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Abstract

The title above is wrong, because the strong dual of a Banach space is too strong to assert that
the natural correspondence between a space and its bidual is an isomorphism. This, from a categorical
point of view, is indeed the right duality concept because it yields a self adjoint dualisation functor.
However, for many applications the non–reflexiveness problem can be solved by replacing the norm on
the first dual by the weak*-structure [1].

But then, by taking the second dual, only the original vector space is recovered and no universal
property remains with this modified dual structure. In this work we unify the applied and the structural
point of view.

We introduce a suitable numerical structure on vector spaces such that Banach balls, or more
precisely totally convex modules, arise naturally in duality, i.e. as a category of Eilenberg–Moore
algebras. This numerical structure naturally overlies the weak*–topology on the algebraic dual, so the
entire Banach space can be reconstructed as a second dual. Moreover, the isomorphism between the
original space and its bidual is the unit of an adjunction between the two dualisation functors.

Notice that the weak*–topology is normable only if it lives on a finite dimensional space; in that
case the original space is trivial as well, hence reflexive. So the overlying numerical structure should be
something more general than a norm or a seminorm and thus approach theory [2, 3] enters the picture.
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1 Introduction and preliminaries

For a set S, let l1S denote the space {a : S → R | {a 6= 0} is countable} equipped with the sum–norm
‖a‖1 :=

P
s∈S |a(s)|. The assignment S 7−→ l1S gives rise to a functor

l1 : Set → Ban1 : (S1
f→ S2) 7−→ (l1S1

l1f→ l1S2),

with l1f(a) :=
P

s∈S1
a(s)δf(s), which is left adjoint to the closed unit ball functor

O : Ban1 → Set : X
f→ Y 7−→ OX

f |OX→ OY.

We put Ban1 for the category of Banach spaces and linear non–expansive maps. A totally convex
module is the abstraction of the algebraic structure on the closed unit ball of a Banach space, that
is, the category TC of totally convex modules and totally convex maps arises as the Eilenberg–Moore
algebras induced by the adjunction l1 a O.

A totally convex module was characterized in [6] as a set X on which, for each sequence of scalars
α = (αn)n∈N, with

P
n∈N |αn| ≤ 1, an operation bα : XN → X is given, such that, with

Pn
n∈N αnxn :=bα((xn)n), the following identities are satisfied:

(TC1)
P

n∈N δn(k)xn = xk,

(TC2)
P

j∈N βj(
P

n∈N αnjxn) =
P

n∈N(
P

j∈N βjαnj)xn;
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a map between totally convex modules is called totally convex if it preserves these formal totally convex
combinations. The pointwise totally convex structure on the closed unit ball of a seminormed space X
is denoted bOX. This induces the comparison functor bO : sNorm1 → TC of the adjunction l1 a O. A
similar algebraic structure is obtained if the above algebraic laws are imposed to summation operations
associated to sequences of finite length (for which the sum of the absolute values does not exceed 1).
These structures are called absolutely convex modules and, together with absolutely affine maps, they
form the category AC. It can be seen that we have a full embedding TC ↪→ AC [6]. Totally convex
and absolutely convex modules were first mentioned by Semadeni [11], then they were clearly defined
and intensively studied by Pumplün and Röhrl [6, 7, 8, 9, 10, 5].

An approach vector space is a vector space together with an approach structure that concords well
with the algebraic structure of the space [4]. We recollect some facts about locally convex approach
spaces (those approach vector spaces satisfying a certain local convexity condition) [14]. First of all, a
locally convex approach space was characterized as a pair X = (X,M), consisting of a vector space X
equipped with a Minkowski system M. The latter is an ideal in the lattice of seminorms on X, Sn(X),
satisfying the following saturation condition:

(S) ∀η ∈ Sn(X), ∀ ε > 0 ∃µ ∈M : η ≤ (1 + ε)µ ⇒ η ∈M.

The saturation of an ideal basis (the smallest subset of Sn(X) containing that collection and satisfying
(S)) is a Minkowski system. A morphism between locally convex approach spaces is a map that
is linear and a contraction with respect to the approach structures. This means that a linear map
f : (X,MX) → (Y,MY ) is a morphism if for all η ∈ MY : η ◦ f ∈ MX . We put lcApVec
for the category of locally convex approach spaces. Now, any locally convex topology is uniquely
determined by the collection of Minkowski functionals of absolutely convex zero–neighborhoods. So,
it is easy to see that locally convex approach spaces are a generalization of locally convex topological
spaces. Moreover, it was shown that the category lcApVec is topological over Vec and that limits
and colimits in lcTopVec are unaltered under the presence of this supercategory. The coreflection
corresponding to the right adjoint of the embedding lcTopVec ↪→ lcApVec is given by the identity
map (X, R+M) −→ (X,M), with R+M := {kη | k > 0, η ∈ M}. Note that the corresponding
topology is precisely the topology underlying M. Thus, if the classical quantitative theory is also
nicely incorporated, we have a rigid framework for doing quantified functional analysis. This is indeed
the case because for a seminormed space (X, η) we can put Mη := {µ ∈ Sn(X) | µ ≤ η} and thus, under
the identification η ≡ Mη, we obtain a full embedding sNorm1 ↪→ lcApVec. In particular, (R, | |) is
considered to be a locally convex approach space. We have a right adjoint N : lcApVec −→ sNorm1

to this embedding: the coreflection arrow, on a locally convex approach space (X,M), is given by
the injection N(X,M) ↪→ (X,M), where N(X,M) denotes the space {x ∈ X | supµ∈M µ(x) < ∞},
equipped with the seminorm x 7−→ supµ∈M µ(x).

There is only a pointwise vector space structure on the dual of a locally convex topological space.
But the dual of a quantified space has a richer structure: the homset KX := [X, R] of a locally convex
approach space X is the closed unit ball of a seminorm on the space of all linear continuous functionals
on X; the resulting seminormed space is denoted L bKX [15]. There is also a converse connection ([15],
2.11): if we start with a vector space X and closed unit ball X� in the algebraic dual of X and endow

X with M(X,X�), the inital lcApVec structure of the source (X
ϕ→ R)ϕ∈X� , then

K(X,M(X,X�)) = X�. (1)

This nice duality is enriched with the surprising result that the category of absolutely convex modules
is obtained as the category of Eilenberg–Moore algebras induced by the natural dualisation functor
K := [−, R] : lcApVecop → Set, with the pointwise absolutely convex structure of linear contractions

defining the comparison functor bK [12].
Another core observation is the fact that the corresponding topological dualisation functor

L bK : lcApVecop → sNorm1 : (X
f→ Y ) 7−→ (L bKY

LcKf
→ L bKX : a 7−→ a ◦ f)

has a left adjoint

Lpcu : sNorm1 −→ lcApVecop : (X
f→ Y ) 7−→ (LpcuY

Lpcuf
→ LpcuX : a 7−→ a ◦ f)
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[12]. Here LpcuX is the algebraic dual of a seminormed space X equipped with the saturation of basis
{supx∈S |ev(−, x)| | S ⊂ OX finite}. The subscript pcu—pointwise convergence on the unit ball—is
explained by the fact that the underlying qualitative structure is the weak* topology.

It is interesting to see that the categorical relations between the qualitative and the quantitative level
of functional analysis are transported by dualisation to the embedding Vec ↪→ AC [16]. The question
arises whether we can also obtain the subcategory TC ↪→ AC via dualisation, as the Eilenberg–Moore
category of a suitable subcategory of lcApVec. We will demonstrate, not only that the answer is
affirmative, but also that, when L bK is restricted to this subcategory, we obtain a dual adjunction with
Ban1.

Note that, although the dual of a seminormed space is a Banach space, natural algebraic structure
of linear contractive functionals on a seminormed space is of strictly stronger nature than the totally
convex structure of this Banach ball [13]. So the subcategory sNorm1 ↪→ lcApVec is not suitable for
our purpose.

We should add that all preliminary results are shown to hold for vector spaces that are defined over
the field of real numbers. So in the sequel of this work we will also confine ourselves to real valued
vector spaces.

2 Dually complete spaces

The following definition is entailed by the above objectives.
A locally convex approach space X is called dually complete if KX is closed under the formation

of pointwise totally convex combinations. This means explicitly that, for any sequence (ϕn)n∈N in
KX and for any (αn)n∈N ∈ Ol1N, the series

P
n∈N αnϕn(x) is commutatively convergent and that the

assignment x 7−→
P

n∈N αnϕn(x) defines a contraction on X. The full subcategory of lcApVec whose
objects are dually complete spaces is denoted dcApVec. We put D : dcApVecop → Set for the
restriction of the natural dualisation functor K.

If a locally convex topological space is dually complete, then the set of continuous functionals is in
a pointwise way at the same time a vector space and a totally convex module. It then follows, from [6]
(6.9), that the dual space is trivial. The Hahn–Banach theorem then asserts that the only continuous
seminorm is the one that is identically zero. So only trivial quantitative structures can satisfy the above
definition, i.e. we have introduced an intrinsic numerical concept.

Note that the seminorm coreflection NX is a dually complete space, so the collection

AX :=
˘
Y ∈ |dcApVec|

˛̨
Y is a sub vector space of X and Y ↪→ X is contractive

¯
(2)

is non-empty. Let CX be the space vct (
S
AX) equipped with the final lcApVec-structure for the sink“

Y ↪→ vct
“[

AX

””
Y ∈AX

. (3)

Theorem 2.1. The inclusion iX : CX ↪→ X is co-universal with respect to the embedding dcApVec ↪→
lcApVec. The corresponding right adjoint C : lcApVec → dcApVec to the inclusion dcApVec ↪→
lcApVec acts on morphisms as a restriction in domain and co-domain.

Proof. In order to show that CX is dually complete, let (ϕn)n∈N be a sequence in KCX and let

(αn)n∈N ∈ Ol1N. As a composition Y ↪→ CX
ϕn→ R, the restriction of each ϕn to any Y in AX is a

linear contraction, so the map ϕY : x 7−→
P

n∈N αnϕn(x) : Y → R is a well defined linear contraction.
Moreover, we have the property

ϕY1 |Y1∩Y2 = ϕY2 |Y1∩Y2

for the collection of mapping (ϕY )Y ∈AX . So there exists a unique linear map ϕ : vct (
S
AX) → R such

that, for all Y ∈ AX , ϕ|Y = ϕY . The sink (3) is final, so ϕ is a linear contraction. We still have to show
that ϕ is obtained as the pointwise totally convex combination

P
n∈N αnϕn. To this end, fix x ∈ CX.
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Then x =
Pn

i=1 xi for some x1 ∈ Y1, . . . , xn ∈ Yn, each Yi ∈ AX . So we obtainP
n∈N αnϕn(x) =

P
n∈N αnϕn

`Pm
i=1 xi

´
=

Pm
i=1

P
n∈N αnϕn(xi)

=
Pm

i=1 ϕYi(xi)
=

Pm
i=1 ϕ(xi)

= ϕ
`Pm

i=1(xi)
´

= ϕ(x).

It is easy to see that iX is a morphism in lcApVec. To show the co-universal property of iX , let Y
be a dually complete space, let f : Y → X be a linear contraction and let f(Y ) be equipped with the

final lcApVec-structure of the sink Y
f→ f(Y ). Then the injection f(Y ) ↪→ X is a linear contraction,

so f(Y ) is in AX . Because of the factorization

Y
f //

f

((RRRRRRRRRRRRRRRRR f(Y )
� � // CX

iX

��
X

we are done if we show that f(Y ) is dually complete. Take (αn)n∈N ∈ Ol1N and a sequence (ϕn)n∈N
in Kf(Y ). For any f(y) ∈ f(Y ) we have

P
n∈N αnϕn(f(y)) =

P
n∈N αn(ϕn ◦ f)(y), so the mapP

n∈N αnϕn : f(Y ) → R is well-defined. Since f : Y → f(Y ) is final and since (
P

n∈N αnϕn) ◦ f is a
linear contraction we also have that

P
n∈N αnϕn is contractive. �

It follows from composition of the adjunctions in the square

lcApVecop

Cop

��

K
// Set

R−oo

dcApVecop

D
//

� ?

OO

Set

that CopR− : Set → dcApVecop is left adjoint to D. Also note that, if f : X → Y is a morphism
between dually complete spaces, then Df : bDY → bDX is a totally affine map.

Theorem 2.2. The category TC is a representation for the category of Eilenberg–Moore algebras
induced by the adjunction CopR− a D and bD : dcApVecop → TC is the comparison functor of D.

Proof. We start with the establishment of the crucial fact that, for any set S, the map

τS : Ol1S → DCRS : b 7−→
X
s∈S

b(s)ev(−, s) (4)

is a well defined bijection.
For each s ∈ S, if we compose the map ev(−, s) : RS → R with the inclusion iCRS : CRS ↪→ RS , we

obtain a contraction ev(−, s) : CRS → R, so the assertion that τS is well-defined follows from the fact
that KCRS is closed under the formation of pointwise totally convex combinations.

To show that τS is an injection, take b1 and b2 in Ol1S such that b1(t) 6= b2(t) for some t ∈ S. The
seminorm coreflection NRS consists of all bounded functions from S to R and is contained in CRS . In
particular, the Dirac function δt is in CRS . So τS(b1)(δt) =

P
s∈S b1(s)ev(−, s)(δt) = b1(t) 6= b2(t) =

τS(b2)(δt), i.e. τS(b1) 6= τS(b2).
To conclude that τS is a surjection, we will show the inclusion KCRS ⊂ τS(Ol1S). Because CRS

is dually complete, τS(Ol1S) is, in a pointwise way, a totally convex subset of the algebraic dual of

CRS . Since τS is an injection, the map τS : bOl1S → τS(Ol1S) is an isomorphism of totally convex
modules. It follow from section 7 of [6] that the space vct(τS(Ol1S)), with the Minkowski functional

µτS(Ol1S), is a Banach space that is universal for bO for the module τS(Ol1S). So the totally convex
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isomorphism τS : bOl1S → τS(Ol1S) extends to an isomorphism fτS : l1S → (vct(τS(Ol1S)), µτS(Ol1S))
between the respective free Banach spaces . In particular, fτS is onto on the closed unit balls, so we
have τS(Ol1S) = fτS(Ol1S) = {µτS(Ol1S) ≤ 1}. So from (1) we obtain the identity

K(CRS ,M(CRS ,τS(Ol1S))) = τS(Ol1S). (5)

Since τS(Ol1S) is a totally convex module, (CRS ,M(CRS ,τS(Ol1S))) is a dually complete space. Because

each ev(−, s) is in M(CRS ,τS(Ol1S)), the injection (CRS ,M(CRS ,τS(Ol1S))) ↪→ RS is contractive. So we

have that (CRS ,M(CRS ,τS(Ol1S))) is in ARS hence M(CRS ,τS(Ol1S)) is finer than the original structure

on CRS . So KCRS ⊂ K(CRS ,M(CRS ,τS(Ol1S))) and the desired inclusion follows from (5).
Let T′ = (T ′, η′, µ′) be the monad of the adjunction l1 a O and let T = (T, η, µ) be the monad of

the adjunction CopR− a D.
If we show that the collection of mappings defined in (4) induces a monad morphism τ : T′ → T

then the assertion follows from the fact that TC is the category of Eilenberg–Moore algebras of T′ by
categorical arguments [13].

We will use the notation F for CopR−.

1. τ : T ′ → T is a natural transformation. Take a map f : S1 −→ S2 between sets. We have to
verify the commutation of

T ′S1

T ′f //

τS1

��

T ′S2

τS2

��
TS1

Tf
// TS2.

Let b =
P

s∈S1
b(s)δs ∈ T ′S1. Then on the one hand we have that

(τS2 ◦ T ′f)(b) = τS2(
X
s∈S1

b(s)δf(s))

=
X
s∈S1

b(s)ev(−, f(s))

and on the other hand we have

(Tf ◦ τS1)(b) = DFf(
X
s∈S1

b(s)ev(−, s))

=
X
s∈S1

b(s)(ev(−, s) ◦ Ff)

=
X
s∈S1

b(s)ev(−, f(s)).

2. τ rewrites the unit, i.e. we have to check that for an arbitrary set S the diagram

S
η′S //

ηS !!B
BB

BB
BB

B T ′S

τS

��
TS

is commutative. But this is trivial: (τS ◦ η′S)(s) = τS(δs) = ev(−, s) = ηS(s) for all s ∈ S.
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3. Last we have to verify that τ rewrites multiplication, that is, for any set S we have the commutation
of the diagram

T ′
2
S

T ′τS

��

µ′S //

τ2
S

%%

T ′S

τS

��

T ′TS

τT S

��
T 2S µS

// TS.

In order to show this, let B ∈ T ′
2
S, where we write B =

P
b∈T ′S B(b)δb. Then µ′S(B) =P

b∈T ′S B(b)b, so

(τS ◦ µ′S)(B) =
X
s∈S

X
b∈T ′S

B(b)b(s)ev(−, s).

On the other hand we should compute (µS ◦ τ2
S)(B) = (µS ◦ τTS ◦ T ′τS)(B). First, note that

T ′τS(B) =
X

b∈T ′S

B(b)δτS(b),

so
(τTS ◦ T ′τS)(B) =

X
b∈T ′S

B(b)ev(−, τS(b))

and
(µS ◦ τTS ◦ T ′τS)(B) =

X
b∈T ′S

B(b)ev(−, τS(b)) ◦ εFS .

For all a ∈ FS we have that

ev(−, τS(b)) ◦ εFS(a) = ev(ev(−, a), τS(b))

= ev(τS(b), a)

= τS(b)(a)

=

 X
s∈S

b(s)ev(−, s)

!
(a),

hence

(µS ◦ τTS ◦ T ′τS)(B) =
X

b∈T ′S

B(b)

 X
s∈S

b(s)ev(−, s)

!
=
X

b∈T ′S

X
,s∈S

B(b)b(s)ev(−, s).

�
Note that we have the commutative diagram

dcApVecop

_�

��

bD // TC_�

��
lcApVecop bK // AC,

(6)

with bK the comparison functor of the adjunction R− a K [12].
Suppose that we have the following functors F, G, H, I between the categories A,B, C

A
G

  @
@@

@@
@@

H // B

I

��
C.

F

``@@@@@@@
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If F is left adjoint to G, I is full and faithful and G = I ◦ H, then F ◦ I is left adjoint to H. In
particular it follows from (6) and the fact that that bK has a left adjoint W [12], that the composition

TC ↪→ AC
W−→ lcApVecop Cop

−→ dcApVecop is left adjoint to bD.
We turn our attention to the connection with Banach spaces. It follows, from [6], that L bKX is a

Banach space if and only if X is a dually complete space. Let

L bD : dcApVec −→ Ban1

be the restriction, in domain and co-domain, of the functor L bK . Now, for a seminormed space X, the
map

X → L bK  LpcuX : x 7−→ ev(−, x) (7)

is an isometrical bijection that is universal for L bK [12]. So for a Banach space X, LpcuX is dually
complete and it follows that (7) is an isomorphism between Banach spaces which is universal for L bD.
Thus the functor

Lpcu : Ban1 −→ dcApVecop

is left adjoint to L bD. It also follows that objects in the range of L bD are isomorphism dense in the class
of Banach spaces. In the sequel we put

−(∗) := CopLpcu : sNorm1 → dcApVecop.

Theorem 2.3. The functor L bD−(∗) is left adjoint to the embedding Ban1 ↪→ sNorm1.

Proof. From composition of adjunctions it follows that −(∗) is left adjoint to the composition

dcApVecop ↪→ lcApVecop
LcK→ sNorm1. The corresponding unit on a seminormed space X is given

by ηX : X → L bKX(∗) = L bDX(∗) : x 7−→ ev(−, x). We will show that this is a universal map with
respect to the class of Banach spaces.

Let Y be a Banach space and f : X → Y be a linear non-expansive map. Let f (∗) : Y (∗) → X(∗)

be the unique dcApVec-morphism satisfying ηY ◦ f = L bKf (∗) ◦ ηX = L bDf (∗) ◦ ηX . Note that ηY is an

isomorphism of Banach spaces, so there exists a linear non-expansive map g : L bDX(∗) → Y such that

f = g ◦ ηX . Any such g is uniquely determined on the closure of ηX(X) in L bDX(∗). Let eX denote this

sub Banach space. We are finished if we show that eX = L bDX(∗).

Let X∗ be the algebraic dual of X. For any x ∈ OX we have that ev(−, x) ∈ eX. Moreover,

since ‖ev(−, x)‖ ≤ ‖x‖ we then also have that ev(−, x) ∈ O( eX). So we see that the map id :
(X∗,M(X∗,O( eX))) −→ LpcuX is a contraction. Since it follows from the formula (1) that (X∗,M(X∗,O( eX)))

is dually complete, the injection (X∗,M(X∗,O( eX))) ↪→ CLpcuX = X(∗) is a contraction. This embedding

is necessarily the identity map, so eX = L bD(X∗,M(X∗,O( eX))) = L bDX(∗). �

Corollary 2.4. Let X be a normed space. Then the embedding X ↪→ L bDX(∗) : x 7−→ ev(−, x) is the
completion.
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