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CONSTRUCTING INFINITE COMATRIX CORINGS FROM
COLIMITS

S. CAENEPEEL, E. DE GROOT, AND J. VERCRUYSSE

ABSTRACT. We propose a class of infinite comatrix corings, and describe them
as colimits of systems of usual comatrix corings. The infinite comatrix corings
of El Kaoutit and Gémez Torrecillas are special cases of our construction, which
in turn can be considered as a special case of the comatrix corings introduced
recently by Gémez Torrecillas an the third author.

INTRODUCTION

Corings were introduced by Sweedler in 1975 [I5]; since the beginning of the century,
there has been a renewed interest in corings, initiated by an observation made by
Takeuchi that most type of modules that are considered in Hopf algebra theory, like
Hopf modules, Yetter-Drinfeld modules, entwined modules, are in fact comodules
over certain corings. A detailed discussion of recent applications of corings can be
found in [6].

One of the beautiful applications is a reformulation of descent theory and Galois
theory. To a ring morphism B — A, we can associate a coring A ®p A, called
Sweedler’s canonical coring, and the category of descent data is isomorphic to the
category of comodules over the coring. To an action or coaction of a group or Hopf
algebra on A, we can associate a coring, and there exists a canonical coring map
from Sweedler’s coring to this coring. A necessary condition for the Galois descent
is that this map is an isomorphism. This was observed by Brzezinski in his paper
Hl, see also [§ for a detailed discussion.

A more general theory was proposed by El Kaoutit and Gémez Torrecillas [T0]. We
start from two rings A and B, connected by a (B, A)-module P. If P is finitely
generated and projective as a right A-module, P* ® g P is an A-coring. If A and B
are connected via a ring morphism B — A, then we can take P = A considered as
a (B, A)-bimodule, and we recover Sweedler’s coring. P*®p P is called a comatrix
coring, and several properties of the theory outlined in [§] can be generalized, we
refer to [9] and [I0].

The condition that P is finitely generated and projective as a right A-module is
crucial in the theory. Nevertheless, El Kaoutit and Gémez Torrecillas [LT] proposed
an infinite version of comatrix corings, starting from an infinite collection of finitely
generated projective right A-modules {P; | ¢ € I}. They consider the direct sum
P of the P;, and the direct sum PT of the P. The tensor product of PT and P
over a suitable ring R is then a coring, called the infinite comatrix coring. They
give several descriptions and properties of this coring, including a version of the
Faithfully Flat Descent Theorem. One of the important features is the fact that
the ring R has no unit; it is a ring with orthogonal idempotent local units.
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The natural framework needed to introduce infinite comatrix corings was proposed
recently by Gémez Torrecillas and the third author in [T2]. The philosophy is the
following. Let P be a (B, A)-bimodule, and consider the functor ' = — ®p P :
Mp — M 4. F has aright adjoint G of the form —® 4 Q for some (B, A)-bimodule
Q if and only if P is finitely generated and projective a right A-module, and in
this case @ = P*. Then we have a so-called comatrix coring context (see [B] or
[0 for the definition). In fact we need such an adjunction to be able to define the
coproduct on the comatrix coring. Instead of considering rings with a unit, we now
consider firm rings, these are rings A having the property that the canonical map
A®as A — Ais an isomorphism. Firm bimodules over firm rings form a monoidal
category, and we can consider corings over firm rings. The bimodules in a comatrix
coring context connecting firm rings are not necessarily finitely generated projective.
The comatrix coring contexts from [I1]] are of this type: only one of the two rings
involved has units, the other one has only local units (a complete set of orthogonal
idempotents).

In this paper, we propose some classes of infinite comatrix corings. In the first three
Sections, we have collected some necessary preliminary results: in Section [ we
briefly introduce the comatrix corings from [12], and recall some of the elementary
results, for example the Faithfully Flat Descent Theorem; in Section 2] we show
that the colimit of a functor that is a coalgebra in a functor category is itself a
coalgebra; in Section Bl we discuss split directed systems and their colimits. The
main results appear in Section Bt we describe comatrix corings associated associated
to an (A, B)-bimodule P, where A is a ring with unit, and B a ring with idempotent
local units. These rings are colimits of a (split) directed system of rings with unit
and we can describe the category of firm B-modules. The comatrix corings can
also be described as colimits. Firm modules over rings with idempotent local units
are constructed in Section B we consider a split direct system M in some k-linear
category A with a colimit, and a product preserving functor w to the category of
right A-modules. The ring B is then the colimit of the A-endomorphism rings of
the M;, and the w(M;) = P; form a split direct system of (B;, A)-bimodules. An
interesting special case is considered in Section [t we consider an A-coring C, and
let A = M, and w the functor forgetting the coaction. In this situation, we can
define a canonical coring map from the associated comatrix coring to D, and M is
called a system of Galois C-comodules if this map is an isomorphism. The comatrix
corings introduced in [IT] are special cases.

1. COMATRIX CORINGS OVER FIRM ALGEBRAS

Let k£ be a commutative ring, and A a k-algebra, not necessarily with a unit. If
A has a unit, then the canonical map A ® 4 A — A is an isomorphism, but not
conversely. We say that A is a firm algebra if A ®4 A — A is an isomorphism. In
[16], firm algebras are called regular algebras; in [7], they are called unital. Algebras
with local units are firm.

Let A be a firm algebra. A right A-module is called firm if the canonical map
M®a A — M is an isomorphism. If A is an algebra with unit, then all modules are
firm. M 4 will be the category of firm right A-modules and right A-linear maps. In
a similar way, we introduce the categories of firm left modules and firm bimodules.
The category of all (not nessecary firm) right A-modules will be denoted by M 4.

A (firm) left A-module is called flat if the functor — ®4 M : My — Ab is exact.
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The category M 4 of firm right A-modules over a firm ring A is always an abelian
category. Under the extra condition that A is flat as left A-module, the kernels in
M4 can be computed already in Ab. If A is a ring with local units, i.e. for every
a € A, there exists an e € A such that ae = ea = a, then A is a firm ring and A
is flat as a left and right A-module (A is even locally projective as a left and right
A-module), so in this situation the kernels of M4 and 4 M can be computed in
Ab.

The category 4 M4 of firm A-bimodules is a monoidal category, so we can consider
corings over firm algebras, these are coalgebras in the monoidal category s M 4. If
C is a coring over a firm k-algebra A, then we can define left and right C-comodules.
A right C-comodule (M, p") is a firm right A-module together with a right A-linear
map p" 1 M — M ®4 C satisfying the usual coassociativity and counit properties.
The category of right C-comodules and C-colinear maps is denoted by MC. Similary
one introduces categories M, gMC and PMC. For M € °M and N € M€, we
define the cotensor product N ®¢ M as the following equalizer in Ab:

N®ap'

(1) N@M — N4 M N®RsCRa M.

prRAM
If M € *Mp, where B is a firm ring, which is flat as a left B-module, then () is
also an equalizer in Mg, hence N ®° M is a firm right B-module.
Let A and B be firm k-algebras. The notion of Morita context can be generalized,
by requiring that the connecting bimodules are firm. If one of the morphisms in a
Morita context is bijective, then we can associate a pair of adjoint functors to it.
More generally, we have the following result (see [7, Theorem 1.1.3]).

Proposition 1.1. Let B and A be firm k-algebras, and P € gMy, Pt € aMp
firm bimodules. Consider two bimodule maps

n: BsP®yPlande: Plog P — A.
We use the following Sweedler-type notation:
nb)=b" @ab" € P, PT,

where summation is implicitly understood, as usual. Assume that n and € satisfy
the following formulas, for allb € B, p € P, q € PT:

(2) b=e(bt @ap) =bp; e(g@ab )b = gb.
Then we have a pair of adjoint functors (F,G)
F=—-®gP: Mg—>Ma; G=—4 P': My — Msp.
Proof. The unit and counit of the adjunction are
nIN=N®pn: N>NRP@sP';epy=M®ae: M, Plog P — M,
forall N € Mg, M € M,. O

Following [Bl, (B, A, P, PT,n,¢) is called a comatrix coring context. To a comatrix
coring context (B, A, P, PT,n,¢), we can associate an A-coring D (called comatrix
coring) and a B-ring A (called matrix ring, or elementary algebra (see [7, [I6]).
They are given by the following data:

D = Pt @p P, with

Ap=P'@pn@pP: D—>D®sD;ep=c: D— A.
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A= P®4 P, with
mag=P®@ace@aP: A A= A; na=n: B— P®4 Pl
P is a right D-comodule, and P is a left D-comodule; the right and left coactions
are the following:
Pt P> P@aP @pP, pi(bp)=b" @sb" @pp

pl: Pt PlopgPes P pl(gh) =qopb” @4 0T

Proposition 1.2. Let (B, A, P, PT,n,¢) be a comatriz coring context, and assume
that B is flat as left B-module. Then we have a pair of adjoint functors (K, R)
K=-@pP: Mp—MP; R=-a"P": MP - Msz.

Proof. Tt follows from the comments preceeding Proposition [l that R(M) is a
firm right B-module, for every M € MP. We restrict to giving the unit and the
counit of the adjunction. For N € Mp and M € MP, we have

nv: N = (Nop P)@P Pl gy(nb) =n®@pb” @abt;

en: (M@P PY@pP— M, en(d_ m; ®aq;@p;) = mye(q; @5 p))-

J J
Let us show that 7y (n) € (N®p P)®P Pt for alln € N. Since N is firm as a right
B-module, it suffices to look at elements of the form nbed, with n € N, b, ¢,d € B.
Since 7 is a B-bimodule map, we have, for all b,c € B that n(bc) = bn(c) = n(b)c,
or
(3) (be)” ®a (be)T =bc” ®act =b" @4 bTe.
Using @), we find easily that

(Pnenp @4 PPy (nbed)) = (pyg,p @4 PT)(nb@p ¢ @4 ¢d)
= (N@p" ®P(n®pbed” ®4d")
= n®pb @abT ®pecd” @adt
= n®Bb7®Ab+c®Bd7®Ad+

nbRpc QacT @pd @adt

= (N®@pP)@ap)(nbopc ®acd)

= ((N®p P)®ap")(nn(nbed)).

O

Theorem 1.3. (Faithfully flat descent) Let (B, A, P, PT, f, g) be a comatriz
coring context, and assume that B and P are flat as a left B-module. Then R is
fully faithful. (K, R) is a pair of inverse equivalences if and only if P is faithfully
flat as a left B-module.

Proof. Take M € MP. If P € g M is flat, then the map

j: (MePPHepP — MaP(PTopP), J((Z m;®Ap;)®Bq) = Zmi®A(pi®BQ)

is an isomorphism. The map

M®se: MRP (PTopP) > Mos A= M
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is an isomorphism. If P € g M is flat, then ey = (M ®4 €) o j is an isomorphism.
Assume that P € g M is flat. We have to show that ny is an isomorphism, for
every N € Mp. It suffices to show that the sequence

N@p @Pf

N
©5y N@gP@s Pl op Py Pt

S:0—>N—4 NegP®,P!

NQPRp
is exact. Since P € g M is faithfully flat, it suffices to show that S ® g P is exact.
It is clear that the sequence is a complex.

We first show that N ®p n ®p P is injective: if

0=(N@pn@p P)(D_nb@pp;)=> n;@pb; @bl @ppj,
J J
then
0= an Xp b;&'(bj ®B pj) = an ®B bjpj,
J J

Now assume that

2= n;®pbjp;®aq;@pcir; € Ker(N@pPRap'@pP—N@pp @4 PT@pP).

J

Then
. ey . - + R . - + . o .
an XB bjpj ®Aq; OB C; Ka C; KpBr; = an XB bj XA bj @B Pj ®AQic; QB Ty,
J J
and it follows that

T = an ®p bjp; ®aq; OB cj_s(c;r ®B 1)
J
= an ®pb; ®a b;r ®p pie(gic; ®p 1j)
J
(N ®@pn®p P) (Z n;b; ®@p pje(gic; ®p ;).

J

2. CORINGS FROM COLIMITS

Let F': Z — M be a covariant functor. Recall (see for example [3]) that a cocone
on F'is a couple (M, m) where M € M and mz : F(Z) — M is a morphism in
M, for every Z € Z, such that

(4) myz = myg OF(f),

for every f: Z — Z' in Z. The colimit of F is a cocone (C,c¢) on F satisfying the
following universal property: if (M, m) is a cocone on F, then there exists a unique
morphism f: C — M in M such that

(5) focz=mg,

for every Z € Z. If the colimit exists, then it is unique up to isomorphism. We
then write colim F' = colim F(Z) = (C, ¢).

The colimit (C, ¢) has the following property: if f,g: C — M are two morphisms

in M such that focy = gocy, forall Z € Z, then f = g. Indeed, (M, foc=goc)
is a cocone on F', and f = g follows from the uniqueness in the definition of colimit.
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From now on, let Z be a (small) category and let (M, ®, A) be a monoidal category.
Then (Func(Z, M), ®, A) is also a monoidal category. The tensor ® and the unit
A are given by the following formulas:

(F®G)(Z2)=F(Z)®G(Z) and (F & G)(f) = F(f) ® G(f);
A(Z) = A and A(f) = A,

forall F,G: Z - M, Z,Z € Zand f: Z — Z' in Z. A coalgebra in
(Func(Z, M), ®, A) will be called a Z-coalgebra in M. The result of this Section
is the following.

Proposition 2.1. Let (G, A, ¢) be a Z-coalgebra in M, and assume that colim G =
(C,c) exists. Then C is a coalgebra in M.

Proof. We give a proof of the statement in case of a strict monoidal category M.
Recall that this is no restriction since every monoidal category is equivalent to a
strict monoidal category, see for example [[3, Prop. IX.5.1].

For every Z € Z, consider the morphism

dz =(cz®cz)oAgz: G(Z) > C®C.
Let f: Z — Z' be a morphism in Z, and look at the diagram

G(z) 22 () e a(z) 22 o0

G(f) G(f) @ G(f) =
A ’ ’ /
Gz 2% a6z L% cwc
The left hand square commutes since A : G — G ® G is a natural transformation,
and the right hand square commutes because (C,¢) is a cocone on G. It follows
that (C' ® C,d) is a cocone on G, and we conclude that there exists a morphism
Ac: C — C®C in M such that
Acocz =dz = (cz®cz)oAg,
for all Z € Z. We then have

(Ac®C)oAcocz=(Ac®@C)o(cz®cz)oAg
(Cz®CZ®C)O(Az®Cz)OAZ
(CZ Rz K Cz) o (AZ (24 G(Z)) oAy
(CZ Rcz Cz) o (G(Z) & Az) oAy

e (C@Ac)OACOCZ,
for all Z € Z. It follows (see [3, Prop. 2.6.4]) that (Ac®@C)oAc = (CRAc)oAg,
so A¢ is a coassociative comultiplication on C.
The counit is defined in a similar way: (A,e) is a cocone on G, so there exists a
morphism e : C — A in M such that ec ocz = ez, for all Z € Z. The counit
property is verified as follows: for all Z € Z, we have
(ec®C)oAgocz =(ec®C)o(cz®cz)oAz = (ARcz)o(ez®G(Z))o Ay = cz.

O
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Proposition 2.2. Let (G,A,¢e) be as in Proposition Bl If (H,p) is a right G-
comodule, and colim H = (M, m) exists, then M is a right C-comodule.

Proof. For every Z € Z, consider the composition

rz=(mzQcz)opz: HZ)—> H(Z)®G(Z)—> MxC.
Arguments similar to the ones presented above show that (M ® C, r) is a cocone on
H. It follows that there exists a morphism pp; : M — M ® C such that ppyomy =

rz, for every Z € Z. Standard computations show that pps is coassociative and
satisfies the counit property. O

3. SPLIT DIRECT SYSTEMS

Recall that a partially ordered set (I, <) is called directed if every finite subset of T
has an upper bound. To a partially ordered set (I, <), we can associate a category
Z. The objects of Z are the elements of I, and Homz (¢, j) = {a;;} is a singleton if
1 < j and empty otherwise.
Let A be a category and Z a category associated to a directed partially ordered set.
A functor M : Z — A will be called a direct system with values in A. To A, we
associate a new category A®. The objects of A and A® are the same. A morphism
M — N in A® is a couple (u,v), with p: M — N and v: N — M in A such that
vou = M, that is, v is a left inverse of u. A functor M° : Z — A° will be called a
split direct system with values in A. We will adopt the following notation, for all
1<jel:

M (i) = M;, M®(azi) = (i, vij)-
Then Hji M; — Mj, Vij © Mj — Mi, and
(6) Vij o i = M;.
Consider the forgetful functor F; A* — A, F(M) = M, F(u,v) = p. Then
FoM?® = M is a direct system with values in A. In Proposition Bl we will assume
that colim M = (M, u) exists. This means in particular that we have morphisms
i M; — M such that
(7) Wi = Hj O fhji-

Proposition 3.1. Let M® : Z — A° be a split direct system, and assume that
colim M = (M, u) exists. Then there exist unique morphisms v; : M — M; in A
such that

(8) v; o i = M; and v; = v;5 o vy,
foralli <jinlI.
Proof. The proof in the case where A = M4 can be found in [I7]. In the general

case, we argue as follows. For a fixed i € I, we have a cocone (M;, u?) on M defined
as follows: for every k € I, uj, : My — M; is the composition

Vit © puk © My — My — M;,
where | > i, k. We have to show that this definition is independent of the choice of
l. Take j > i,k, and m > 1,j. Then
Vim, © mk = Vil © Vim © fimi © fuk = Vi © My o g = vig 0 pug,
and, in a similar way,
Vim © Umk = Vij © [hjk-
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(M;,u?) is a cocone on M: take k > j in I, and [ > i, k; then
U}, © flkj = Vit © Juuk © Pkj = Vit © jitj = .

(From the universal property of the colimit, it follows that there exists a unique
v; : M — M; such that

(9) u; = v; 0 iU ,
for all j € I. In particular,
Vi o i = ul = vy oy = M;.
We have to show that v; = v;; ov; if ¢ < j. To this end, it suffices to show that
Vi © g = Vj;j O Vj O U,
for all k € I. We take [ > j, k and compute
Vi O ik ZUZ = Vil O Wik = Vij O Vj1 © Mk :Vijoui = Vj;j OVj O U-
We finally prove the uniqueness. Assume that v, : M — M, satisfies @). Let
i,7 € I, and take k > ¢, 5. Then
! / %

V; O [Lj = Vil OV}, O [if O [bgj = Vit © M, © g5 = Vg © [k =uy
so the v} satisfy (). By the uniqueness in the definition of colimit, it follows that
v, =, forallie I. O

4. COLIMIT COMATRIX CORINGS

Let k£ be a commutative ring. We say that a k-algebra B has idempotent local units
if there exists a set of idempotent elements {e; | i € I} C B such that for every
finite subset F' C B, there exists ¢ € I such that e;b = be; = b, for all b € F. If,
moreover, the e; can be chosen to be orthogonal, then we say that B has orthogonal
idempotent local units.

We will denote by Fj, the category of firm k-algebras.

Lemma 4.1. The following statements are equivalent.

(i) B is a ring with idempotent local units;
(i1) There exists a split direct system B® : Z — F} such that B = colim (B, ),
where Bj; = B(aj;i) and B; is a ring with unit;
(i1i) There exists a direct system B : Z — Fj such that colimB = B, where
Bji = Blaj;) and B; is a ring with unit.

Proof. The statement follows immediately from Lemma 2.10 and the remark after
Corollary 3.6 from [I7]. However, for sake of completeness, let us repeat a full proof
using the notation we introduced in the previous section.

(i) = (i1). On the index set I of the idempotent local units, we define a partial
ordering < as follows: ¢ < j if and only if e;e; = e;je; = ;. This partial ordering is
directed: for all ¢, j € I, there exists k € I such that k > ¢, j. Indeed, by definition
of a k-algebra with idempotent local units, for the two elements e; and e;, we can
find an element ey with k € I, such that e is a local unit for both e; and e;, i.e.
k > i,7. Then let B; = e;Be;, for each i € I. If i < j, then B; is a subalgebra of
By, and the inclusion map Bj; : B; — Bj is a morphism in Fj. Also v;; : B; = B,
vi;(b;) = e;bje; is a morphism of firm algebras. Associate to the partially ordered
directed set (I, <), a category Z as in Section B, then we have a split direct system
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ES D 2 = ]:]j, ES(’L) = Bi, Es(aji) = (ﬂjz;'ﬁj) Clearly COlimE = (B,ﬂ), with
B; : B; — B the inclusion map.

(#1) = (447) is trivial.

(#4i) = (i). Recall that module categories contain colimits and they can be de-
scribed as follows. Let

B:{(i,bi) |i€[, blEBl}

be the disjoint union of the B;. An equivalence relation ~ on B is defined as follows:
(2,b;) ~ (4,b;) if and only if there exists k > 4, j such that By, (b;) = B;(b;), where
Bri = B(a;j). Thenlet B =B/~ and 8; : B; — B, 3;(b;) = [(%,;)]. The elements
of the form [(4, 15,)] make up a set of idempotent local units. O

Remark 4.2. Abrams [I] proved the implication (i)=-(iii) under the stronger as-
sumption that B is a ring with commuting idempotent local units. Lemma ETl tells
us that the implication still holds if we drop the condition that the idempotents
commute, and then we even have an equivalence. Abrams [Il Lemma 1.5] also
shows that firm modules over a ring with commuting idempotent local units can
be written as direct limits. In Lemma B4l this property is generalized to arbitrary
rings with idempotent local units, and it is shown that are precisely the ones that
can be written as direct limits.

Let B be a k-algebra with idempotent local units and A a k-algebra with unit. Let
I be the index set of idempotent local units of B and Z the associated category as
in Lemma BTl

Lemma 4.3. P is a firm (B, A)-bimodule if and only if we can describe P in the
following way. There exists a split direct system P®: Z — M 4® where we denote
foralli<jel:
P*(i) = P, P*(aj) = (0ji,7i5),
and such that the following conditions hold
- foradli<jel, biGBi,ijPj.‘
(10) Bji(bi)pj = 0i(bii; (ps));
- each P; is a (B;, A)-bimodule for the unital k-subalgebra B; C B and
- colim P = (P, o).

Proof. This is an immediate consequence of of [[7, Lemmas 2.7 and 2.10]. For the
sake of completeness, we give a complete proof in our present notation.
Suppose first that P is a firm (B, A) module. For each i € I, we consider P; = e; P.
Then P = U;c; P;. Moreover it is clear that P; is a left B; = e; Be;-module and a
(B;, A)-bimodule. For i < j € I, we have right A-module maps o;; : P, — P; (the
inclusion map) and 7;; : P; — P;, 7;(pe;) = pe;. This defines a split direct system
P Z - M5, and colim P = (P, o), with ; : P, — P the inclusion map. Finally,
we check that () holds in this situation. Let ¢ < j, and take b; = e;be; € B;,
p; = ejp € P;. Then

0ji(biTij(p;)) = eibeieie;p = eibejp = biejp = Bji(bi)p;,
as needed.
For the converse, the construction of the colimit is done using arguments similar

to the ones in the proof of Lemma Bl From Proposition Bl we know that o; :
P; — P has a left inverse 7, : P — P,. Take p € P, b € B. Making use of the
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characterisation of B given in Lemma Bl we can find 7, j € I such that p = o;(p;),
b= B;(b;), with p; € P;, b; € B;. Take k > i, j, and define

(11) bp = 0% (Br; (b5)oki (pi))-

To prove that this is a well-defined action of B on P, we have to show that

[ is independent of the choise of the index k. Suppose ! > i,j and consider
01(B1;(bj)o1i(pi)). Take any m > [, k then we compute

o1(Bij(bj)oui(pi))

Tm © 0mi (B (05) Timomiowi (pi))

o T (Bmi B (b5)omio1i (pi)
= om(Bmi(b)omi(p:))
In a similar way, we prove that we can replace k by m in [[l) and by this the left

B action of P is independent of the choice of the index k. Finally, P is firm as a
left B-module: take p = 0;(p;) € P; then 8;(1g,)p = p. O

Lemma 4.4. If P satisfies the equivalent conditions of Lemma .3, the following

formulas hold, for alli < j €I, p; € P;, pj € Pj, p; € P}, p; € P and b; € B;.

12) (0ji 0 7i5)(ps) = Bji (1B, )5

ji(bipi) = Bji(bi)oji(pi);

©;iBji(bi) = ((pj 0 05i)bi) o Tij = 775(075; (0 )bi);

©iBji(1p,) = pj 0 0ji 0 Tij = 75(05:(5));

7ij (B3i(bi)p;) = biTij (p;);

17) 725 (pibi) = 775 (01) Byi (bi).

Proof. [[@) follows after we take b; = 1p, in (). [&@) can be shown as follows:
Bji(bi)aji(pi) = 0i(bi(7ij © 0ji)(pi)) = 0;i(bips).

We next prove ([d). Take any p; € P;,

(0 B5i(b:))(ps) = ©5(Bji(bi)p;) =" (((1p; © 05i)bi) © 755) (p5)

Then (@) follows after we take b; = 1p, in ([[dl), and [I8) also follows easily:
7ij (Bi(bi)ps) = (7ij © 05:) (biTij (p3)) = biTij (p5)-

@) follows immediately from (IH). O

Lemma 4.5. If P satisfies the equivalent conditions of Lemmal[f.3, we have a split

direct system
P Z o g M?®, P(i) = P} = Homu(P;, A), P™(azi) = (7)5,07;),
where for j > i, we have defined the maps
on PP — P U;i(%) = ¥j © 0ji,
50 PP = Py om5(gi) = i o Tij

.

Furthermore colim P* = (PT,71) ezists and P' is a firm (A, B)-module.

Proof. 1t is straightforward to check that P*® is a split direct system. Since P; is
a unital (B;, A)-bimodule, P is a unital (A4, B;)-bimodule. The statement follows

K2

by Lemma using left-right duality. O

We will now describe the colimit of P**.
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Lemma 4.6. Let i € I and ¢ € P* = Homa (P, A). There ezists ¢; € P} such
that

P =¢YiCTq
if and only if
$=PO0o;0T;.
In this situation, @; is unique, and is given by the formula p; = poo;; furthermore,

for every j >4, ¢ = @; oTj, with ¢; = @; 0 T;.

Proof. If ¢ = p; 07, then poo;o7;, = p;om 00,07 = ;o1 = . The
converse is obvious. If ¢ = ¢ o7, then poo; = Yot 00, = 2. If j > ¢, then
P;O0Tij OTj; = Yi 0T = L. [l

Let Pf ={pe P*|3iecl: ¢=ypoo;or}. More explicit, using the charac-
terisations Lemma ECJ] and Lemma weget P1 ={pe P |Jiel: op =
(e;p), for all p € P}. For every i € I, we have a map

*.
T; -

B — Pl 7/ (p) = piom.

Proposition 4.7. With notation as above, colim P* = (PT 1*).

Proof. First, (PT,7*) is a cocone on Q* since, for all i < j and ¢; € P, we have
(7 omij)(pi) = pioTijory =por =T,

Let (M, m) be another cocone on Q*. This means that m; : P — M and
mjoT; =m;if i <j. We then define f : Pt — M as follows: f(p;07;) = mi(i),
for every i € I and ¢; € P}. Let us show that f is well-defined. Assume that

Y= Pi0Ti = PjOoT;.
Take k > 4,j. Then ¢ = ¢k o 7, with ¢ = p; o 7% (see Lemma EEH). Then
mi(pr) = mi(pi © Tik) = (mk © 773,) (@i) = Mi(pi).

In a similar way, we have that m;(¢;) = mr(pk), and it follows that f is well-
defined. Finally, (f o 77)(p;) = f(wio 1) = mi(vi). O

The right B-action on P can be described as follows: take ¢ = ¢; o 7; € PT and
b= B;(b;) € B. For k >, j, we have

(18) @b = ((i © Ti:) Brj (bj)) © T
In particular, we have, for ¢; € P and b; € B;:
(19) (i 0 7:)Bi(bi) = (wibi) o Ti.

In explicit form this means (¢b)(p) = ;(eie;jbe;p) or just (pb)(p) = ¢(bp).

Lemma 4.8. If P satisfies the equivalent conditions of Lemma .3, then we have
forallic I, b; € B;, pe P and p € PT,

(20) Bi(bi)p = oi(biTi(p));
(21) ©Bi(bi) = (pooi)biom.
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Proof. By the characterisation of Lemma BTl and Lemma B3 we can write b; =
e;be; and 7;(p) = e;p, where e; is an idempotent in B. Moreover the maps ; and
o; are injections. With this information in hand we easily find

Bi(bi)p = eibeip
=0;(biTi(p)) = eibeiep.
The other equation follows by
©Bi(bi)(p) = ¢(Bi(bi)p) = @(0i(biTi(p))) = (¢ © 03)bi 0 Ti(p),
where we used (1) in the second equality. O

Proposition 4.9. We have a directed system G: Z — aMy, G(i) = Pf ®p, P;,
and

Gl(aji) : P/ ®p, P — P ®p; Pj, G(aji)(pi ®B, pi) = ¢i o Tij @B, 0ji(pi)-
Proof. We first show that G(aj;) is well-defined. For all p; € P, p; € P; and
b; € B;, we have

Q(aji)(&)@)Bi bi - pi) = @i 0 Tij @B, 04i(bipi)
= 75(0i) ®B; Bji(bi)oji(pi) = 75(0i)Bji(bi) ®p; 05i(pi)
= 75 (pibi) ®p; 0ji(pi) = G(a;i)(pibi @B, pi)-
If 1 < j <k, then we have
(G(axj) o G(a;i)) (@i @B, ti - pi) = $i © Tji © Tjis @B, (0kj © 05:)(Pi)
= i oTik @B, 0ki(pi) = G(ar:) (@i @B, Pi)-
O
Let P be a module satisfying the equivalent conditions of Lemma Suppose
that P; is finitely generated and projective as right A-module for all ¢ € I. Let

E; =3z ®4 2z} be a finite dual basis of P, € M4; we omitted the summation

index. Ej; is the unique element of P; ® 4 P satisfying the formulas

(22) pi = Zzizf(]?i) ;i = ZZfSD(Zi)a
for all p; € P; and ¢; € P*. With these notation, we have the following lemma.
Lemma 4.10. (i) For all b; € B;,
(23) D bizi@az =) z®azb,
(i1) If i < j, then
(24) E;, = ZTij(Zj)@A z; 00 = €2 ®A Zj|p,-

Proof. (i). This follows from the fact that P; is a (B;, A)-bimodule.
(#4). We show that the right hand side of @4)) satisfies ([22)). For all p; € P;, we
have

> 7 (z) (2 0 o) (i) = Y T (ijj (Uji(pi))) = 7i5(0ji(pi)) = pi-
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For the remaining part of this paper, we will concentrate on modules that are
locally projective in the sense of Anh and Marki 2] (strongly locally projective
in the terminology of [I7]). We will need a more restrictive characterisation than
Lemma Recall first the definition of a morphism n : B — B’ of rings with
(idempotent) local units. This is a ringmorphism 7 satisfying the property that for
every finite subset F’ C B’, we can find an (idempotent) local unit e; € B such
that n(e;) is an (idempotent) local unit for all elements of F’.

Lemma 4.11. The following statements are equivalent

(i) P satisfies the equivalent condtions of Lemma I3, in addition P; is finitely
generated and projective as right A-module for all i € I and colim P* =
(PT,7T).

(ii)) S = P®a P is a ring with idempotent local units, P is a firm left S-module,
Pt is a firm right S-module and there exists a unique morphism of rings with
idempotent local units n: B — P ®4 P such that

(25) n(Bi(bs) Zaz (bizi) ®a 2 o1 = Zai(zi) ®4 zib; 0Ty,

foralliel, b; € B;.

(iii) P is strongly P'-locally projective as right A-module and PT is strongly P-
locally projective as left A-module. P is a firm left B-module and P is a firm
right B-module.

Proof. (i) = (#i) By Lemma EEH P*° is a split direct system and obviously P} is
finitely generated an projective as left A-module for every i € I. The first part of
statement (i¢) follows now from [I'd, Corollary 3.6]. The second equality in (23 is
an immediate consequence of [Z3)). Let us show that 7 is well-defined. Take b € B,
and assume that b = §;(b;) = B;(b;), for some i,j € I, b; € B;, b; € B;. Take
k> 1,7, and let by = Bri(b;) = Br;j(b;). We compute

Zaz‘(b‘zi) ®a 2 © Ti@ > (0% © 0ki) (biTir (21)) @4 2}; 0 Oki © Tag. © T
Zok(ﬁm )zk) @4 (25Bri(1B,)) o Tk
@ S o (B (18, Bra (b)) @4 21 0 7
= Zak(ﬂkl (1p,bi)zk) ®a 2} 0 Tk
= Zak(bkzk ®A 2}, O Th-
In a similar way, we prove that
Zaj(bjzj) ®azjoTj= ZUk(kak) ®A 2} O Tk,

and it follows that the right hand side of (3] is independent of the choice of i.
Next we prove that 7 is a ringmorphism. Take two elements b, b’ € B and choose i
big enough such that b = §;(b;) and b’ = 3;(b}). Let us denote E; = 2z, ®4 2] =
D Z Q4%

n(o)n(")

Zai(bizi)z;‘ oT; 0 O'l(b;,gl) XA 2: oT;
= ) oi(bibjz) @a 7 o = n(bd)
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Finally, the idempotent local units of P ® 4 PT are of the form 3" 0;(z;) ®a4 2} o 7i,
these are exactly given by n(1p,), so 7 is a morphism of rings with idempotent local
units.

(ii) = (iii). By [I7, Corollary 3.6] we only have to prove that P and P' are firm
B-modules under the action induced by the morphism 7. This is a consequence of
the fact that n is a morphism of rings with enough idempotents. Take p € P, then
we know there exists an idempotent e € B such that 7(e) € P®4 P is a local unit
for p. Thus e-p =n(e)p = p and P is a firm B-module. Analougously one proves
Pt is a firm right B-module.

(791) = (). Follows from [I'd, Corollary 3.6] and Lemma E3 O

For every i € I, consider bimodule maps
coevp,; : Bz — R XA Pi*7 coev p, (bz) = blEl = Elbl
evp; : Pi* ®B; P, evp, (@i ®B, pi) = @i(pi)
Then (B;, A, P;, P}, coevp,,evp,) is a comatrix coring context, so we have a coma-
trix coring (G(4), A;, €;) with
Ai(pi ®B, pi) = vi @B, E; @p, pi and €;(p; @B, pi) = vi(pi)-
G(i) is a finite comatrix coring, as introduced in [I0].

Proposition 4.12. Suppose the equivalent conditions of Lemma [{_1]1] hold, and
consider the directed system G from Proposition .9 Then (G, A, €) is a coalgebra
in Func(Z, aMy).

Proof. Tt suffices to show that A and ¢ are natural transformations, or, equivalently,
that G(a;;) is a morphism of corings, for every ¢ < j, or

(G(aji) ®a G(aji)) o A; = AjoGlaji) ; & =¢€j0Glai).
For all ¢; € P and p; € P;, we compute

1
(A 0 G(aji) (i @B, pi) = Aj(wi o 7ij @; 0ji(pi))
= @i 0 Tij ®B; B @B, 0ji(pi)
= Z(pl O Tjj © 044 O Tiyj ®Bj Zj XA Z; ®Bj (Uji O Tij © Uﬂ)(pz)
(m:ﬂ:ﬂ)

(22 .
= Z% 0Tij ®B; Uji(Zi) XA 2; ©Tij OB, Uji(pi)

= Y Glap)(pi @5, z) ©a Glag)(z @, pi)
= ((G(ai) ®a G(aji)) o Ai) (pi @B, pi)

> @0y @, (055 0 Tiy)(25) ®a 2 © 043 0 Tiy @, 0i(pi)

and
£j(Glaji)(pi @B, pi)) = (@i 0 Tij 0 05i)(pi) = @i(pi) = i(pi @B, Pi)-
O

Proposition 4.13. Under the same conditions as Proposition .14 colinG =
(Pt ®p P, g), with

gi: G(i)=P; ®p, P, —» PT®p P, gi(p; @5, pi) = @i o7 @p 0i(p;).
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Proof. We first show that g; is well-defined. For all b; € B;, we have

91'(@(%‘1)@ pi) = @ibi o1 @B 0i(pi) = (i 0 Ti 0 0;)bj o T @ 04(pi)
= (piom)Bi(bi) ®B 0i(pi) = (pi o i) ®B Bi(bi)oi(pi)
o (pi o) @p 0i(biTi(0ipi)) = (pi 0 7)) @p 0i(bpi) = gi(pi @ bipi).
Let us now prove that (PT ®p P, g) is a cocone on G. Indeed, if i < j, then

(95 0 G(a;i))(pi ®B, pi) = g (i © Tij @B, 05i(pi))
= ;o707 ®p0;(05i(pi)) = i o7 @B 0i(pi) = gi(i @B, Pi)-
Let (M, m) be another cocone on G. Then m; : Pf®p, P, = M and m;oG(aj;) =
m; if j > i. We define f: P ® P — M as follows. For ¢ € P! and p € P, we can
find i € I, ¢; € P and p; € P, such that p = 0;(p;) and ¢ = ¢; o 7;; we then define
fle®@p) =mi(pi ®r, pi)-
We have to show that f is well-defined. If £ > ¢, then we have that ¢ = @y o 7%
and p = ok (pg) with ¢, = @; o 75, and pr = ok;(p;). We then find that
mi(or @B, Pr) = mi(pi © Tik @B, Tki(Pi))
= (my o G(ari))(pi @B, pi) = mi(pi @B, pi)-

We will now show that f induces a map f: PT®p P — M. To this end, we need
to prove that

fleb®@p) = fle @ bp),
forall p € P, pc Pandbe B. Wecanfindi € I, b; € B;, p € P* and p; € B

2

such that b = B;(b;), p = 0;(p;) and ¢ = ¢; o 7;. Then we compute that

f(pb@p) = f((pioT:)Bi(bi) ® 0i(pi))
F(((pi 0 Ti 0 04)bi) o7 @ 0i(pi) = f(pibi o T3 @ 0i(pi))
= m(pibi @B, pi) = mi(pi @B, bips)
) flpior @0oi(bipi)) = f(pi o ®0ai(biti(oi(pi))))

= flpiomi®Bi(bi)oi(ri(oi(pi)))) = f(p @ bp).

Finally,
f(9i(pi ®B, pi)) = f(pi o @B 0i(pi)) = mi(pi @B, pi).
O

The following result now follows immediately from Propositions 2T} and

Corollary 4.14. If the equivalent conditions of Lemma 1] hold, G = PT®p P is
an A-coring, with comultiplication and counit given by the following formulas, for
allvel, p; € PF and p; € P;:

Api ot ®@p 0i(pi)) = Z A(pioTi ®@p 0i(2) ®a 27 0T @p 04(pi)),
e(piomi ®@p 0i(pi) = i(pi)-
As before, E; =3 z; @4 2 is the finite dual basis of P, € My.
We will now show that P! ®p P can be constructed starting from a Goémez-

Vercruysse comatrix coring context, as described in Section I We already know
that P and P' are firm bimodules.
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Proposition 4.15. If the equivalent conditions of Lemma-I] hold, (B, A, P, PT,n, ¢)
is a comatriz coring context, where € : PT®p P — A is the restriction of the eval-
uation map P* @p P — A.

Proof. We have to show that (@) holds. Take b = 3;(b;) € B, p = 0;(p;) € P and
¢ =;or; € Pt. Then

be(bT @ap) =Y oi(bizi)(z o i) (0i(pi))
= ZUZ(b 2z (pi)) = oi(bipi) = Bi(bi)oi(pi) = bp,

and

( (90®Ab ZSD g; Zz Z b oTz ZSDUZ Zz sz(p))
Z (i (22 (bipi)) = (03 (bipi)) = so(bp) = (#b)(p),
hence (¢ ®4 b‘)b+ = ©b. O

Example 4.16. Let B be a k-algebra with orthogonal idempotent local units and
let {e; | i € I} be a complete set of idempotents. For all 4,j € I, let B;; = e; Be;.
Then B = P, jo; Bij, and a firm left B-module P can then be written as P =
D,cr i, with P; = e; P a left B; = Bj;-module. For each i € I, we take a (B;, A)-
bimodule P; which is finitely generated and projective as a right A-module, and we
put P = @, ; P;. It is not hard to see that PT = @, ; P, and we have a comatrix
coring Pt @p P. This way we recover the comatrix corings that were considered
first in [Tl Proposition 5.2].

Example 4.17. As a special case of the previous example, consider now the case
where the orthogonal idempotents are central in B, then the situation simplifies to
B = ®;c1B;, where B; = Be,;.

The functor K : Mp — MY can be described as follows. Take M € Mg, and, as
in Lemma B3 let M; = Me;. We have a split direct system F : Z — M?%:

F(i) = M; ®p, P ; F(aji) = (15 ® 0ji,Vij @ Tij).
Then K (M) = colim F, with the obvious coaction.

In view of Theorem [[3 it is important to know when P € g M is (faithfully) flat.
We have the following results.

Proposition 4.18. Let B be a k-algebra with idempotent local units, and take
P e pM. If for every i € I, there exists j > i such that P; € g, M 'is flat, then
P e pM is flat.

Proof. Let f: N’ — N be an injective map in Mp, and = € ker(f®p P). N'®p P
is the colimit of the N/® g, P;, so « can be represented by Y n,.®p,p, with n]. € N/,
pr € P. Y, f(n)) ®p, pr represents zero in N ®p P, so, replacing i by a bigger
index, we can assume that ) f(n,.) ®p, pr =0 € N; ®p, P;. Replace i by a bigger
index such that P; € g, M is flat. Then Y n! ®p, pr = 0in N/ ®p, P;, and this
implies that x = 0. (Il

Proposition 4.19. Let B be a k-algebra with idempotent local units, and assume
that P € g M is (faithfully) flat. If i € I is such that e; is central in B, then P; is
(faithfully) flat as a left B;-module.
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Proof. Take N € Mp,. We have v; : B — B;, making N € Mp via restriction of
scalars. Then we claim that we have an isomorphism of k-modules

(26) N®@pP=N®p, P,
Indeed, the map
f: N®p, P~ N®pP, f(n®p, p;) =nQpp;
has an inverse g given by
9(n®p p) =n®p, ep.
g is well-defined since
g(nb®p) = g(ne;b®p) = g(ne;be; @ p) = ne;be; Op, e;p = n@p, e;be;p = g(n®bp).
Assume that P € g M is faithfully flat. A sequence
0N —-N-—=N'"=0
is exact in M p, if and only if
0N ®@gP—-NgP—+N'®gP—0
is exact in My, and, by (20), this is equivalent to exactness of the sequence
0— N ®p, P, » N®p, P, » N"®p, P, = 0.

O
We remark that the condition that e; is central is fulfilled in the situation of Ex-
ample ET7 The condition that the e; are central is also needed in the proof of our
next result. We have seen that the comatrix coring is the colimit of the directed

system G discussed in Proposition EEQ If we work over an algebra with central
idempotent local units, then this system is split.

Proposition 4.20. Let B be a k-algebra with central idempotent local units and
suppose the equivalent conditions of Lemma[f-1]] hold, then the direct system G of
Proposition [{-9 splits. G* : Z — aM?%, with G*(aj;) = (gji, hij), where

hij(pj ®B; pj) = @j 0 0ji @B, Tij(Pj) = ©j|p, ®B; €Dy
for all p; € P and p; € P;.

Proof. Let us show that h;; is well-defined; all the rest is obvious. First we compute
for p; € Pf, b; € B; and p; € P; that

(03bi)(0jipi) = @;(bjpi) = w;(bjeipi) = pj(eibjeipi) = (05 0 0ji)(eibjeq)(pi),
where we used the fact that e; is central. Then we compute

hij(0jb; ® pj) = pjbj 0 0ji @b, eip; = (p; 0 0ji)(eibje;) ®p, €ip;
= ;004 B, eibjeieipj = ;004 Qp, eibjpj = hw((/)j X bjpj).
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5. FACTORIZING SPLIT DIRECT SYSTEMS
In this Section, we consider split direct systems P° : Z — M) ggp that factorize
through a k-linear category A: we assume that there exists a split direct system

M 2= A%, MO (i) = M, MP(aji) = (ki, vij)

and a functor w: A — M4 such that P® =wo M?, or

Py = w(M;), 0ji = w(pgi), 7ij = w(vi).
For every i € I, T; = End4(M;) is a k-algebra with unit. For ¢ < j, we have a
multiplicative map

pji+ Ty = Ty, pji(ti) = pjs oti ovyj.

This defines a direct system T : Z — Fi, T, = T;, T(a;;) = pji. If t, € T; =
End 4(M;), then w(t;) € Enda(F;). Hence P; is a (T;, A)-bimodule, with left T;-
action given by

ti - pi = w(t:)(pi)-
We claim that ([[[) holds. Indeed, for all ¢ < j, t; € T; and p; € P;, we have

pji(ti) - pj = (nji o ti o vij) - pj = w(pji o ti o vij)(p;)
= (0ji ow(t:) o 7i5)(pj) = 05i(ti - 735 (p;))-
Applying the results of SectionHl we obtain a comatrix coring. We will now assume
that colim M = (M, p) exists, and that w preserves colimits. We will give an explicit
description of colim T, and provide some alternative descriptions of the comatrix
coring. Using Proposition B, we obtain morphisms v; : M — M;. Let o; = w(u;),
7; = w(v;). We consider the k-algebra T'= End 4(M). For every i € I, e; = p; o y;
is an idempotent in 7. We also have

(27) e; o pi = p; and v; 0 e; = v,
and, for 7 < j:
(28) ejoe; =€ 0e; =e;.

&D) is immediate; [8) can be seen as follows:

€5 0¢€; — €j O i OVi = €50 [Lj O Lj; OVj
= M5O Wi OVi = [ O V5 = €45
€; 0 €y — Hi OV © €5 = [hj OVj; OVjOE;

i OVij OVj = [45 O Vi = €4.
Lemma 5.1. Leti € I andt € T. There exists t; € T; such that
t=piot;oy

if and only if
t=e;otoe;.
In this situation, t; is unique, and is given by the formula t; = v;otopu;; furthermore,

for every j >, t = pjot;ov;, with

(29) tj = Mji © ti O Vij.
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Proof. We leave the first part as an easy exercise to the reader. For j > i, we
compute
Wy 0 pji 0t o ovy = ot ovy =t

O
Proposition 5.2. TT={t€T |3 €l: t=e¢;0toe;} is a subalgebra of T with
idempotent local units. In particular, T' is a firm k-algebra. colimT = (T, p),
with

pi: Ty =TT, pi(t;) = piot; o
Proof. 1t is clear that the e; form a set of idempotent local units. It follows from
Lemma Edl that T; = e;Te;. (T, p) is a cocone on T since, for all j > i and t; € Tj,
we have
(pj o pji)(ti) = pj o pjiotiovijovy = p; oty ovy = pilty).

Assume that (M, m) is another cocone on 7. This means that m; : T; — M and
mjopj; =m; if ¢ < j. The map f: TV — M, f(uiotiov;) = my(t;), is well-defined:
assume that ¢t = p; 0t; 0o, = pjot;ovj. Take k > ¢,j. By @D), t = pg oty o v,
with ¢, = pg; ot; o vy = pri(ts), and it follows that my(tx) = mg(pri(t:)) = ma(t;).
In a similar way, we have that my(tx) = m;(¢;).
Finally, for every ¢ € I and t; € T;, we have that (f o p;)(¢;) = f(u; otiov;) =

It is easy to show that P; = e; - P, so that the comatrix coring Pt @+ P is a
special case of the comatrix coring studied in Section Bl In general, P is a proper
submodule of P* and T is a proper subalgebra of T. But we have the following
remarkable result.

Proposition 5.3. The map
k: P'@p P— P*®r P, k(p @i p) = ¢ @1 p
is an isomorphism of A-bimodules.

Proof. We first define map A : P*® P — PT @+ P as follows: take ¢ € P* and
p € P. There exists i € I such that p = 0;(p;), and we define

Mo ®p) =poo;oT i p.

The right hand side does not depend on the choice of i: assume that j € I is such
that p = o;(p;) for some p; € P;, and take k > 4,j. Then we have that p = o (px)
with pr = o (p;). We compute that

(30) Ok OTROC;0OT; =0k OTkpOCTkROCTk OT; =0 OO0k OT; = 0; 0T,
hence
(pooioT) @yt p=(pooroTL00;0T;) @t p
= (poorom) @7t (0507)(p) = (¢ ook 0Tk) Ot P,
and, in a similar way,
(poojor)®ptp=(pookoTk) @i p.

Our next aim is to show that

(31) Mp®@t-p)= Ay top),
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for all p € P*,t € T, and p € P. There exists ¢ € I such that
p=0i(7i(p)) = oi(pi) and t - p = (03 0 7)(t - p) = (03 © 7 o w(t) © 03) (ps)-
For all £ > i, we then also have that
(32) p=o(pr) and t - p = (o o 7, o w(t) 0 ok ) (P)-
For all p € P, we have
mi(p) = ZZzZ:(Tz(p)),

hence

(w(t)ooiom)(p) =Y _(w(t) 0 0)(2:)2; (7:(p)).
There exists k € I such that all (w(t) o 0;)(2;) € ok(Px), or (w(t) o g;)(zi) =
(ok o Tk ow(t) 0 0;)(2;). Then we find for all p € P that

(w(t)ooiom)(p) = Y _(w(t) 0 03)(2:) 2 (7:(p))

= Y (oromow(t) 00i)(2)2 (1:(p)) = (0% 0 T 0 w(t) 0 33 0 ;) (p).
We can take k > 4. Using [B0), we then find
(33) w(t)oogjom=0roTow(t)oo; 0T =0 0Tk ow(t) ooy 0T, 00T; 0T;.
We now compute
At ®Eﬂ): pow(t)oo;or; @i oi(pi)
= @ooroTrow(t)ooroTE 0007 Qpt 0i(pi)
p ooy oTow(t) ooy o, @t (007 00:)(pi)
= @oogoTEow(t) ook otk Ot oi(ps)
= poo,oTko0L0TRow(t)o ok ok Apt ok(Pk)
= @ooroTE Qpt (0 0Tk ow(t) oo 0Tk 0 ok ) (Pr)
@ Yooy 0T, ri tp = Al ® tp),
proving [BI). We conclude that A induces a well-defined map A : P* @p P —
P @zt P. Let us finally show that \ is the inverse of . Take ¢ € P and p € P.
Then there exists ¢ € I such that ¢ = ¢; o7; and p = o;(p;) for some p; € P,
;i € P*. Then
A(k(p @71 p)) = M @1 p) = pooioT @t p = ¢ Ort (050 7)(p) = ¢ @7t p-
Take ¢ € P*, and p = 0;(p;) € P. Then

K(A(p®rp)) = K(podioTi®@pt p) =po0; 0T @ p = 9t (0;07;)(p) = ¢ AT P.
0

We will now describe the infinite comatrix coring PT ®+ P as the colimit of a richer
system. On I x I, we define a preorder as follows.

o (i,i) < (j,j) ifi<jin L

o (i,7) < (i,1), for all 4, j € I;

o (i,7) < (j,4), for all4,j € I.
This preorder induces a partial order < on I x I. We have a corresponding category
Y. If i < jin I, then the corresponding morphism (i,%) — (4, 7) in ) is denoted by
aj;. The morphism (%, j) — (4,4) is denoted by l;;, and the morphism (3, j) — (4, 7)
by ;. Note that we have a functor £ : Z — Y, £(1) = (4,1), &(a;;) = aji.
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Proposition 5.4. We have a functor F: Y — aM 4 such that Fo& =G.
Proof. For i,j € I, Tj; = Hom 4 (M;, M;) is a (T}, T;)-bimodule, and we have
F(i,j) = P} @1, Tji @1, b;.
We now define F' on the morphisms. Let F(aj;;) = G(a;;); F(li;) and F(r;;) are
given by
F(lij) : P; @1, Tji @1, Pi = P} @1, Pi, F(lij)(@j @1; tji @1, pi) = 90j 0 tji @1, i
E(rij) : P @1, Tji @1, Pi — P; @1, Py, F(rij)(v; @1, tji @1, Di) = 95 @71 t3i (i)
We have to prove that F(aj;) o F(l;j) = E(ri;) if i < j. We compute easily that
F(aji) o E(lij)(¢; ®1; tji @1, pi) = @5 0 tji o Blaji) @, alagi)(pi)
©; @1, (tji o Blagi) o a(ayi))(pi)
= ;O ti(pi) = E(rij)(p; @1 tji 1, Pi)-
In a similar way, we prove that F(a;;) o F(r;j) = F(l;;) if i < j. All other verifica-
tions are easy. (I
Proposition 5.5. colim F = (P' @+ P, f) with
fij = gi o E(lij) = gj 0 G(r45),
foralli,jel.
Proof. 1t is easy to show that (PT @+ P, f) is a cocone on F. If (M, m) is another
cocone on F, then we have a cocone (M,n) on G, with n; = my;,;)- We then have

an A-bimodule map f : P'®qs+ P, and it is straightforward to show that it satisfies
the necessary requirements. (I

6. SPLIT DIRECT SYSTEMS OF (GALOIS COMODULES

Let A be a k-algebra (with unit), and C an A-coring. By [6, 18.12] the category
MCE contains direct sums and cokernels. Consequently M€ contains colimits, so in
particular directed limits. Moreover, the forgetful functor w : M¢ — My has a
right adjoint, so it preserves colimits (see for example [4, Sec. V.5]). Hence we
can apply the results of Section Hlin the situation where A4 = MC.

Now we consider a split direct system M* : Z — ./\/ltc»gp, M*(i) = M; and M(aj;;) =
(wji,vij). Here Mfgp denotes the category of right C-comodules that are finitely
generated and projective as right A-module. We can compute colim M = (M, p) in
ME, and from Proposition Bl we know that there exist left inverses v; of the ;.
As in Section B, let T; = End®(M;), and (T, t) = colim T. We have the associated
comatrix coring G = M @+ M. For every i € I, we have a morphism of corings

can; : G(i) = M} @1, M; — C, can;(p; @1, mi) = @i(mgjo))mip)-
Lemma 6.1. (C,can) is a cocone on G: Z — aMay
Proof. For ¢ < jin I, m; € M; and ¢; € M}, we calculate that
Npi @1, mi) = can; (i © vij @1, p1i(mi))
(spi 0 wig) (e (ma) o)) i (mea) 1y = @i (7 (i (mago) ) )mapy

= pi(my))mip) = can;(w; T, M),

where we used the fact that 1, is right C-colinear. O

(canj o G(aji
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Proposition 6.2. There ezists a unique morphism of corings
can: G=M'@pn M —C

such that

(34) can(p; o v; @7t i(ms)) = @i(Mifo)) M)

foralli eI, m; € M; and p; € M.

Proof. We have seen in Proposition that colimG = (G,g). It follows from
Lemma [ETland the universal property of colimits that there exists a unique (A, A)-
bimodule map can : G — C satisfying B4). The proof is finished if we can show
that can is a map of corings. As before, let E; = > z; ® 4 27 be a finite dual basis
of M as a right A-module. For all m; € M;, we have that > z;25(m;) = m;. Since
p; is right A-linear, we have

Z Zij0] @A Zip) 2 (M) = Myjo) @4 My,
hence, for all p; € M;:
(35) Z @i(Zifo)) zi1) 2 (Ma) = @i(mijo))map)-
Then we compute
(can @4 can)A(p; o v; @i pi(mi)) = > @i(2i0)) 21 @4 27 (Pifo) )ity
= Z wi(zi0))zi1)21 (Pijo) @4 Pify) @% (Pijo))Pij1) @4 Pif2)
A(pi (pz‘[o] )pi[l]) = A(can(p; o v; Q7+ pi(m;))).

Finally

e(can(p; o v; @7t pi(m;))) = E(Sﬂi(mz‘[o])mi[l]) = %(mi[o])g(mi[l])
= wi(myoe(min)) = gi(m:) = e(pi o vi @pt pi(mi)).
O

We call M* a split direct system of Galois C-comodules if can : G — D is an
isomorphism of corings. In this situation, we have that the categories MY and
MCE are isomorphic. From Theorem [[Z3, we then immediately obtain the following
result:

Theorem 6.3. Let C be an A-coring, and M?® a split direct system of Galois C-
comodules. Let colim M = (M, ), colimEnd®(M) = (Tt,p) and G = Mt @p+ M
the associated comatriz coring. If M is faithfully flat as a left TT-module, then the
categories Mri and M are equivalent.
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