anew.

However, we cannot use standard Benders decomposition because the
subproblem contains integer variables. Therefore, we use a framework called
Unified branch-and-Benders-cut (UB&BC, Mahéo et al., 2020). This framework
is based on a modified Branch-and-Cut (B&C) with callbacks from a commercial
solver. In the callbacks, it derives dual information and an upper bound for the
subproblem. Using these, it terminates the branch-and-bound tree with a set
of open solutions – whose objective function value falls below the best upper
bound. To find the global optimum, the B&C is followed by a post-processing
phase where the framework solves those open solutions to integer optimality.

We test our model on a real-world use case: the city of Bahía Blanca,
Argentina (Section 6). Although the city currently uses a door-to-door collection
service, they are interested in switching to GAPs. We simulated instances
using data from a survey (Cavallin et al., 2020) and provide optimal allocation
and routing for a variety of scenarios. Preliminary results of this work were
presented at the 10th International Conference of Production Research – ICPR

Americas 2020 (Mahéo et al., 2020). The new content in this article include a
preprocessing algorithm for discarding inefficient bin combinations in advance,
an improved set of realistic instances with a larger documentation of how
relevant data is gathered, an updated and comprehensive literature review and
new features to enhance the Bender’s resolution process. Additionally, several
sections were completely rewritten to enhance readability of the manuscript.

This work is structured as follows. In Section 2 we present an updated review
of the related works in the literature. In Section 3 we present a mathematical
formulation of the problem improved with valid inequalities. In Section 4 we
present the resolution approach based on Benders decomposition. In Section 5
we proposed an illustrative working example to clearly outlined our resolution
algorithm. In Section 6 we present the computational experimentation. Finally,
we present our conclusions and future directions in Section 7.
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2 Literature review

Allocation of bins and routing problems have been thoroughly studied as separate
problems in the MSW related literature (Lu et al., 2015). Comprehensive reviews
of the study of these problems separately can be found in Rossit and Nesmachnow
(2022) for the allocation of bins problem and in Bányai et al. (2019) and Han
and Ponce (2015) for the routing problem. However, the number of works
considering integrated approaches is more scarce. In this Section, we present
the main related works according to three different categories: works that are
related to integrated approaches to collect unsorted waste, works that are related
to integrated approaches to collect recyclable material, and works that used
Benders’ decomposition in other stages of the MSW reverse logistic chain.

2.1 Integrated approaches to collect unsorted waste

Hemmelmayr et al. (2013) proposed an integrated approach where the bins
allocation problem is solved jointly with the routing schedule. The authors
compare a Variable Neighbourhood Search (VNS) algorithm for solving the
problem hierarchically – i. e., first solving the bin allocation and then the
routing and vice versa – and integrated approaches. They found that integrated
approaches give better results than hierarchical ones. The same strategy – i. e.,
comparing integrated approaches with hierarchical approaches – was implemented
in Kim and Lee (2015b) for a locating routing problem solved with a Tabu
Search algorithm. Computational experimentation on benchmark instances
and a real case study of Seoul, South Korea (Kim and Lee, 2015a), found that
integrated approaches allowed obtaining better solutions. Another example is
Jammeli et al. (2019) who presented a study case of the Tunisian city of Sousse,
considering uncertainty in waste generation at GAPs. They consider that all
GAPs are to be collected daily. They proposed a transformed formulation to
handle stochastic waste generation and solved the problem in a heuristic fashion:
first, they applied the 𝑘-means clustering algorithm to group the GAPs into
sectors and, later, they applied an exact model solved with CPLEX to determine
both the number of bins and the collection route of each sector.

2.2 Integrated approaches to collect recyclable material

Another popular area for location-routing applications is the collection of
recyclable materials. Chang and Wei (1999) propose an integrated approach.
They used an evolutionary algorithm to solve a location-routing problem for the
city of Kaohsiung, Taiwan. Their approach is multi-objective as they maximise
the population serviced, and minimise the total walking distance, from household
to recycling drop-off stations, and the total driving distance of the collection
vehicles. This work is extended in Chang and Wei (2000), where the same three
objective functions are considered as fuzzy goals. Vidović et al. (2016) presented
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an integrated approach for the location-routing problem proposing an integrated
MIP formulation and a hierarchical two-step heuristic approach. Similarly
to Yaakoubi et al. (2018), the hierarchical approach is able to obtain near
optimal solutions, comparable to the integrated MIP formulation, for synthetic
instances designed by the authors. Another similar case was proposed by Sheriff
et al. (2017) in which they compared an integrated MIP formulation with a
multi-echelon heuristic. However, as opposed to the work of Vidović et al. (2016),
the integrated approach obtained better results than the sequential approach on
computational tests performed in an (non-specified) Indian urban area. Another
approach is presented in Hemmelmayr et al. (2017) for solving an integrated
model that aims to simultaneously locate GAPs, size the storage capacity of
each GAP (allocate bins) and set the weekly collection schedule and routes in
the context of collaborative recycling problem. They solved this problem with
an Adaptive Large Neighbourhood Search algorithm based on their previous
implementation (Hemmelmayr, 2015). They performed a sensitivity analysis for
several of the parameters, such as available vehicle capacities, visiting schedules
or GAP storage capacities. Finally, Cubillos and Wøhlk (2020) presented
a location-routing approach for recyclable material where they approximate
the collection with a Travelling Salesman Problem – i. e., they considered an
uncapacitated vehicle that visits all the bins. For solving the integrated problem,
they proposed a Variable Neighbourhood Search (VNS) algorithm. They used
that method to solve real instances of four Danish cities. Gultekin et al. (2020)
present a location-routing application for a specific type of waste: cooking oil
that is collected to produce biodiesel. They proposed an integrated MIP to
simultaneously define the location of GAPs, the assignment of waste generators
to the available GAPs and define the collection routes. They present a heuristic
to address this problem dividing it in two parts. The first part solves the GAP
location and generators assignment. The first part generates different routes
that are later used in the second part which solves the routing schedule. The
problem remains too difficult to solve to optimality, so they save solutions found
until a time limit. This approach is competitive when compared to their MIP
model in a set of synthetic instances.

2.3 Benders’ decomposition in other stages of the MSW reverse logistic chain

Other approaches using Benders decomposition exist to deal with optimisation
problems of the strategic level of the MSW logistic chain. Most consider stochastic
parameters, for which Benders decomposition is a traditional application area.
For example, Saif et al. (2019) used Benders decomposition to model a logistic
chain of MSW in which organic waste is sent from sources to treatment plants
to generate power. They consider Uncertainty in waste generation, power price,
and demand. Another case is presented in Kŭdela et al. (2019), who applied
Benders decomposition to optimise the location and capacity selection of waste
transfer stations when considering uncertainty in the operational cost of the
stations. Fattahi (2020) proposed a data-driven stochastic programming model
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based on Benders Decomposition that is applied to a case study in Tehran, Iran.
The aim is to design a MSW recovery network for power generation considering
uncertain waste generation rate.

2.4 Summary and contribution of this work

After having revised the main related works we acknowledge that there is still
room to propose efficient methods for solving this complex locating-routing
problem in the initial stages of the MSW reverse logistic chain. Moreover, the
used of Benders’ decomposition, which have been efficiently applied in other
complex MIP models, has not been previously used to address this particular
problem.

3 A mathematical model of MSW

In this section we present a mixed-integer mathematical formulation for the
integrated problem of simultaneously bin combinations to GAPs and defining
collection routes in the context of the MSW system. The formulation takes
advantage of a preprocessing phase that establishes the use of bins combinations.
We improve the formulation with the addition of a set of valid inequalities.

3.1 Bin combinations preprocessing

Realistic problems usually involve locating different types of bins. The bins have
different purchasing and maintenance cost, storage capacity (for accumulating
waste) and occupied space. Usually a GAP has enough space to locate more
than one bin – i. e., a bin combination. There are two main aspects to consider
when deciding which bin combination can be installed in a given GAP:

A feasibility constraint: GAPs have a maximum available space and, thus, the
bin combination has to fit in that limited space (Toutouh et al., 2020).

An efficiency criterion: we can avoid economically inconvenient bin combina-
tions.

The last point comes from the fact that bin combinations will have different
characteristics. First, bin combinations will have different joint storage capacity –
i. e., the sum of the capacities of the bins that conforms the bin combination.
They will also have different joint cost – i. e., the sum of the purchasing and
maintenance costs. Thus, some combinations will have a larger joint cost and a
smaller joint capacity than other. These bin combinations can be dismissed since
they will not appear in any efficient solution. We can therefore determine the
set of feasible and Pareto-optimal bin combinations for each GAP. We developed
a preprocessing algorithm (Algorithm 1) to allow a more compact mathematical
formulation of the problem.
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Algorithm 1 Preprocess Pareto-optimal bin combinations
1: function Preprocess(𝑃, 𝑠𝑝𝐺𝐴𝑃 )
2: Initialise list 𝐿 as empty
3: 𝑠𝑚𝑖𝑛 = min𝑖∈𝑃 𝑠(𝑖)
4: 𝑟′ =

⌊︀
𝑠𝑝𝐺𝐴𝑃
𝑠𝑚𝑖𝑛

⌋︀
5: for 𝑟 = 1; 𝑟 ≤ 𝑟′; 𝑟 + + do

6: Initialise container 𝑉 as empty and size 𝑟
7: Call Fill(𝑉, 𝑃, 0, 𝑟, 0, |𝑃 | − 1, 𝐿, 𝑠𝑝𝐺𝐴𝑃 )
8: Return 𝐿
9:

10: function Fill(𝑉, 𝑃, 𝑖𝑛𝑑𝑒𝑥, 𝑟, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝐿, 𝑠𝑝𝐺𝐴𝑃 )
11: if 𝑖𝑛𝑑𝑒𝑥 == 𝑟 then

12: if 𝑠(𝑉 ) ≤ 𝑠𝑝𝐺𝐴𝑃 then ◁ function 𝑠() measures the occupied space
13: Update(𝐿, 𝑉 )
14: for 𝑖 = 𝑠𝑡𝑎𝑟𝑡; 𝑖 ≤ 𝑒𝑛𝑑;𝑖 + + do

15: 𝑉 [𝑖𝑛𝑑𝑒𝑥]← 𝑖
16: Fill(𝑉, 𝑃, 𝑖𝑛𝑑𝑒𝑥 + 1, 𝑟, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝐿, 𝑠𝑝𝑔𝑎𝑝)
17:
18: function Update(𝐿, 𝑉 )
19: Calculate joint storage capacity and joint cost of 𝑉
20: 𝐻 = sorted(𝐿 ∪ 𝑉 , descending order joint storage capacity)
21: 𝐿 =Front(𝐻)
22:
23: function Front(𝐻)
24: if |𝐻| == 1 then

25: Return 𝐻
26: else

27: 𝑇 = Front(𝐻[1 : |𝐻|/2])
28: 𝐵 = Front(𝐻[|𝐻|/2 + 1 : |𝐻|])
29: Initialise list 𝑀 as empty
30: for 𝑏 in 𝐵 do

31: if 𝑏 is not dominated by any bin combination in 𝑇 regarding joint cost then

32: 𝑀 = 𝑀 ∪ 𝑏
33: Return 𝑀 ∪ 𝑇
34:

The Preprocess receives as an input the set of types of bin (𝑃 ) and
the available space in the GAP (𝑠𝑝𝑔𝑎𝑝) and returns a list of feasible and
Pareto-optimal bin combinations (𝐿). In short, the algorithm works as follows:

1. It estimates the value 𝑟′ which is the maximum number of bins that can be
placed in the GAP (this is done considering the smallest type of bin 𝑠𝑚𝑖𝑛

and the available space of the GAP 𝑠𝑝𝑔𝑎𝑝).
2. It evaluates the convenience of each possible bin combination 𝑉 that has a

number of bins smaller or equal to 𝑟′ in two steps:
(a) It analyses if bin combination 𝑉 is feasible considering the available

space in the GAP.
(b) If bin combination 𝑉 is feasible, it applies function Update() to update

list 𝐿 to store only Pareto-optimal bin combinations of the set 𝐿 ∪ 𝑉
(this is considering the relation between the joint cost and the joint
storage capacity of the bin combination). This function sorts the set
of solutions set 𝐿 ∪ 𝑉 in terms of joint storage capacity and then uses
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the well known Kung et al.’s method to get the Pareto front of a set
of solutions of a multi-objective problem. The detailed outline of this
algorithm can be consulted in Kung et al. (1975). In the case of our
preprocessing algorithm the Kung’s method works as follows. A recursive
function Front() is applied to first split the input set of solutions in
two halves and then compares the second half with elements of the first
half in order to get the non-dominated solutions.

3. It returns list 𝐿 which stores only the Pareto-optimal bin combinations for
the GAP.

Hereafter, we understand that all the bin combinations were computed
following this procedure and, thus, are Pareto-optimal.

3.2 Model formulation

The mathematical model has the following sets:

– 𝐼: the set of potential GAPs.
– 𝐿 = {𝑙0, 𝑙1, . . . , 𝑙|𝐿|}: is an ordered set of vehicles. We consider a homogeneous

and finite fleet of vehicles.
– 𝑇 : the set of days in the time horizon, which coincides with a week (seven

days).
– 𝑅: the set of possible visit combinations.
– 𝑈 : the set of all bin combinations that can be installed in a GAP.

A potential GAP 𝑖 ∈ 𝐼 is a predefined location in an urban area in which
bins can be installed. We define the superset: 𝐼0 = 𝐼 ∪ 0, where 0 is the depot
from which vehicles start and finish their daily tours, and where the collected
waste is deposited. We also define a special notation for the set of edges given a
set of nodes:

𝐸(𝐼) = { (𝑖, 𝑗) | 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑖 ̸= 𝑗 }

. The set of visit combinations 𝑅 are possible weekly schedules to empty GAPs.
The set of bin combinations 𝑈 is obtained using Algorithm 1 and represent
feasible and Pareto-optimal arrangements.

We now define the parameters of the model:

– 𝑄: vehicle capacity.
– 𝑐𝑖𝑗 : travel time between 𝑖 to 𝑗.
– 𝑠𝑖: service time of a GAP 𝑖.
– 𝑏𝑖: waste generation per day at GAP 𝑖.
– 𝑐𝑎𝑝𝑢: capacity of bin combination 𝑢.
– 𝑐𝑖𝑛𝑢: adjusted cost of installing bin combination 𝑢 for the time horizon 𝑇 .
– 𝛼: cost per kilometre of transportation.
– 𝛽𝑟: maximum number of days between two consecutive visits of the visit

combination 𝑟.
– 𝑎𝑟𝑡: 1 if day 𝑡 is included in visit combination 𝑟.
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– 𝑇𝐿: time limit of the working day.

Notice that 𝑐𝑖𝑛𝑢 is an adjusted cost. This is because we are considering two
different level of decision and cost:

1. a strategic decision that involves purchasing and installing the bin combina-
tions that will last probably for several years; and,

2. a tactical decision which involves the transport costs of the routing sched-
ule (Nagy and Salhi, 2007).

Therefore, the cost assigned to a bin combination (𝑐𝑖𝑛𝑢) includes a proportional
part of the purchase and installation costs, and the maintenance cost.

With regards to parameters 𝑎𝑟𝑡 and 𝛽𝑟, let us introduce them with an
example:

Example 3.1 Let the time horizon be a week: 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7}. Then,
one possible visit combination 𝑟* ∈ 𝑅 is {𝑡1, 𝑡3, 𝑡5, 𝑡7}. In this case, we have:
𝑎𝑟*𝑡1 = 𝑎𝑟*𝑡3 = 𝑎𝑟*𝑡5 = 𝑎𝑟*𝑡7 = 1, and, conversely: 𝑎𝑟*𝑡2 = 𝑎𝑟*𝑡4 = 𝑎𝑟*𝑡6 = 0.
Thus, the maximum number of days between two consecutive visits that this
combination has is two days: 𝛽𝑟* = 2, and the chosen bin combination for this
GAP must be able to store the waste generated in two days.2

Finally, we define the following decision variables:

– 𝑥𝑖𝑗𝑙𝑡: binary variable set to 1 if vehicle 𝑙 performs the collection route between
GAPs 𝑖 and 𝑗 on day 𝑡, 0 otherwise.

– 𝑣𝑖𝑗𝑙𝑡: continuous variable representing the load of vehicle 𝑙 along the path
between GAP 𝑖 and 𝑗 on day 𝑡.

– 𝑚𝑖𝑟: binary variable set to 1 if visit combination 𝑟 is assigned to GAP 𝑖, 0
otherwise.

– 𝑛𝑢𝑖: binary variable set to 1 if bin combination 𝑢 ∈ 𝑈 is used for GAP 𝑖, 0
otherwise.

We now present the mathematical model for the MSW management problem:

min
∑︁
𝑖∈𝐼

𝑢∈𝑈

𝑛𝑢𝑖 𝑐𝑖𝑛𝑢 + 𝛼
∑︁

𝑖,𝑗∈𝐸(𝐼0)

(𝑐𝑖𝑗 + 𝑠𝑖)

⎛⎜⎝∑︁
𝑙∈𝐿
𝑡∈𝑇

𝑥𝑖𝑗𝑙𝑡

⎞⎟⎠ (M1)

𝑠.𝑡.
∑︁
𝑢∈𝑈

𝑛𝑢𝑖 𝑐𝑎𝑝𝑢 ≥
∑︁
𝑟∈𝑅

𝑏𝑖𝑚𝑖𝑟𝛽𝑟 ∀ 𝑖 ∈ 𝐼 (3.1a)∑︁
𝑢∈𝑈

𝑛𝑢𝑖 = 1 ∀ 𝑖 ∈ 𝐼 (3.1b)∑︁
𝑟∈𝑅

𝑚𝑖𝑟 = 1 ∀ 𝑖 ∈ 𝐼 (3.1c)

2 A similar consideration is performed in Hemmelmayr et al. (2013).
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𝑗∈𝐼0,𝑔 ̸=𝑖

𝑙∈𝐿

𝑥𝑖𝑗𝑙𝑡 −
∑︁
𝑟∈𝑅

𝑎𝑟𝑡𝑚𝑖𝑟 = 0 ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼 (3.1d)

∑︁
𝑖∈𝐼0,�̸�=𝑞

𝑥𝑖𝑗𝑙𝑡 −
∑︁

𝑗∈𝐼0,𝑗 ̸=𝑞

𝑥𝑞𝑗𝑙𝑡 = 0 ∀ 𝑞 ∈ 𝐼0, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.1e)

∑︁
𝑖∈𝐼

𝑥0𝑖𝑙𝑡 ≤ 1 ∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.1f)∑︁
(𝑖,𝑔)∈𝐸(𝐼0)

(𝑐𝑖𝑗 + 𝑠𝑖) 𝑥𝑖𝑗𝑙𝑡 ≤ 𝑇𝐿 ∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.1g)

𝑣𝑖𝑗𝑙𝑡 ≤ 𝑄 𝑥𝑖𝑗𝑙𝑡 ∀ (𝑖, 𝑗) ∈ 𝐸(𝐼0), 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.1h)∑︁
𝑖∈𝐼0,�̸�=𝑔

𝑣𝑖𝑗𝑙𝑡 + 𝑏𝑔

∑︁
𝑟∈𝑅

(𝑚𝑔𝑟 𝛽𝑟) ≤
∑︁

𝑖∈𝐼0,�̸�=𝑔

𝑣𝑗𝑖𝑙𝑡 + 𝑄

⎛⎝1 −
∑︁

𝑖∈𝐼0,�̸�=𝑔

𝑥𝑖𝑗𝑙𝑡

⎞⎠
∀ 𝑗 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.1i)

𝑣 ≥ 0; 𝑚, 𝑛, 𝑥, 𝑏 ∈ B

The objective function is the sum of the routing cost and the adjusted cost
of installing bins. Equation (3.1a) establishes that, given a visit combination, the
maximum amount of garbage that can be accumulated in a GAP cannot surpass
the installed capacity of the bin combination. Equation (3.1b) enforces that one
bin combination has to be chosen for each GAP. Equation (3.1c) establishes
that one visit combination is assigned to each GAP. Equation (3.1d) ensures
that each GAP is visited by the collection vehicle the days that corresponds to
the assigned visit combination. Equation (3.1e) ensures that if a vehicle visits
a GAP, it leaves the GAP on the same day. Equation (3.1f) states that every
vehicle can be used at most once a day. Equation (3.1g) guarantees that a tour
does not last longer than the allowable time limit associated with the working
day of the drivers. Equation (3.1h) limits the total amount of waste collected in
a tour to the vehicle capacity. Equation (3.1i) establishes that the outbound
flow after visiting a GAP equals the inbound flow plus the waste collected from
that GAP and, thus, also forbids subtours.

3.3 Valid inequalities

The model presented above for the MSW (M1) is still a difficult problem. In
particular, it contains a lot of symmetric solutions. Two solutions are said to be
symmetric if they have the same objective function value but different variable
assignments. Consider the following: during a given day, two trucks undertaking
the same collection route would have the same cost. There is no way for the
solver to omit one of them.

One way to address this issue is to add Valid Inequalities (VIs) to the model.
A VI is a constraint that reduces the feasible polytope of the problem without
removing every optimal solution. We decided to focus on VIs for the routing part
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of the problem because the allocation part is easy in comparison. For examples
of VIs in the context of vehicle routing problems, we refer the interested reader
to Dror et al. (1994).

One thing to remember is that our graph is asymmetric. Therefore, we
do not need to address symmetries in routes with the same GAPs. We have
developed the following valid inequalities to remove as much symmetry from the
optimal solutions as possible.

3.3.1 Empty start

A vehicle must start its tour unloaded. This prevents solutions with different
delivery plans – when a vehicle finishes its collection tour below full capacity, we
can consider another solution where the vehicle starts with any amount less
than the difference.

𝑣0𝑗𝑙𝑡 = 0, ∀ 𝑗 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.2)

3.3.2 Vehicle ordering

We impose that a vehicle with index 𝑙 can only leave the depot if the vehicle
with index 𝑙 − 1 has. In the case where a solution does not use all available
vehicles, we can consider swapping an unused vehicle with a used one. For
brevity, we define: 𝐿′ = 𝐿 ∖ {0}, as the set of vehicles minus the first one.∑︁

𝑖∈𝐼

𝑥0𝑖𝑙𝑡 ≤
∑︁
𝑖∈𝐼

𝑥0𝑖𝑝𝑡, ∀ 𝑙 ∈ 𝐿′, 𝑝 = 𝑙 − 1, 𝑡 ∈ 𝑇 (3.3)

3.3.3 Furthest visit

We assign the furthest GAP from the depot to the first vehicle. Because each
GAP must be visited at most once a day, so does the furthest. Because only one
vehicle can visit each GAP on a given day, we can forbid others vehicle than the
first vehicle (using 𝐿′ defined above) to visit the furthest GAP.∑︁

𝑖∈𝐼,𝑡∈𝑇

𝑥𝑖𝑗𝑙𝑡 = 0, ∀ 𝑙 ∈ 𝐿′, 𝑗 = argmax
𝑖∈𝐼

𝑐0𝑖 (3.4)

4 A resolution approach based on Benders decomposition

Benders (1962) devised a decomposition method for addressing large MIPs that
have a characteristic block diagonal structure. In summary, the method starts
by decomposing the original problem into a master problem and a subproblem.
The master problem is a relaxation of the original problem used to determine
the values of a subset of its variables. It is formed by retaining the complicating

variables, and projecting out the other variables and replacing them with an
incumbent. The subproblem is formed around the projected variables and a
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parameterised version of the complicating variables. By enumerating the extreme
points and rays of the subproblem, the algorithm defines the projected costs and
the feasibility requirements, respectively, of the complicating variables. Because
this enumeration is seldom tractable, the algorithm proceeds in the following
manner:

1. It solves the (relaxed) master problem to optimality, which yields a candidate

solution.

2. This candidate solution is used as a parameter in the subproblem.
3. The resulting problem is solved to optimality and, using LP duality, a set of

coefficients are retrieved.
4. These coefficients are used to generate a constraint, called a “Benders cut,”

which is added to the master problem.
5. If the objective function value of the subproblem is equal to the incumbent

value in the master problem, the algorithm stops. Otherwise, it repeats from
point 1. using the master problem with the additional constraint.

One key limitation of the classic Benders decomposition is that the subproblem
cannot contain integer variables. This is because of point 3 above: the method
needs to use LP duality, which is not well-defined for MIPs. We use a recent
framework called Unified branch-and-Benders-cut (UB&BC, Mahéo et al., 2020)
to bypass this issue. This new framework operates by using a modified B&C
where, at each integer node, it:

1. solves the LP relaxation of the subproblem to get a lower bound and generate
Benders cuts; and,

2. uses a heuristic to determine if the master solution is feasible and, if yes, a
valid, global upper bound.

The second point is key: by maintaining a valid upper bound, the framework
ensures that no optimal solution is removed during the search. However, this
leads to having a set of open solutions after finishing the B&C tree – solutions
whose objective function value falls between the lower and upper bound. Thus,
the UB&BC finishes by a post-processing phase during which subproblems
associated with open solutions are solved to integer optimality. The combination
of maintaining a global upper bound and using a post-processing phase enables
the framework to find an optimal solution.

As stated in Section 3, the problem addressed in this work comprises two
characteristic decision-making problems in MSW. On the one hand, the allocation
of bins in the GAPs and, on the other, the design and schedule of routes for
the collection vehicles. This division can be exploited by applying Benders
decomposition. The bins allocation equations are moved to the subproblem
while the master problem takes care of designing the schedule and routes of the
collection vehicles.
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4.1 Creating the subproblem

The subproblem allocates bins to each GAP; it is an integer programming
problem:

𝑞(𝑚) = min
∑︁
𝑖∈𝐼

𝑢∈𝑈

𝑛𝑢𝑖 𝑐𝑖𝑛𝑢 (SB)

𝑠.𝑡.
∑︁
𝑢∈𝑈

𝑛𝑢𝑖 𝑐𝑎𝑝𝑢 ≥ 𝑏𝑖

∑︁
𝑟∈𝑅

𝑚𝑖𝑟 𝛽𝑟 ∀ 𝑖 ∈ 𝐼 (4.1a)∑︁
𝑢∈𝑈

𝑛𝑢𝑖 = 1 ∀ 𝑖 ∈ 𝐼 (4.1b)

𝑛 ∈ B

We define the positive continuous variables 𝛿𝑖 and unrestricted continuous
variables 𝛾𝑖 as the dual variables of Equations (4.1a) and (4.1b) respectively. The
dual formulation of the LP relaxation of (SB), which will be used to generate
cuts, is then:

𝑞𝐿𝑃 (𝑚) = max
∑︁
𝑖∈𝐼

(︃
𝛾𝑖 − 𝛿𝑖𝑏𝑖

∑︁
𝑟∈𝑅

(𝑚𝑖𝑟𝛽𝑟)
)︃

(LP)

𝑠.𝑡. 𝛾𝑖 − 𝛿𝑖

∑︁
𝑢∈𝑈

𝑐𝑎𝑝𝑢 ≤
∑︁
𝑢∈𝑈

𝑛𝑢𝑖 ∀𝑖 ∈ 𝐼 (4.2a)

𝛿, 𝛾 ≥ 0

4.1.1 Heuristic for the subproblem

In order to apply Benders decomposition when the subproblem has integer
variables, an efficient method for solving the subproblem is required. Therefore,
we devised a rounding heuristic procedure based on the LP relaxation of the
subproblem:

1. We solve the LP relaxation of (SB). The (relaxed) solution will contain 𝑛𝑢𝑖

with fractional values.
2. We estimate the joint fractional capacity 𝐾𝑓

𝑖 of each GAP using:

𝐾𝑓
𝑖 =

∑︁
𝑢∈𝑈

𝑛𝑢𝑖 𝑐𝑎𝑝𝑢 (4.3)

3. We define a feasible (non-fractional) bin combination 𝑢 ∈ 𝑈 for each GAP
by finding the bin combination with minimal cost among those with storage
capacity larger than 𝐾𝑓

𝑖 . It is guaranteed that there will always be a bin
combination which respects this rule since considering Equations (4.1b)
and (4.3) implies that: 𝐾𝑓

𝑖 ≤ 𝑐𝑎𝑝𝑢*, ∀ 𝑖 ∈ 𝐼, where 𝑢* = argmax𝑢∈𝑈 {𝑐𝑎𝑝𝑢}.
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4.2 Stating the master problem

The master problem retains the same constraint structure as (M1) but the
bin allocation part is replaced by an incumbent variable 𝑞. Let us consider the
set of extreme points (𝒪) and extreme rays (ℱ) of the LP relaxation of (SB).
These generate the optimality (4.4b) and feasibility (4.4a) cuts, respectively.
Therefore, the master problem is:

min 𝛼
∑︁

𝑖,𝑗∈𝐸(𝐼0)

(𝑐𝑖𝑗 + 𝑠𝑖)

⎛⎜⎝∑︁
𝑙∈𝐿
𝑡∈𝑇

𝑥𝑖𝑗𝑙𝑡

⎞⎟⎠+ 𝑞 (MPB)

𝑠.𝑡. Equations (3.1c) to (3.1i) and (3.2) to (3.4)∑︁
𝑖∈𝐼

(︃
𝛾𝑓

𝑖 − 𝛿𝑓
𝑖 𝑏𝑖

∑︁
𝑟∈𝑅

(𝛽𝑟𝑚𝑖𝑟)
)︃

≤ 0 ∀ 𝑓 ∈ ℱ (4.4a)

∑︁
𝑖∈𝐼

(︃
𝛾𝑓

𝑖 − 𝛿𝑜
𝑖 𝑏𝑖

∑︁
𝑟∈𝑅

(𝛽𝑟𝑚𝑖𝑟)
)︃

≤ 𝑞 ∀ 𝑜 ∈ 𝒪 (4.4b)

𝑣 ≥ 0; 𝑞 ∈ R; 𝑥 ∈ B

4.3 Enhancing the model

4.3.1 Partial Benders

One common issue when using Benders decomposition is that raising the lower
bound can take time. This means that the master problem lacks information on
the structure, and thus value, of the subproblem. This issue has been addressed
in stochastic programming with partial Benders (Crainic et al., 2014).

The idea is to retain a part of the subproblem’s information in the master
problem. This takes the form of adding a relaxed copy of the subproblem’s
variables. In our case, we can save a relaxed version of the bin combinations:
Equations (4.1a) and (4.1b) with 𝑛 ≥ 0.

4.3.2 Removing symmetric solutions

Although we use a set of VIs, there is still symmetries in our problem. Specifically,
during the search, we can have a given master solution – in the sense of fixed
𝑚 variables – without a corresponding route. This leads to exploring many
solutions with the same bin configuration, or at least having a search that needs
to fix a (large) number of routing variables.

To counteract this effect, we would like to have a form of no-good cut. This
idea comes from Constraint Programming and consists in forbidding a variable
assignment from appearing again. However, this is not practical in LP.
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Instead, we turned towards earlier works in solving integer problems using
Benders decomposition. An integer L-shaped cut (Laporte and Louveaux, 1993)
is a constraint that attempts to remove a set of identical master solutions. It
does so by computing the opportunity cost of activating a variable. This cost is
only defined for those variables that are active in the current solution. Finally,
this constraint is only active if the solution has the same set of active variables.3
Do note that this type of constraints only works with binary variables.

The first element we need for our L-shaped cuts is a global lower bound on
the problem. This will allow us to define the opportunity cost as the difference
between the subproblem’s objective function value and its best possible value.
We define the global lower bound ℒ as the solution to the subproblem using the
least cost bin combination. That is, we find the smallest possible right-hand side
for constraint (4.1a). This bin combination can easily be determined by solving:

ℒ = min
∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

𝑏𝑖𝑚𝑖𝑟𝛽𝑟 (LB)

𝑠.𝑡.
∑︁
𝑟∈𝑅

𝑚𝑖𝑟 = 1 ∀𝑖 ∈ 𝐼 (4.5a)

𝑚 ∈ B

Let us denote 𝑚𝑜 the solution at (feasible) iteration 𝑜 of the Benders
approach. And 𝑆𝑜 =

{︀
(𝑖, 𝑟)

⃒⃒
𝑚𝑜

𝑖𝑟 = 1
}︀
the active variables in a solution . Using

our formulation (MPB), for every feasible subproblem solution 𝑜 ∈ 𝒪 we have:

(𝑞(𝑚𝑜) − ℒ)

⎛⎝ ∑︁
𝑖,𝑟∈𝑆𝑜

𝑚𝑖𝑟 −
∑︁

𝑖,𝑟 /∈𝑆𝑜

𝑚𝑖𝑟

⎞⎠− (𝑞(𝑚𝑜) − ℒ)(|𝑆𝑜| − 1) + ℒ ≤ 𝑞 (4.6)

5 A working example

In this section we will present a short example to illustrate our solution approach.
We will use a toy instance shown in Figure 5.1a. The are depicted in the picture
correspond to an area of the University neighbourhood of Bahía Blanca retrieved
from OpenStreetMap4 and, thus, the background image follows the visual code
of this engine – e. g., the red circles represent health facilities. The GAPs’
locations are indicated in green circles. It comprises: a two-day-horizon, two
GAPs, and two vehicles. We also consider two types of waste bins with a storage
capacities of 1.1 m3 and 1.73 m3 respectively. These correspond to the two types
available in our real-world example. The costs are derived directly from model
(M1).

3 Making it, de facto, a no-good cut.
4 https://www.openstreetmap.org/
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We will now show the iterations the solution algorithm takes.5 At each
iteration, we will report:

– the master solution (routing cost, which includes GAP allocation per vehicle
per day);

– the objective function value of the LP relaxation of the subproblem (lower
bound);

– the heuristic value (upper bound); and,
– the total cost of the solution.

A graphical representation of the iterations is provided in Figures 5.1b to 5.1d.

Iteration 1. The first solution uses one vehicles on two days and one vehicle the
second day only.

𝑣0,0 : (0, 2) → (2, 0)
𝑣0,1 : (0, 2) → (2, 0)
𝑣1,0 : (0, 1) → (1, 0)

The routing cost is: 494.2. The LP relaxation has an objective function value
of 7.96 while the heuristic has a value of 10.48. We add a Benders cut to the
master problem and continue.

Iteration 2. The second solution uses two vehicles with different routes during
one day:

𝑣0 : (0, 2) → (2, 0)
𝑣1 : (0, 1) → (1, 0)

The routing cost is: 381.8. The LP relaxation has an objective function value
of 7.06 while the heuristic has a value of 10.48. We add a Benders cut to the
master problem and continue.

Iteration 3. The third solution found uses a single vehicle with the same route
on both days, given by:

𝑣0 : (0, 1) → (1, 2) → (2, 0)

The routing cost is: 316.8. The LP relaxation has an objective function value
of 8.58 while the heuristic has a value of 10.48. We add a Benders cut to the
master problem and continue.
At this point, the B&C will finish as no improving solution can be found, we
can progress to the post-processing.

Post-processing. At the start of the post-processing phase, the UB&BC orders
solutions according to their lower bound values. In this case, it will process
the solutions in reverse order: 3, 2, 1.

5 We use the complete problem (M1) augmented with valid inequalities Equations (3.2)
to (3.4). The Benders cuts we generate are “optimality cuts” given by Equation (4.4b).
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(a) Location of the depot and the two GAPs
(green circles) on the toy instance.

(b) It. 1: The first (blue) vehicle uses its route
both days, while the second (red) vehicle only
operates on the first day.

(c) It. 2: Both vehicles operate during the
first day.

(d) It. 3: Only one vehicle operates during
one day

Fig. 5.1: Working example of the resolution approach.

Starting with the solution found in Iteration 3, we solve the subproblem to
integer optimality. This gives an optimal value of 10.48 – the same as the
heuristic. Being an integer value, it can be used to update the upper bound
to: 347.28 (routing + delivery).
Then, the framework verifies that the remaining open solutions’ values are
lower that the new-found upper bound. Both solutions found at Iterations 1
and 2 exceed the best upper bound and are thus skipped.

Our approach has managed to find the optimal solution to the problem. It did
so as an integrated algorithm which solved the routing and allocation problems
at once.

6 Computational experiments

In this section, we present the computational experimentation of the problem.
This includes the description of the real-world instances that were used and
implementation details.
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Waste
(m3 / day)

1.14

1.31

1.47

1.64

1.81

1.98

2.14

2.31

Fig. 6.1: Visualisation of the two instance sets: University (in blue) and Downtown
(in red). The triangle is the depot. The dot size represent the (scaled) daily
demand in m3 per day.

6.1 Real-world instances

Our instances are based on simulated scenarios of the city of Bahía Blanca,
Argentina. Although the city still has a door-to-door collection system, the
local government and citizens are interested in more efficient collection systems
that allow reductions of the high logistic costs. For example, using community
bins will simplify the logistics costs (Bonomo et al., 2012; Cavallin et al., 2020;
Rossit et al., 2020).

The relevant costs of the problem are the bin combination daily cost and
the vehicle cost per minute. Currently, in the door-to-door collection system,
the company that performs waste collection in Bahía Blanca uses a fleet of
rear-loading trucks. While only small bins can be emptied by a rear-loading
truck, almost every bin can be emptied by a side-loading truck.6 In this study
we consider three bins that can be emptied by side-loading trucks to allow
larger capacities at the GAPs and, thus, taking advantage of using economically
convenient bin combinations (Section 3.1).

6 To the best of our knowledge, in Argentina the largest bin that allows rear-loading is
about 1.1 m3.
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Type Purchase
cost (US$) Capacity (m3)

Occupied
area (m2)

Estimated daily
cost (US$)

I 386.80 1.1 1.42 11.13× 10−2

II 1102.79 2.4 2.23 31.72× 10−2

III 1287.24 3.2 2.60 37.03× 10−2

Table 6.1: Details of bin types considered.

id Estimated daily cost (US$) Capacity (m3) Occupied area (m2)

0 0.11 1.10 1.42
1 0.22 2.20 2.84
2 0.32 2.40 2.23
3 0.33 3.30 4.26
4 0.43 3.50 3.65
5 0.48 4.30 4.02
6 0.64 4.80 4.46
7 0.69 5.60 4.83

Table 6.2: Convenient bin combinations used for the instances.

We consider three types of commercial side-loading waste bins available
in Argentina. The details are presented in Table 6.1 and were retrieved from
surveys to different specialised companies in Argentina. The life expectancy of
bins was estimated to ten years, in line with other similar studies (Brogaard
and Christensen, 2012; D’Onza et al., 2016). Additionally, the maintenance
cost of each bin was estimated at 5% of the purchasing cost (D’Onza et al.,
2016). We calculated the estimated daily cost as the sum of the purchasing and
maintenance costs divided by the total amount of days of the expected lifetime.

Considering an available space of 5 m2 at each GAP, we found eight bin
combinations according to the procedure presented in Table 6.2.

We consider an homogeneous fleet of vehicles. The estimated cost per
minute of use (𝛼) is taken from the field work of D’Onza et al. (2016). They
estimated that a standard garbage truck with side loader and compactor costs
US$57.64 × 10−2 per minute.7

The service time to empty a GAP – parameter 𝑠 of model Section 3.2 – is
not usually considered in the related literature. However, this time can have a
significant impact on the duration of the routes (Giel and Dąbrowska, 2021),
especially when there are many GAPs to visit. In this work, we estimate the time
spent collecting waste at a GAP based on the field study performed by Carlos
et al. (2019). The authors estimated different service time at a GAP depending
on factors such as: the collection systems used, the type of trucks, the type of
bins, and whether bins have overflowed. To simplify, in this article we consider
that the service time is independent of the bin combination used. Thus, we take
the average of the service time for each bin combinations based on Carlos et al.

7 Converted using the official exchange rate of Argentina (Banco Central de la República
Argentina, 2021).
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(2019).8 The value we used in the computational experimentation is 1.28 min
(76.81 sec ).

For GAP location and waste generation, we use two datasets from (Cavallin
et al., 2020) who performed a recent field work performed in the city. These
datasets correspond to scenario F3DM250 for two relevant urban sectors of the
city of Bahía Blanca:

1. the University neighbourhood, which has a total of 75 GAPs; and,
2. Downtown, which has 88 GAPs.

Since our problem is much more complex than the problem addressed in Cavallin
et al. (2020), which only considers facility location, we use smaller instances.
We generated the smaller instances by picking a random subset of GAP
locations using QGIS Random Selection Tool (QGIS Development Team, 2020).
Information about the travel time between GAPs was estimated with Open
Source Routing Machine9 using the approach proposed by Vázquez (2018).

The company that performs collection in Bahía Blanca has a fleet of collection
trucks with a capacity of 21 m3. Since our instances are smaller than the actual
collection zones of the city – the waste equivalent to around seventy GAPs – we
adjust the capacity and size of the fleet in order to not have a trivial instance in
which one vehicle can collect all the waste in one trip. We consider two collection
vehicles with capacity set to

𝑄 =
⌈︃∑︁

𝑖∈𝐼0

𝑏𝑖

2

⌉︃

where 𝑏𝑖 are expressed in m3. The fleet size is set to

|𝐿| =
⌈︂

|𝐼0|
2

⌉︂
where |𝐼0| is the number of GAPs of the instance plus the depot. Similarly, the
time limit10 (𝑇𝐿) is downsized to

𝑇𝐿 =

⎡⎢⎢⎢
∑︁

𝑖,𝑗∈𝐸(𝐼0)

𝑐𝑖𝑗

2

⎤⎥⎥⎥
where 𝑐𝑖𝑗 are expressed in minutes.

We present the resulting instances in Table 6.3.11 For each instance we
report:

8 Performing certain simplifications, the service time of the bin combinations can be
estimated assuming that types of bin I, II, and III that are used in this article correspond to
the systems S4, S1, and S2 used in Carlos et al. (2019), respectively.

9 http://project-osrm.org/
10 That in reality is about five hours.
11 Instances can be retrieved from https://github.com/diegorossit/

Set-of-instances-Mah-o-et-al.-2021---ANOR

http://project-osrm.org/
https://github.com/diegorossit/Set-of-instances-Mah-o-et-al.-2021---ANOR
https://github.com/diegorossit/Set-of-instances-Mah-o-et-al.-2021---ANOR
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Instance |𝐼| |𝑇 | 𝑅 |𝑈 | |𝐿| Q (m3) TL (min)

University

U/5/2/1 5 2 {1,2}, {1}, {2} 2 3 4 55
U/5/2/2 5 2 {1,2}, {1}, {2} 2 3 3 56
U/5/4/1 5 4 {1,2,3,4}, {1,3}, {2,4} 2 3 4 55
U/5/4/2 5 4 {1,2,3,4}, {1,3}, {2,4} 2 3 3 56
U/5/4/3 5 4 {1,2,3,4}, {1,3}, {2,4} 8 3 4 55
U/5/4/4 5 4 {1,2,3,4}, {1,3}, {2,4} 8 3 3 56
U/6/4/1 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 4 72
U/6/4/2 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 4 73
U/6/4/3 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 4 77
U/6/4/4 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 4 75
U/7/4/1 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 5 101
U/7/4/2 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 5 96

Downtown

D/5/2/1 5 2 {1,2}, {1}, {2} 2 3 4 47
D/5/2/2 5 2 {1,2}, {1}, {2} 2 3 4 45
D/5/4/1 5 4 {1,2,3,4}, {1,3}, {2,4} 2 3 4 47
D/5/4/2 5 4 {1,2,3,4}, {1,3}, {2,4} 2 3 4 45
D/5/4/3 5 4 {1,2,3,4}, {1,3}, {2,4} 8 3 4 47
D/5/4/4 5 4 {1,2,3,4}, {1,3}, {2,4} 8 3 4 45
D/6/4/1 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 5 68
D/6/4/2 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 4 66
D/6/4/3 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 5 59
D/6/4/4 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 5 61
D/7/4/1 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 5 59
D/7/4/2 6 4 {1,2,3,4}, {1,3}, {2,4} 8 4 5 61

Table 6.3: Instances description.

|𝐼| the number of GAPs considered,
|𝑇 | the number of days of the time horizon,
𝑅 the possible visit combinations considered,
|𝑈 | the number of bin combinations,
|𝐿| the size of the fleet,
𝑄 the capacity of the vehicles, and,
𝑇𝐿 the time limit for the routes.

Visit combinations are expressed with the corresponding days when collection is
performed within the time horizon. Instances with |𝑈 | = 2 consider the first two
bin combinations of Table 6.2.

6.2 Implementation details and execution platform

The algorithms are implemented in Python 3.5, and we use a UB&BC framework
called BranDec12 v0.8.4. The solver used is CPLEX v12.7 in its default
configuration, we disable heuristics when running the UB&BC. We ran the

12 https://gitlab.com/Soha/brandec

https://gitlab.com/Soha/brandec
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experiments on a computer with Intel Gold 6148 Skylake CPU@2.4GHz and a
8GB RAM limit.

6.3 Results

In this section we present the results of the computational experimentation.
We divide the computational experimentation in two parts. In Section 6.3.1
we deal with small instances in order to assess the value of the proposed valid
inequalities in the resolution approach. Then, in Section 6.3.3 we explore the
performance of the proposed Benders approach in comparison to full MIP when
solving more complex instances.

6.3.1 The value of valid inequalities

In order to explore the impact of valid inequalities in the resolution process
we solve the five GAP instances from the both neighbourhoods presented in
Table 6.3. Figure 6.2 report the results of solving the resulting problem with:
MIP: CPLEX using (M1);
MIP + VIs: CPLEX using (M1) augmented with VIs (3.2) to (3.4);
BD: our Benders approach; and,
BD + VIs: our Benders approach augmented with VIs (3.2) to (3.4).
We ran five iterations of each configuration and report the minimum solve
time. We can see in Figure 6.2 that the VIs are necessary to have reasonable
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Fig. 6.2: Results of using different methods, with or without VIs, to solve a set
of reduced instances.

solve times. Both the MIP and our Benders approach benefit from them. This
experiment is not enough to tell for certain whether the Benders approach is
better than MIP.
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6.3.2 Reducing symmetry

We now provide results of using L-shaped cuts in addition to classic Benders
cuts. The main advantage of L-shaped cuts is to reduce symmetry in the master
problem by providing a lower bound on solution cost. In Figure 6.3, we show
the runtime when using our Benders approach with or without L-shaped cuts
for the set of instances of the University neighbourhood.
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Fig. 6.3: Comparison of our Benders approach with and without L-shaped cuts,
we report the total solving time in seconds (log scale).

Furthermore, we show the number of master and post-processing iterations,
with and without L-shaped cuts, in Table 6.4. Overall, L-shaped cuts provide
an improvement in the number of iterations required in our Benders approach.
However, this is not a consistent result. For master nodes, smaller instances tend
to be less affected than larger ones; instances in the university neighbourhood
also show less reduction. The main advantage of L-shaped cuts comes from
reducing the number of post-processing iterations. By lifting the master solution’s
objective value early on, we can identify better incumbents.

6.3.3 Results over both sectors

We now test our Benders approach against the MIP model on the full set of
instances.

In Figure 6.4 we can see the number of instances solved by each approach.
The MIP approach, solved using CPLEX, does not manage to solve a single
instance with 7 GAPs. With 6 GAPs, the MIP only manages to solve some in
the Downtown area. Again, we can see how the difficulty of instances is not only
a function of their size – GAPs being the most relevant parameter.
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Master nodes Post-proc. nodes

Instance Regular L-Shaped % change Regular L-Shaped % change

Downtown
5/2/1 13 47 72.3 4 4 0.0
5/2/2 41 54 24.1 18 11 -63.6
5/4/1 58 130 55.4 40 16 -150.0
5/4/2 397 94 -322.3 374 15 -2393.3
5/4/3 613 78 -685.9 608 60 -913.3
5/4/4 1795 515 -248.5 1792 207 -765.7
6/4/1 4437 1202 -269.1 288 113 -154.9
6/4/2 26260 1162 -2159.9 7680 678 -1032.7
6/4/3 397 1359 70.8 384 181 -112.2
6/4/4 2270 dnf n/a 405 dnf n/a
7/4/1 22 16 -37.5 2 2 0.0
7/4/2 22 30 26.7 2 3 33.3

University
5/4/3 484 468 -3.4 480 98 -389.8
5/4/4 482 392 -23.0 480 121 -296.7
5/2/1 28 42 33.3 4 2 -100.0
5/2/2 32 239 86.6 24 18 -33.3
5/4/1 84 124 32.3 32 5 -540.0
5/4/2 243 1508 83.9 240 121 -98.3
6/4/1 dnf 216 n/a dnf 9 n/a
6/4/2 dnf dnf n/a dnf dnf n/a
6/4/3 dnf dnf n/a dnf dnf n/a
6/4/4 dnf dnf n/a dnf dnf n/a
7/4/1 4 2 -100.0 1 1 0.0
7/4/2 20 26 23.1 3 2 -50.0

Table 6.4: Percentage difference in master and post-processing iterations between
our Benders approach with and without L-shaped cuts. We report configuration
that did not find a solution as dnf.

7 Conclusion

Municipal solid waste management is a critical issue in modern cities. Besides the
direct environmental and social problems that can arise when it is mishandled, it
usually represents a large portion of the municipal budgetary expense (Hoornweg
and Bhada, 2012). Therefore, intelligent decision support tools that can provide
high quality of service while also reducing the cost of the system are a major
asset for decision makers.

This work addresses two common tactical problems that arise in the reverse
logistic chain of solid waste:
1. the design of a pre-collection network, which is based on the location of

waste bins; and,
2. the routing schedule of collection vehicles, which comprises setting the

collection frequency of the bins and the collection routes for the time horizon.
These problems, which are usually solved individually in the related literature,
are interdependent in the sense that the solution to one of the problem affects
the other.
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Fig. 6.4: Number of instances solved with a MIP or our Benders approach. The
black numbers are the total number of instances.

In this work, we proposed an integrated approach that solves both problems
simultaneously, removing trade-offs found in other approaches. We provided a
new MIP formulation, valid inequalities and a resolution approach based on
Benders decomposition, using unified branch-and-Benders-cut. Additionally, we
proposed a preprocessing procedure which generates Pareto-optimal waste bin
combinations. This allows reducing the number of integer variables of the MIP
formulation.

Regarding the Benders resolution process, since the subproblem contains
integer variables, we devised a heuristic for solving the bin allocation problem.
We performed computational experiments using our approach on a set of real-
world instances of two important neighbourhoods of the Argentinean city of
Bahía Blanca. We first tested small instances to show the competitiveness of
valid inequalities. Then, we tested larger instances to analyse the performance
of the inclusion of L-shaped cuts in our Benders approach. The L-shaped cuts
allowed our approach to solve the largest instances that we considered (that
were not possible to solve with normal Benders). Finally, we compared the
performance of the Benders and MIP approaches on the whole set of instances
showing that the proposed Benders approach was more competitive; it was able
to solve a larger number of instances within the same time limit.

Future work includes expanding computational experiments with larger
real-world instances to test the scalability of the approach. Additionally, in
this work we have consider some bins that can only be emptied by side-loading
trucks. This scenario would imply a replacement of the fleet of collection vehicles
in Bahía Blanca. Further computational experimentation can be performed to
include only bins that can be emptied by rear-loading trucks.

Another research line is to consider an allocation-first routing-second method.
In that case, the master problem would be comparatively simpler than the
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subproblem. Such an approach would require efficient vehicle routing heuristics
to work. We could also explore heterogeneous fleet of vehicles. Indeed, the city of
Bahía Blanca already owns a fleet of vans of small capacity for spot operations.
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