Skip to main content
Log in

Coz-onto Frame Maps and Some Applications

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

A frame homomorphism is coz-onto if it maps the cozero part of its domain surjectively onto that of its codomain. This captures the notion of a z-embedded subspace of a topological space in a point-free setting. We give three different types of characterizations of coz-onto homomorphisms. The first is in terms of elements, the second in terms of quotients, and the last in terms of ideals. As an application of properties of coz-onto homomorphisms developed herein, we present some characterizations of \(F\)- and \(F^{\prime }\)-frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aull, C.E.: Embeddings extending various types of disjoint sets. Rocky Mountain J. Math. 14(2), 319–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ball, R.N., Walters-Wayland, J.: \(C\)- and \(C^{*}\)-quotients in pointfree topology. Dissertationes Math. (Rozprawy Mat.) 412, 1–62 (2002)

  3. Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolin. 37(3), 577–587 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Banaschewki, B., Gilmour, C.: Oz revisited. Math.-Arb.Pap. 19–23 (2000)

  5. Banaschewski, B., Gilmour, C.: Realcompactness and the cozero part of a frame. Appl. Categ. Structures 9, 395–417 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Banaschewski, B., Pultr, A.: On weak lattice and frame homomorphisms. Algebra Universalis 51, 137–151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beazer, R., MacNab, S.: Modal extensions of Heyting algebras. Colloq. Math. 41, 1–12 (1979)

    MATH  MathSciNet  Google Scholar 

  8. Blair, R.L.: Filter characterizations of \(z\)-, \(C^{*}\)-, and \(C\)-embeddings. Fund. Math. 90, 285–300 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Blair, R.L.: Spaces in which special sets are \(z\)-embedded. Canad. J. Math. 28, 673–690 (1976)

    MATH  MathSciNet  Google Scholar 

  10. Blair, R.L., Hager, A.W.: Extensions of zero-sets and of real-valued functions. Math. Z. 136, 41–52 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)

    MATH  Google Scholar 

  12. Henriksen, M., Johnson, D.G.: On the structure of a class of Archimedean lattice-ordered algebras. Fund. Math. 50, 73–94 (1991)

    MathSciNet  Google Scholar 

  13. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  14. Mandelker, M.: \(F^{\prime}\)-spaces and \(z\)-embedded subspaces. Pacific J. Math. 28(3), 615–621 (1969)

    MATH  MathSciNet  Google Scholar 

  15. Pultr, A.: Frames. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 3, pp. 791–857. Elsevier, Amsterdam (2003)

  16. Walters-Wayland, J.L.: Completeness and nearly fine uniform frames. Doctoral Thesis, University Catholique de Louvain (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themba Dube.

Additional information

Dedicated to Bernhard Banaschewski, on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dube, T., Walters-Wayland, J. Coz-onto Frame Maps and Some Applications. Appl Categor Struct 15, 119–133 (2007). https://doi.org/10.1007/s10485-006-9022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-006-9022-y

Key words

Mathematics Subject Classification

Navigation