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THE SPLITTING PROBLEM FOR COALGEBRAS: A DIRECT

APPROACH

MIODRAG CRISTIAN IOVANOV

Abstract. In this note we give a different and direct short proof to a previous result

of Nastasescu and Torrecillas in [NT] stating that if the rational part of any right C
∗

module M is a direct sumand in M then C must be finite dimensional (the splitting

problem for coalgebras).

Introduction

Let C be a coalgebra over a field k. The category of left (resp. right) C-comodules is a full

subcategory of the category of right (resp. left) modules over the dual algebra. In [NT] it

was shown that the rational part of every right C∗-module M is a direct summand in M if

and only if C is finite dimensional. In this case, the category of rational right C∗-modules

is equal to the category of right C∗-modules, and also to the Dickson subcategory of MC .

The aim of this note is to give a new and elementary proof of this result, based on general

results on modules and comodules, and an old result of Levitzki, stating that a nil ideal

in a right noetherian ring is nilpotent. The proof of Naăsăsescu and Torrecillas from [NT]

involve several techniques of general category theory (such as localization), some facts on

linearly compact modules and is based on general nontrivial and profound results of Teply

regarding the general splitting problem (see [T1, T3]). We first prove that if C has the

splitting property, that is, the rational part of every right C∗.-module is a direct summand,

then C has only a finite number of isomorphism types of simple (left or right) comodules.

We then observe that the injective envelope of every right comodule contains only finite

dimensional proper subcomodules. This immediately implies that C is right noetherian.

Then, using a quite common old idea from Abelian group theory we use the hypothesis for

a direct product of modules to obtain that every element of J, the Jacobson radical of C,

is nilpotent. Finaly, using a well known result in noncommutative algebra due to Levitzki,

we conclude that J is nilpotent wich combined with the above mentioned key observation

immediately yields that C is finite dimensional

1. Splitting Problem

For an f ∈ C∗, put f : C → C, f(x) = f(x1)x2; then f is a morphism of right C comodules.

As a key technique, we make use of the algebra isomorphism C∗ ≃ Hom(CC , CC) given by

f 7→ f (with inverse α 7→ ε ◦α), where Hom(CC , CC) is a ring with opposite composition.
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Also if T is a simple right C subcomodule of C, E(T ) ⊆ C an injective envelope of T and

C = E(T )⊕X as right C comodules. As C∗ ≃ E(T )∗ ⊕X∗, we identify the any element

f of E(T )∗ with the one of C∗ equal to f on E(T ) and 0 on Λ.

Lemma 1.1. If T is a simple right comodule and E(T ) is the an injective envelope of T ,

then E(T ) contains only finite dimensional proper subcomodules.

Proof. Let K ( E(T ) be an infinite dimensional subcomodule. Then there is a subco-

module K ( F ⊂ E(T ) such that F/K is finite dimensional. We have an exact sequence

of right C∗ modules:

0 → (F/K)∗ → F ∗ → K∗ → 0

As F/K is a finite dimensional rational left C∗ module, (L/K)∗ is rational right module;

thus A = RatF ∗ 6= 0. Denote M = T⊥ ⊂ F ∗. Take u /∈ M ; this corresponds to some

v ∈ Hom(F,C) such that v |T 6= 0. Then v is injective, because T is an essential submodule

of F ⊆ E(T ) and if Ker(v) 6= 0 then Ker(v) ∩ T 6= 0 so Ker(v) ⊇ T , which contradicts

v |T 6= 0. As C is an injective right C comodule and v is injective we have a commutative

diagram:

C∗ // F ∗ // 0

HomC(C,C)
HomC(v,C)

// HomC(F,C) // 0

we see that HomC(v, c) is generated by v as HomC(C,C) ≃ C∗ is generated by 1C , following

that F ∗ is generated by any u /∈ M . Now if F ∗ = A⊕B, we see that A is finitely generated

as F ∗ is generated so it is finite dimensional, thus A 6= F ∗ by the initial assumption. But

now if a ∈ A \ M , a generates F ∗ so A = F ∗, and therefore A ⊆ M . Also B 6= F ∗ as

A 6= 0 so by the same argument B ⊂ M , and therefore F ∗ = A+B ⊆ M , a contradiction

(ε | F /∈ M). �

Proposition 1.2. Let C be a coalgebra such that the rational part of every finitely gener-

ated left C∗ module splits off. Then thare are only a finite number of isomorphism types

of simple right C comodules, equivalently, C0 is finite dimensional.

Proof. Let (Si)i∈I be the set of representatives for the simple right comodules and

Σ =
⊕
i∈I

Si. Then there is an injection Σ →֒ C and we can consider E(Si) an injective

envelope of Si contained in C. Then the sum
∑
i∈I

E(Si) is direct and there is X < C

such that
⊕
i∈I

E(Si) ⊕X = C as right C comodules and left C∗-modules. We have C∗ =
∏
i∈I

E(Si)
∗ × X∗, such that if c∗ ∈ E(Si)

∗ and xj ∈ E(Sj), then ∆(xj) = xj1 ⊗ xj2 ∈

E(Sj) ⊗ C so c∗ · xj = c∗(xj2)xj1 = 0 if j 6= i, as c∗|E(Sj) = 0, and the same holds if

c∗ ∈ X∗. Then if c∗ = ((c∗i )i∈I , c
∗
X), and cj ∈ E(Sj) then c∗ · cj = c∗j · cj (c∗j equals c∗ on

E(Sj) and 0 otherwise).

Now consider M =
∏
i∈I

Si and take x = (xi)i∈I ∈ M , xi 6= 0. If y = (yi)i∈I ∈ M then
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for each i we have Si = C∗ · xi as xi 6= 0 and Si is simple, so there is c∗i ∈ C∗ such

that c∗i · xi = yi. By the previous considerations, we may assume that c∗i ∈ E(Si)
∗ (that

is, it equals zero on all the components of the direct sum decomposition of C except

E(Si)) and then there is c∗ ∈ C∗ with c∗|E(Si) = c∗i |E(Si). Then one can easily see that

c∗ ·xi = c∗i ·xi = yi, thus we may extend this to c∗·x = y showing that actualy M = C∗ ·x.

As M is finitely generated, its rational part must split and must be finitely generated (as

a direct summand in a finitely generated module), so it must be finite dimensional. But⊕
i∈I

Si ⊆ (
∏
i∈I

Si), and this shows that I must be finite. As C is quasifinite, this is equivalent

to the fact that C0 is finite dimensional. �

Corollary 1.3. C∗ is a right noetherian ring.

Proof.Let T be a right simple comodule, E(T ) ⊆ C an injective envelope of T and

C = E(T ) ⊕X as right C comodules. If 0 6= I < E(T )∗ a right C∗-submodule, then for

0 6= f ∈ I put K = Kerf . We have K⊥ = {g ∈ E(T )∗ | g|K = 0} = f · C∗ ⊆ I. Indeed,

if g is 0 on K, then K ⊆ Kerg as K is a right C subcomodule of E(T ) and therefore it

factors through f : g = αf = hf = f · h for h = ε ◦ α, so g = f · h ∈ f · C∗. As K is

finite dimensional by Lemma 1.1, K⊥ = f · C∗ has finite codimension in E(T )∗, showing

that I ⊇ f · C∗ has finite codimension, which obviously shows that E(T )∗ is Noetherian.

If C0 =
⊕
i∈F

Ti with Ti simple right comodules then F is finite by Proposition 1.2, so

C∗ =
⊕
i∈F

E(Ti)
∗ is Noetherian as each E(Ti)

∗ are. �

Put R = C∗. Note that J = C⊥
0 = {f | f |C0

= 0} is the Jacobson radical of R and⋂
n∈N

Jn = 0. Also if M is a finite dimensional right R-module, we have JnM = 0 for some

n, because the descending chain of submodules (MJn)n must stationate and therefore

MJn = MJn+1MJn · J implies MJn = 0 by Nakayama lemma.

Proposition 1.4. Any element f ∈ J is nilpotent.

Proof. As C is a finite direct sum of injective envelopes of simple right comodules E(T )’s,

it is enough to show that fn
|E(T ) = 0 for some n for each simple right subcomodule of C

and injective envelope E(T ) ⊆ C. Assume the contrary for some fixed data T , E(T ). Let

M =
∏

n≥1

E(T )∗

K⊥
n

where Kn = Kerfn 6= E(T ) and K⊥
n = {g ∈ E(T )∗ | g|Kn

= 0}. Note that Kn ⊆ Kn+1

Put λ = (f [n/2]
|E(T )) where [x] is the greatest integer less or equal to x. Note that if u

equals f on E(T ) and 0 on λ then fn
|E(T ) regarded as an element of C∗ equals ufn−1 (recall

that we identify E(T )∗ as a direct summand of C∗).

λ = (u, uf, uf, . . . , ufn−1, ufn−1, 0, . . . ) + (0, 0, . . . , 0, ufn, ufn, ufn+1, . . . ) = rn + µn · fn
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with rn = (u, uf, uf, . . . , ufn−1, ufn−1, 0, . . . , 0 . . . ) (the morphisms are always thought

restrcted to E(T )). But then rn ∈
∏
p≤n

E(T )∗/K⊥
p × 0 which is a rational left C comodule

because E(T )∗/K⊥
p ≃ K∗

p and Kp is finite dimensional. Write M = RatM ⊕Λ as right R

modules and µn = qn+αn with qn ∈ RatM and αn ∈ Λ. Then if λ = r+µ with r ∈ RatM

and µ ∈ Λ we have r+µ = rn+µn ·f
n = (rn+qn ·f

n)+αn ·f
n wich shows that µ = µn ·f

n.

Then if µ = (lp)p≥1 and µn = (µn,p)p≥1 we get that lp = µn,p · f
n ∈ E(T )∗/K⊥

p · Jp for

all p and this shows that lp = 0 by the previous remark so µ = 0. Therefore λ ∈ RatM ,

so λ · R is finite dimensional and again we get λ · RJn = 0 for some n. Hence we get

f [p/2]+n
|Kp

= 0, ∀p, equivalently f
[p/2]+n

= 0 on Kp (because Kp is a right comodule).

For p = 2n + 1 we therefore obtain K2n+1 ⊆ K2n so Km = Km+1 for m = 2n. Then

if I = Im(f
m
, I 6= 0 by the assumption and there is a simle subcomodule T ′, T ′ ⊆ I;

then f |T ′ = 0 (because f ∈ J = C⊥
0 ). Take 0 6= y ∈ T ′; then y = f

m
(x), x ∈ E(T )

and 0 = f(y) = f
m+1

(x) showing that x ∈ Km+1 = Km, therefore y = f
m
(x) = 0, a

contradiction. �

Theorem 1.5. If the rational part of every right C∗ module splits off, then C is finite

dimensional.

Proof. By Corollary 1.3 C∗ is Noetherian and by the previous Proposition every element

if J is nilpotent. Therefore by Leviski’s Theorem we have that J is nilpotent. Now

note that Cn is finite dimensional for all n. Indeed, denoting by sn(M) the n-th term

in the Loewy series of the comodule M , if C0 =
⊕
i∈F

Ti with Ti simple right comodules,

C =
⊕
i∈F

E(Ti) with E(Ti) injective envelopes of the Ti’s, then Cn =
⊕
i∈F

sn(E(Ti)) and

if Cn is finite dimensional, then sn+1(E(Ti)) is finite dimenional as otherwise there is a

decomposition sn+1(E(Ti))/sn(E(Ti)) = T ⊕K with simple T and infinite dimensional K

and therefore we would find an infinite dimensional subcomodule of E(Ti) corresponding

to K which is imposible. Therefore as Jn = 0 for some n and Jn has finite codimension

as Jn = C⊥
n and Cn is finite dimensional, we conclude that C has finite dimension. �
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[NT2] J. Gomez Torrecillas, C. Manu, C. Năstăsescu, Quasi-co-Frobenius coalgebras II, Comm. Algebra

Vol 31, No. 10, pp. 5169-5177, 2003.

[L] B.I.-P. Lin, Semiperfect coalgebras, J. Algebra 30 (1974), 559-601.

[Rot] J. Rotman, A characterization of fields among integral domains, An. Acad. Brasil Cienc. 32 (1960)

193-194.

[T1] M.L. Teply, The torsion submodule of a cyclic module splits off, Canad. J. Math. XXIV (1972) 450-

464.

[T2] M.L. Teply, A history of the progress on the singular splitting problem, Universidad de Murcia, De-
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