
ar
X

iv
:m

at
h/

06
06

73
8v

1 
 [

m
at

h.
R

A
] 

 2
8 

Ju
n 

20
06

COVERING COALGEBRAS AND DUAL NON-SINGULARITY

CHRISTIAN LOMP AND VIRGÍNIA RODRIGUES

Abstract. Localisation is an important technique in ring theory and yields
the construction of various rings of quotients. Colocalisation in comodule cat-
egories has been investigated by some authors where the colocalised coalgebra
turned out to be a suitable subcoalgebra. Rather then aiming at a subcoal-
gebra we look at possible coalgebra covers π : D → C that could play the
rôle of a dual quotient object. Codense covers will dualise dense (or rational)
extensions; a maximal codense cover construction for coalgebras with projec-
tive covers is proposed. We also look at a dual non-singularity concept for
modules which turns out to be the comodule-theoretic property that turns the
dual algebra of a coalgebra into a non-singular ring. As a corollary we deduce
that hereditary coalgebras and hence path coalgebras are non-singular in the
above sense. We also look at coprime coalgebras and Hopf algebras which are
non-singular as coalgebras.

1. Introduction

Embedding algebras into better ones where certain problems have solutions is
one of the major tools in ring theory. An analogous tool for coalgebras does not
always exists. Instead of embedding a coalgebra into a better behaved coalgebra
one could also try to find a suitable better behaved coalgebra with a projection
onto the first one - a covering coalgebra.

The maximal ring of quotients Qmax(A) of an algebra A is such an example
of a universal object that has good properties in particular when the algebra in
question is non-singular. Recall that an algebra A is called left non-singular if left
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annihilators of non-zero elements are never essential as left ideal. This conditions
is a kind of non-commutative torsion-freeness for A and Johnson’s theorem states
that A is left non-singular if and only if Qmax(A) is von Neumann regular, i.e.
the weak global dimension of Qmax(A) is zero.

Throughout the text we will assume that rings R are associative and have a
unit. Furthermore we shall write homomorphisms of modules opposite of scalars.
A submodule N of a left R-module M is called essential (small) if for all proper
non-zero L ⊂M : N∩L 6= 0 ( N+L 6=M). We denote a small submodule N ofM
by N ≪M . Given a moduleM we denote by σ[M ] the category of submodules of
factor modules of direct sums of copies ofM (see [19]). For any pair of modules X
and Y we denote the trace ofX in Y by Tr(X, Y ) =

∑
{Im(f) | f ∈ Hom(X, Y )}.

1.1. The maximal ring of quotients. Given a ring R, an overring S of R
is called a left ring of quotients if HomR−(S/R, S) = 0. The maximal left ring
of quotients Qmax(R) of R is any left ring of quotients such that for any left
ring of quotients S of R with embedding j : R →֒ S there exists a unique ring
homomorphism ϕ : S → Qmax(R) such that jϕ = ı where ı : R →֒ Qmax(R)
denotes the embedding:

R
�
� j

//
r�

ı

$$HHHHHHHHH S

ϕ{{vvvvvvvvv

Qmax(R)

The maximal left ring of quotients exists and can be constructed as follows:
Let E = E(R) be the injective hull of R as left R-module. Then

Qmax(R) := {x ∈ E | (x)f = 0∀f ∈ End(E) with (R)f = 0}.

By construction Qmax(R) is the submodule of E that satisfies Qmax(R)/R =
Re(E/R,E). Where Re(X, Y ) =

⋂
{Ke (f) | f : X → Y } denotes the reject of X

in Y .

1.2. Finite dimensional coalgebras. Let us examine the following example:
Fix a field k and consider the graph:

a
x // b

and the path k-coalgebra C associated to this graph which has basis {a, x, b}
such that a and b are group-like and ǫ(x) = 0 with

∆(x) = a⊗ x+ x⊗ b.

Can we find a coalgebra D and a projection π : D → C such that D has better
properties then C ? First note that C∗ is isomorphic to the path algebra of the
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given graph and hence

C∗ =

(
k k
0 k

)
.

The maximal ring of quotients of C∗ is the full 2×2-matrix ring D =M2(k) over
k. Dualizing the inclusion ı : C∗ → D we get a projection

D∗ → C∗∗ ≃ C

where D∗ is the 2× 2-matrix coalgebra.

1.3. Analogous to the example above, we can always choose D to be the dual
coalgebra of the maximal ring of quotient of a finite dimensional coalgebra in
order to obtain a suitable coalgebra cover, as the following theorem shows:

Theorem. Let C be a finite dimensional k-coalgebra, then D = (Qr
max(C

∗))∗ is a
finite dimensional coalgebra and there exists a surjective coalgebra homomorphims
π : D → C whose kernel is small as a right C-subcomodule of D.

Proof. Since C is finite dimensional, it is a left and right semiperfect coal-
gebra. Let P be a projective cover of C as right C-comodule with epimorphism
π : P → C. Since C is finitely generated as left C∗-module, P is also finitely
generated as left C∗-module and hence finite dimensional. Since P is a projective
right C-comodule, P ∗ is an injective right C∗-module (by [2, 9.5]). Moreover
as π∗ : C∗ → P ∗ is an essential embedding, P ∗ is isomorphic to the injective
hull E(C∗) of C∗ as right C∗-module. Since Qr

max(C
∗) ⊆ E(C∗), it is also finite

dimensional. Hence D = (Qr
max(C

∗))∗ is a finite dimensional coalgebra and the
transpose ı∗ : D ։ C of the algebra embedding ı : C∗ → Qr

max(C
∗) is a surjective

coalgebra homomorphism. Since ı is an essential monomorphism, π is a small
epimorphism. ⊔⊓

1.4. Let K be a field and Γ be a quiver, i.e. a directed graph with finitely
many vertices Γ0 and finitely many arrows Γ1 and without cycles. The path K-
coalgebra C associated to Γ is the vector space whose basis are all paths in Γ and
with comultiplication ∆(w) =

∑
uv=w u ⊗ v. For each vertex i ∈ Γ0 denote by

vi the unique path of length zero at vertex i. Note that C is finite dimensional
and C∗ is isomorphic to the path algebra associated to Γ. Since by [11, 13.25]
the right maximal ring of quotients of a right artinian right non-singular ring A
is isomorphic End(Soc (AA)), we only need to determine the right socle of C∗ to
describe the right maximal ring of quotients of C∗. Let A be the path algebra
associated to Γ. Denote by Γsink the set of terminal vertices i ∈ Γ0, i.e. those
vertices from where no arrow starts. Note that for any i ∈ Γsink : viA = viK is a
minimal right ideal of A. Moreover for any path p in A which ends at a terminal
vertex i, the cyclic right ideal pA is a minimal right ideal and isomorpic to viA
since both have the same maximal right ideal Mi generated by all paths except
vi. On the other hand let I be a minimal right ideal of A, then I = γA for some
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linear combination γ =
∑n

j=1 λjpj of distinct paths pj and non-zero coeficients
λj. Let i′ be the vertex where the path p1 ends and choose a path q from i′ to
some terminal vertex i. Then I = γqA, since I was minimal. Note that qMi = 0
implies that IMi = 0, i.e. the annihilator of I is the maximal right ideal Mi.
Hence I ≃ viA. Moreover γq can be written as a linear combination of paths
ending at i, i.e. γq =

∑
λjp

′
j where all paths p′j end at i. Hence I ⊆

⊕
p′jA. For

any terminal vertex i ∈ Γsink denote by Pi the set of paths ending at i and set
ni = |Pi|. Then we just showed that

Soc (AA) =
⊕

i∈Γsink

(
⊕

p∈Pi

pA

)
≃
⊕

i∈Γsink

(viA)
ni.

By [11] the maximal right ring of quotients of A is isomorphic to the endomor-
phism ring of Soc (AA):

Qr
max(A) ≃ End(Soc (AA)) ≃

∏

i∈Γsink

End((viA)
ni) ≃

∏

i∈Γsink

Mni
(K),

where Mn(K) denotes the ring of n× n-matrizes over K.
Going back to our path coalgebra we have now a projection of coalgebras of a

direct product of matrix coalgebra onto C, i.e.
∏

i∈Γsink

M c
ni
(K) ։ C.

HereM c
n(K) = (Mn(K))∗ denotes the n×n-matrix coalgebra with basis {Eij}1≤i,j≤n,

comultiplication

∆(Eij) =

n∑

l=1

Eil ⊗ Elj

and counit ǫ(Eij) = δi,j.

1.5. In case of an infinite dimensional path coalgebra, how can we obtain a
covering coalgebra like the matrix coalgebra in our example ? For instance for
the divided power coalgebra, that is the path coalgebra associated to the graph

.

x

��

We will see that there is no apropriate coalgebra cover in the sense defined
below.

2. A module-theoretic approach to covering coalgebras

A module extension X →֒ Y is called dense if Hom(Z/X, Y ) = 0 for all X ⊂
Z ⊂ Y . In [8] Findlay and Lambek proved that the maximal ring of quotient Q
of a ring R is the maximal dense extension of R in the category of R-modules.
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We will give a module theoretic approach in covering coalgebras using codense
covers of modules:

2.1. Codense covers of modules. A module Y is called a cover of X if there
exists an epimorphism π : Y ։ X . The cover Y is said to be small if Ke (π) ≪ Y
and a cover Y is called a codense cover of X if Ke (π) is a codense submodule of
Y , that is Hom(Y,Ke (π)/L) = 0 for all L ⊆ Ke (π). As a dualisation of dense
extensions, codense covers were introduced by Courter in [5] where they are called
co-rational extensions. Since the term rational module has a different meaning
in the coalgebraic setting, we prefer to refer to ’dense extensions’ and ’codense
covers’ instead. A non-trivial example of a codense cover is the projection Q ։

Q/Z, which is codense since Hom(Q,Z/nZ) = 0 for all n.

2.2. Some properties of codense covers can be easily checked:

Lemma. Let Z be a cover of X in σ[M ].

(1) If Z is a codense cover of X, then it is a small cover.
(2) If Z is a small cover of X and π : X ։ Y is a codense cover then

Hom(Z,Ke (π)) = 0.
(3) If Z is a projective cover of X in σ[M ] then a cover π : X ։ Y is codense

if and only if Hom(Z,Ke (π)) = 0.

Proof. (1) Let π : Z ։ X be a codense cover. Suppose Ke (π)+Y = Z, then
the canonical projection

Z → Z/Y ≃ Ke (π)/(Ke (π) ∩ Y )

is zero by hypothesis. Thus Z = Y and Ke (π) ≪ Z.

(2) Let p : Z → X be a small epimorphism and f ∈ Hom(Z,Ke (π)). Extending
f to an homomorphism

g : X = Z/Ke (p) → Ke (π)/(Ke (p))f,

mapping z + Ke (p) 7→ (z)f + (Ke (π))f , we have g = 0 since X is a codense
cover of Y . Thus (Ke (p))f = Im (f). But as (Ke (p))f ≪ Im (f), we must have
Im (f) = 0, i.e. f = 0.

(3) Since Z is projective cover of X there exists a small epimorphism p : Z ։

X . For any U ⊆ Ke (π) and f : X → Ke (π)/U we have pf : Z → Ke (π)/U .
Since Z is projective there exists g : Z → Ke (π) which is zero by hypothesis.
Hence pf = 0 and f = 0 as p is an epimorphism. ⊔⊓
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2.3. Dual to the definition of a maximal dense extension of a module, we define
a maximal codense cover as follows:

Definition 1. Let X, Y ∈ σ[M ]. A codense cover p : Y ։ X is called a maximal
codense cover in σ[M ] if for any codense cover π : Z ։ X there exists a unique
epimorphism ψ : Y → Z such that ψπ = p.

Z
π // // X

Y
ψ

__@@@@@@@

p
>> >>~~~~~~~

Note that our definition differs from Courter’s in [5].

2.4. As it was to expect, in case projective covers exists a dual construction like
Findlay and Lambek’s allows to construct a maximal codense cover for modules:

Theorem. Let X ∈ σ[M ] have a projective cover P in σ[M ]. Denote by π : P →

X the projection and T := Tr(P,Ke (π)). Then P̃ = P/T is a maximal codense

cover of X in σ[M ] with induced epimorphism π̃ : P̃ → X.

Proof. Note that Ke (π̃) = Ke (π)/T and as P is a projective cover of P̃ ,

Hom(P,Ke (π)/T ) = 0. By Lemma 2.2 π̃ : P̃ ։ X is a codense cover. Let
p : Z ։ X be any other codense cover of X in σ[M ]. By the projectivity of P
there exist ψ : P → Z such that ψp = π. As (T )ψp = (T )π = 0 we deduce

PHom(P,Ke (π))ψ = Tψ ⊆ Ke (p).

Since by Lemma 2.2 Hom(P,Ke (p)) = 0, (T )ψ = 0. Hence ψ lifts to a homo-

morphism ψ̃ : P̃ → Z with ψ̃p = π̃.

ψ̃ is unique because if there existed another map φ : P̃ → Z with φp = π̃, then
ψ− φ ∈ Hom(P,Ke (p)) = 0 by Lemma 2.2 (here we consider φ as a map from P
to Z). ⊔⊓

2.5. For a finite dimensional coalgebra C we saw in 1.3 that D = (Qr
max(C

∗))∗

is a small cover of C. Actually as it was to expect, D is a maximal codense cover
of C in the category of right C-comodules:

Theorem. Let C be a finite dimensional coalgebra over a field k, then D =
(Qr

max(C
∗))∗ is a maximal codense cover of C in MC.

Proof. By transposing the embedding ı : C∗ →֒ Qr
max(C

∗) we obtained
a small cover π : D ։ C in 1.3, where D = (Qr

max(C
∗))∗ and π = ı∗. The

kernel K of π is isomorphic to (Qr
max(C

∗)/C∗)∗. Note that the dual of any
factor comodule K ։ L is a right C∗-submodule L∗ of Qr

max(C
∗)/C∗. Hence the

transpose map of any right C-colinear map g : C → K/L yields a right C∗-linear
map g∗ : (K/L)∗ → C∗ which could be extended to a right C∗-linear map from
Qr
max(C

∗)/C∗ to E(C∗) and must be zero (where E(C∗) denotes the injective hull
6



of C∗ as right C∗-module). Hence D is a codense cover of C. The maximality
follows now by a similar argument, taking into account that any codense cover D′

of C inMC would be finitely generated as comodule and hence finite dimensional.
⊔⊓

2.6. We will now turn to some examples of modules that are equal its own
maximal codense cover. The next Lemma is probably known, but we were unable
to find a reference:

Lemma. Every indecomposable non-faithful injective module over a principal
ideal domain is uniserial.

Proof. Let D be a principal ideal domain and M an indecomposable non-
faithful injective D-module. By Matlis Theorem [14]M = E(D/p) for some non-
zero prime ideal p = Dp of D. Since D is a Dedekind domain, the localisation
of D by p: Dp is a discrete valuation ring. Hence Dp, Q and Q/Dp are uniserial
Dp-modules. Take any D-submodule N ⊆ Q/Dp. We will show that N is also a
Dp-module. For any a 6∈ p = Dp and n = x/y +Dp ∈ N with y = upk ∈ p and

p ∤ u. Hence 1 = ra+ spk for some r, s ∈ D. This implies that 1
a
− r = spk

a
∈ Dp.

Therefore
1

a
n− rn =

spk

a

x

upk
=
sx

au
∈ Dp ⇒

1

a
n = rn+Dp.

Hence the action of 1/a on an element n in Q/Dp is given by a D-scalar multipli-
cation. This shows that Q/Dp is a uniserial D-module. Since Q/Dp is injective
and contains a simple Dp-submodule which is isomorphic to Dp/pDp ≃ D/p, we
have that

M ≃ E(D/p) ≃ Q/Dp

is a uniserial D-module. Note that all its submodules are of the form D/pi. ⊔⊓

2.7. The next theorem states that indecomposable injectives over suitable rings
do not have proper codense covers and as we will see below applies in particular
to the case of the divided power coalgebra mentioned in 1.5. A module M is
called couniform or hollow if every proper submodule is small.

Theorem. The only possible small covers of a non-faithful indecomposable in-
jective module M over a principal ideal domain D are M and the quotient field
Q of D.

Proof. By a theorem of Matlis [14, Prop 3.1]M = E(D/p) for some maximal
ideal p. FurthermoreM is uniserial by 2.6. Let π : P →M be a small cover. Then
P is hollow, since M is uniserial and whenever P = D + E, π(D) + π(E) = M ,
i.e. π(D) =M or π(E) =M and hence D = P or E = P as Ke (π) ≪ P .

Since M is injective, P is divisible, because for all 0 6= x ∈ D

π(xP ) = xπ(P ) = xM =M,
7



i.e. xP = P as π has a small kernel. As D is a principal ideal domain, P is
an indecomposable injective D-module and again by Matlis theorem P ≃ Q or
P ≃ E(D/q) for some maximal ideal q. In the later case we must have p = q

since

D/p = Soc(E(D/p)) ≃ soc(E(D/q)/Ke (π)) = (D/qi+1)/(D/qi) ≃ D/q

as E(D/q) is uniserial and all its submodules are of the form D/qi. ⊔⊓

2.8. The divided power coalgebra is the path coalgebra C associated to the graph

1

x

��
.

that is the coalgebra over a field k with basis {1, x, x2, . . . , xi, . . .} and comulti-
plication:

∆(xn) =
n∑

i=0

xi ⊗ xn−i

and counit

ǫ(xn) = δ0,n.

Corollary. Let C be the divided power coalgebra over a field k. Then C is its
own maximal codense cover in the category of C-comodules MC.

Proof. The dual algebra C∗ ≃ k[[Z]] of C is the power series ring in one
variable, by the isomorphism:

f 7→
∞∑

n=0

f(xn)Zn

Note that the power series ring in one variable is a discrete valuation ring, e.g.
a principal ideal domain. Since C is an injective cogenerator in MC with simple
coradical C0 = k1, C is a non-faithful indecomposable injective C∗-module over
the discrete valuation ring C∗. By Theorem 2.7 the only small covers of C in
C∗-Mod are C and the quotient field Q of C∗. Since C∗ is not a C-comodule, Q
is also not a C-comodule. Hence the only small cover of C as C-comodule is C
itself. ⊔⊓

3. Dual non-singularity of modules

Recall that a left R-module M is called singular if every element of M is
annihilated by an essential left ideal of R. An R-moduleM is called non-singular
if it contains no non-zero singular submodule.

8



3.1. Non-singularity generalises torsion-freeness of modules to the non-commuta-
tive setting. Lambek’s torsion theory is the right concept for a module theoretic
setting in which the construction of maximal dense extension of modules are put.
Dual Goldie torsion theories have been studied by various authors [17], [9], [13].
As singular modules play the rôle of torsion modules, small modules will play a
similar rôle in the dual situation. Let S be the class of small modules in σ[M ],
i.e. those which are small in their injective hull in σ[M ]. S is a Serre class, i.e. it
is closed under submodules, factor modules and extensions (and hence also under
finite direct sums). Define

ρ(X) = Re(X,S) =
⋂

{U ⊆ X | X/U ∈ S}

for any X ∈ σ[M ] and call X dual non-M-singular if ρ(X) = X . These are
precisely those modules which do not have any non-zero small homomorphic
image.

Since an injective module is a direct summand in any extension, injectives are
never small. Hence cohereditary modules, i.e. those all whose factor modules are
injective, are examples of dual non-M-singular modules. On the other hand there
exist examples of injective modules that are subdirect products of their M-small
factor modules (see Zoeschinger [22]).

3.2. Pushing singularity to smaller categories like σ[M ] needed a characterisa-
tion that was free of refeering to left ideals of a ring. Concepts for Singularity
and their duals had been already proposed in some abelian categories by Pareigis
[16] and it is not difficult to see that in the module case a module M is singular
if and only if it is a factor module of a module by an essential submodule. In
the case of σ[M ] it turned out, as shown in [20], that non-singularity of M could
be characterised by the internal property that any essential submodule is dense.
This property has been studied by Zelmanowitz in [21] where he also termed it
polyform. It is not difficult to dualise those notions, but it turns out that they
are not always equivalent.

3.3. Dual to a polyform module, call a module M copolyform if for every small
submodule K of M , the canonical projection M → M/K is a codense cover.
Note that dual non-M-singular modules X in σ[M ] are copolyform since for
any small submodule K of X any factor module K/L is also M-small and thus
Hom(X,K/L) = 0, i.e. X → X/K is codense. The converse is not true, e.g. Z
is copolyform, but not non-Z-small. Copolyform modules had been introduced
in [12] and were studied also in [18].

3.4. By definition it is clear that copolyform modules can be characterised by
their homomorphisms to factor modules. For any two modules X and Y set

∇(X, Y ) = {f ∈ Hom(X, Y ) | Im (f) ≪ Y }.
9



This set has been introduced by Beidar and Kasch in [1] were it was termed the
cosingular ideal of X and Y . Suppose M is copolyform and f ∈ ∇(M,M/N)
for some N ≪ M then Im (f) = K/N ≪ M/N and N ≪ M implies K ≪ M .
But as the projection M ։ M/K is codense, f ∈ Hom(M,K/N) = 0. Thus
∇(M,M/N) = 0. On the contrary, if ∇(M,M/N) = 0 for all N ≪ M then for
any small cover π : M ։ F with K = Ke π ≪ M and submodule L ⊆ K we
have Hom(M,K/L) ⊆ ∇(M,M/L) = 0. Hence π : M ։ F is a codense cover.
We have just proved the following statement:

Theorem. An R-module M is copolyform if and only if ∇(M,M/N) = 0 for all
N ≪M .

Choosing N = 0 in the above Theorem, we get that a copolyform module has
no non-zero homomorphism with small image, i.e. ∇(M) := ∇(M,M) = 0. Note
that under some suitable projectivity conditions ∇(M) equals Jac (End(M)).

3.5. Note that for self-projective modules M , ∇(M) = Jac (End(M)) (see [19]).

Theorem. A self-projective moduleM is copolyform if and only if Jac (End(M)) =
0.

Thus a ring R is copolyform as left R-module if and only if it is semiprimitive.

3.6. Since our aim is to apply the module theoretic terms above to the situation
of coalgebras, recall that any coalgebra C of a field k is an injective cogenera-
tor in the category MC of right C-comodules. Moreover there exists an anti-
isomorphism of rings between the dual algebra C∗ and the endomorphism of C
as right C-comodule and an isomorphism of rings between C∗ and the endomor-
phism of C as left C-comodule:

End(C∗C)op ≃ C∗ ≃ End(CC∗).

Under some light injectivity and cogenerator properties we can say much more
about copolyform modules. A module Q is called pseudo-injective with respect
to a non-zero monomorphism f : Y →֒ X if for all non-zero g : Y → Q there
exist h ∈ End(Q) and k ∈ Hom(X,Q) such that fk = gh 6= 0. A module Q is
called pseudo-injective in σ[M ] if it is pseudo-injective with respect to all non-zero
monomorphism f : Y →֒ X in σ[M ].

Lemma. Let M be pseudo-injective in σ[M ]. Then Hom(M/N,M) = 0 for all
submodules N such that M/N is M-small provided ∇(M) = 0.

Proof. Assume that M/N is small in some module X ∈ σ[M ] and let
f : M/N → M be a homomorphism. Suppose f is non-zero then by pseudo-
injectivity there are homomorphisms h ∈ End(M) and k ∈ Hom(X,M) such that
fh = ik 6= 0 where i : M/N →֒ X denotes the inclusion. Since homomorphic
images of small modules are small, Im (fh) = Im (ik) ≪ M . Considering the
projection p : M ։ M/N we get a homomorphism pfh ∈ End(M) whose image

10



is small in M . Since ∇(M) = 0, pfh = 0 which implies fh = 0, a contradiction.
Thus Hom(M/N,M) = 0. ⊔⊓

3.7. Lemma 3.6 shows that a pseudo-injective moduleM with Hom(M/N,M) 6=
0 for all non-zero N ⊆ M , is dual non-M-singular if and only if ∇(M) =
0. We will show that this is also equivalent to End(M) being non-singular.
Say that a module M is coretractable if for all non-zero submodules N of M :
Hom(M/N,M) 6= 0. We first need the following Lemma

Lemma. Let M and Q be left R-modules and T := End(Q). Denote by Z(M∗)
the singular submodule of M∗ := Hom(M,Q) as right T -module. Suppose that Q
is coretractable then

Z(M∗) ⊆ ∇(M,Q)

holds. If moreover Q is pseudo-injective with respect to all monomorphisms of
the form g : Q/Ke g →֒ Q for any 0 6= g ∈ T then equality hold, i.e. Z(M∗) =
∇(M,Q).

Proof. Take f ∈ Z(M∗). Then AnnT (f) = {g ∈ T | fg = 0} is essential in T .
Suppose Im (f)+U = Q for some submodule U ofQ. Then AnnT (f)∩AnnT (U) =
AnnT (Im (f) + U) = 0 implies Hom(Q/U,Q) = AnnT (U) = 0. By hypothesis
U = Q, i.e. Im (f) ≪ Q and f ∈ ∇(M,Q).

Now assume that Q is pseudo-injective with respect to all monomorphisms
g : Q/Ke (g) →֒ Q. Let f ∈ ∇(M,Q) and g ∈ T such that gT ∩ AnnT (f) = 0.
Suppose there exists a non-zero h ∈ AnnT (Ke g) ∩ AnnT (Im (f)). As h defines
a non-zero homomorphism from Q/Ke g to Q we have by hypothesis endomor-
phisms k, l ∈ T such that 0 6= gk = hl. But as h ∈ AnnT (Ke g) ∩ AnnT (f),
we have hl = gk ∈ gT ∩ AnnT (f) = 0; a contradiction. Thus AnnT (Ke g) ∩
AnnT (Im (f)) = 0 and

0 = AnnT (Ke g)∩AnnT (Im (f)) = AnnT (Ke g+Im(f)) ≃ Hom(Q/(Ke g+Im(f)), Q).

Since Q is coretractable, Ke g + Im (f) = Q, but as Im (f) ≪ Q, g = 0. ⊔⊓

Note that the condition in Lemma 3.7(2) is fulfilled if Q is semi-injective, i.e.
injective with respect to all monomorphisms of the above form, or if Q is pseudo-
injective in σ[Q].

3.8. The last Lemma 3.7 together with 3.6 enables us to characterise those
copolyform modules which are injective cogenerators:

Theorem. Let M be a coretractable left R-module that is pseudo-injective in
σ[M ]. Then the following statements are equivalent:

(a) M is dual non-singular in σ[M ].
(b) M is copolyform.
(c) ∇(M) = 0.
(d) End(M) is a right non-singular ring.

11



3.9. The lattice of submodules of a module is pseudo-complemented, but its
dual lattice does not need to be. To overcome this problem while dualising
module theoretic notions, one has to make suitable assumption on the lattice of
submodules. An R-module M is called weakly supplemented if any submodule N
of M has a weak supplement, that is a submodule L of M such that N + L =M
and N ∩L≪M . This is a weak form of a pseudo-complement in the dual lattice
of submodules of M .

Theorem. The following statements are equivalent for a weakly supplemented
module:

(a) M is copolyform.
(b) ∇(M,M/N) = 0 for all N ⊆M .
(c) Every factor module of M is copolyform.
(d) ∇(M) = 0 and M is M-im-small-projective, i.e. any diagram

M

f

��h}}|
|

|
|

M g
// L // 0

with Im (f) ≪ L can be commutatively extended by some h :M →M.

Proof. (a) ⇒ (b) Let f : M → M/N have small image and choose a weak
supplement L of N . Thus M/N = (N +L)/N ≃ L/(L∩N) ⊆M/(L∩N). Since
L ∩N ≪ M and f ∈ ∇(M,M/(L ∩N), we have f = 0 by (a).

(b) ⇒ (c) let N ⊆ L ⊆ M such that L/N ≪ M/N and f ∈ ∇(M/N,M/L).
Then fπN ∈ ∇(M,M/L) = 0, i.e. f = 0. Hence M/N is copolyform.

(c) ⇒ (a) is trivial and (b) ⇒ (d) is clear, since for N = 0, ∇(M,M) =
∇(M) = 0 and as ∇(M,M/N) = 0 for all factor modules L of M , there are
no non-zero homomorphisms f : M → L with small image, i.e. M is trivially
M-im-small projective.

(d) ⇒ (a) Let f ∈ ∇(M,M/N) with N ≪ M and denote by πN : M → M/N
the canonical projection. ByM-im-projectivity there exists h :M →M such that
πNh = f . Since Im (f) = Im (πNh) ≪ M/N and N ≪M , we have Im (h) ≪M ,
i.e. h ∈ ∇(M) = 0. Thus f = 0. ⊔⊓

A module which satisfies condition (c) is also called strongly copolyform. This is
in general a stronger condition then copolyformness. In [18] strongly copolyform
modules are called copolyform.

3.10. A module M is called couniform or hollow if N + L = M implies N =
M or L = M for all proper submodules N,L of M . Uniserial modules are
couniform and couniform modules are indecomposable. Furthermore couniform
modules are trivially weakly supplemented since all proper submodules are small.
From the last characterisation of copolyform modules we easily deduce that a
couniform module is copolyform if and only if every projection M ։ M/N for

12



any proper submodule N of M is codense. Couniform copolyform modules are
called epiform and satisfy the property that all of their non-zero endomorphisms
are epimorphisms. The converse holds under some suitable assumptions as we
will see later.

3.11. In case of couniform modules we deduce from 3.8 the following

Corollary. Let M be a couniform coretractable left R-module that is pseudo-
injective in σ[M ]. Then the following statements are equivalent:

(a) M is dual non-M-singular.
(b) M is epiform.
(c) Every non-zero endomorphism of M is an epimorphism.
(d) Every non-zero homomorphism from a factor module L of M to M is

surjective.
(e) End(M) is a domain.

Proof. (a) ⇔ (b) follows from 3.8.
(b) ⇒ (c) For any 0 6= f ∈ End(M), Im (f) 6≪ M as ∇(M) = 0. Thus Im (f) =
M .
(c) ⇒ (d) Let f :M/N →M since πNf is an epimorphism of M , f has to be an
epimorphism (here πN denotes the projection).
(d) ⇒ (e) If fg = 0, then Im (f) ⊆ Ke (g). And if f 6= 0, then M = Im (f) =
Ke (g), i.e. g = 0.
(e) ⇒ (a) follows from 3.8 as domains are non-singular. ⊔⊓

3.12. Copolyform module with projective covers can be characterise by their
endomorphism rings.

Proposition. Let M be an R-module with projective cover P in σ[M ]. Then M
is copolyform if and only if Jac (End(P )) = 0.

Proof. Recall that Jac (End(P )) = ∇(P ). Assume M to be copolyform and
let f ∈ ∇(P ). Then, for any g ∈ Hom(P,M), U := Im (fg) ≪ M . However, by
Lemma 2.2, Hom(P, U) = 0 and so fg = 0. This implies Im (f) ⊆ Ke (g) and so

Im (f) ⊆
⋂

{Ke (g) : g ∈ Hom(P,M)} = Re(P,M) = 0,

as P is cogenerated by M (see [19, 18.4]). Thus f = 0, i.e. Jac (End(P )) = 0.
On the contrary if ∇(P ) = 0, then P is copolyform by 3.5. Denote by p : P ։M
the projection and let π :M ։ X be any small cover. The composition pπ : P ։

X is also a small cover and therefore codense. In particular Hom(P,Ke (pπ)) = 0
and, by projectivity of P , Hom(P,Ke (π)) = 0. By 2.2 π is a codense cover, i.e.
M is copolyform. ⊔⊓

13



3.13. The last proposition showed that a projective cover of a copolyform mod-
ule is copolyform as well.

Corollary. Let M be a copolyform module with projective cover P in σ[M ], then
End(M) is a subring of End(P ) such that every epimorphism f ∈ End(M) with
small kernel is invertible in End(P ).

Proof. Denote by p : P → M the projection and take any non-zero f ∈
End(M). Then by the projectivity of P , there exists a non-zero f̄ ∈ End(P ) such
that pf = f̄ p. Suppose there exists another g ∈ End(P ) such that pf = gp, then

0 = pf − pf = (f̄ − g)p

implies Im (f̄ − g) ⊆ Ke (p), i.e. f̄ − g ∈ ∇(P ) = 0. Hence f̄ = g. Thus the
correspondence f 7→ f̄ is uniquely defined.

Now assume that f is an epimorphism with small kernel, then pf = f̄ p implies
that f̄ p, and hence f̄ is an epimorphism with small kernel. By the projectivity
of P , f̄ splits and, as Ke (f̄) ≪ P , must be an isomorphism.

⊔⊓

3.14. The existence of a projective cover, turns the class S of M-small modules
into a cotorsion class:

Proposition. Assume that M is dual non-singular in σ[M ] and has a projec-
tive cover P in σ[M ]. Then the class of small modules in σ[M ] is closed under
submodules, factor modules, extensions and direct products (in σ[M ]) and can be
described as:

S = {X ∈ σ[M ] : Hom(P,X) = 0}

Moreover for any Z ∈ σ[M ], ρ(Z) = Re(Z,S) is dual non-M-singular and
Z/ρ(Z) is M-small.

Proof. Note that if S can be described as stated above, then it also satisfies
the closure properties. Hence we only need to show that S equals the class of

modules X with Hom(P,X) = 0. Let X be any module in σ[M ] and X̂ its

injective hull in σ[M ]. By [19, 17.9], X̂ is M-generated and hence P -generated.

If X is not M-small, then it is not small in its M-injective hull X̂ . Thus assume

there is a proper submodule Y of X̂ such that X + Y = X̂. Then X/(X ∩ Y ) ≃

X̂/Y is a nonzero P -generated R-module. Hence there is an index set Λ and an
epimorphism f : P (Λ) → X/(X ∩ Y ) and so, since P (Λ) is projective in σ[M ],
f can be lifted to a homomorphism g : P (Λ) → X , i.e. Hom(P,X) 6= 0. Hence
X 6∈ S ⇒ Hom(P,X) 6= 0.

On the other hand assume 0 6= X ∈ S and f ∈ Hom(P,X). Denote by Y =
Im (f) and let π : P →M be the projection. Then extend f to a homomorphism

g :M ≃ P/Ke (π) → Y/(Ke (π))f
14



sending p + Ke (π) to (p)f + (Ke (π))f . Since M is dual non-M-singular, g = 0
and Y = Im (f) ⊆ (Ke (π))f . Thus P = Ke (π) + Ke (f), but since Ke (π) ≪ P ,
Ke (f) = P and f = 0. This shows that X ∈ S implies Hom(P,X) = 0 proving
the equality of the classes indicated.

Thus S is closed under submodules, factor modules, direct products and ex-
tensions. Note that it follows also that P is dual non-M-singular. Moreover since
Z/ρ(Z) is a subdirect product of M-small modules, it is M-small. Furthermore,
since P is projective and

Hom(P, ρ(Z)/Tr(P, ρ(Z))) = 0,

we must have ρ(Z) = Tr(P, ρ(Z)), i.e. ρ(Z) is P -generated and therefore dual
non-M-singular. ⊔⊓

In the case above, P generates the cotorsion theory whose cotorsion modules
are the M-small modules in σ[M ]. the cotorsion free modules are precisely the
P -generated modules.

4. Non-singular Coalgebras

Having defined a dual non-singularity concept for modules, we are going to
apply it to comodules. Let C be a coalgebra over a field k. Any right C-comodule
M carries a natural left C∗-module structure. Call a right(left) C-comodule M
copolyform (resp. epiform) if it is copolyform (resp. epiform) as left(right) C∗-
module.

Theorem 3.8 and the facts on coalgebras 3.6 yield the following

Theorem. Let C be a coalgebra over a field k. Then the following statements
are equivalent:

(a) C is a copolyform right C-comodule.
(b) End(C∗C) is a right non-singular ring.
(c) C∗ is a left non-singular ring.
(d) End(CC∗) is a left non-singular ring.
(e) C is a copolyform left C-comodule.

Any coalgebra that satisfies one of the above conditions is called non-singular.

Proof. (a) ⇔ (b) follows from Theorem 3.8.
(b) ⇔ (c) follows from the anti-isomorphism between End(C∗C) and C∗.
(c) ⇔ (d) follows from the isomorphism between End(CC∗) and C∗.
(d) ⇔ (e) follows from Theorem 3.8 (for right R-modules). ⊔⊓

4.1. In [15], Nastasescu, Torrecillas and Zhang called a coalgebra C hereditary
if C is a cohereditary left (and/or right) C-comodule. By our remark in 3.1
cohereditary modules are dual non-singular. Hence by 3.8 any hereditary coal-
gebra is non-singular. Chin showed in [3] that any path coalgbera is hereditary.
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Furthermore Chin and Montgomery showed in [4] that any coalgebra over an al-
gebraically closed field is Morita-Takeuchi equivalent to a subcoalgebra of a path
coalgebra. Thus hereditary and hence non-singular coalgebras are ubiquitous.

4.2. In [15] it has been also proven that a finite dimensional coalgebra C is
hereditary if and only if C∗ is left hereditary. Since there are finite dimensional
algebras which are left non-singular, but not left hereditary, we can construct
coalgebras which are non-singular but not hereditary. Let k be a field let R
be any finite dimensional k-algebra which is not left hereditary; for example
R = k[x]/(x2). Then define

A =

(
k 0
R R

)
.

By [10, 4.4.3], A is right non-singular, but not right hereditary by [10, 4.4.7] as
R is not right hereditary. Hence C = (Aop)∗ is a non-singular coalgebra which is
not hereditary.

4.3. Call a coalgebra C cosemiprime if I ∧ I 6= C holds for all proper subcoalge-
bras I of C. It is not difficult to see that C is a cosemiprime coalgebra if and only
if C∗ is semiprime and we deduce that a cocommutative coalgebra is non-singular
if and only if C is cosemiprime.

4.4. The strict hierarchie of coalgebraic properties

cosemisimple ⇒ hereditary ⇒ non-singular

collapses when assuming some flatness condition on the coalgebra: Since a coal-
gebra C is flat as right C∗-module if and only if C∗ is left self-injective (see [2]),
we have that the dual algebra C∗ of a non-singular coalgebra C which is flat as
left C∗-module must be a left self-injective and left non-singular ring and hence
von Neumann regular (as it equals its own maximal left ring of quotient). Note
that a von Neumann regular ring is semiprimitive, hence Jac (C∗) = 0. By [2],
Jac (C∗) = C⊥

0 where C0 denotes the coradical of C. Hence C⊥
0 = 0 implies

C = C0. We just proved the following theorem:

Theorem. A coalgebra C is cosemisimple if and only if C is non-singular and
flat as right C∗-module.

Since finite dimensional Hopf algebras are projective as comodule, we deduce
that finite dimensional Hopf algebra which are right non-singular coalgebras are
cosemismple.

4.5. The characterisation 3.11 of epiform modules yields that a coalgebra C is
epiform as right (or left) comodule if and only if C∗ is a domain. Recall that a
coalgebra C is called coprime if C∗ is a prime ring. As we see, any coalgebra that
is epiform as coalgebra is a coprime coalgebra. In case C is cocommutative those
notions are equivalent.
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4.6. We are going to show that there exists a dichotomie for coprime coalgebras
that states that over a coprime coalgebra either every comodule is projective or
no non-trivial comodule is projective.

Theorem. The following statements are equivalent for a coprime coalgebra C
over a field k:

(a) C is a matrix k-coalgebra, i.e. C∗ is a matrix algebra over a division ring.
(b) C∗ is a simple ring.
(c) C is finite dimensional.
(d) Every non-zero right (left) C-comodule is projective as C∗-module.
(e) There exists a non-zero projective right (left) C-comodule.
(f) No non-zero right (left) C-comodule is singular as C∗-module.
(g) There exists a non-zero right (left) C-comodule that is not singular as a

C∗-module.
(h) Every right (left) C-comodule is injective.

Proof. (a) ⇒ (b) is clear.
(b) ⇒ (c) assume C∗ is simple, then C is a simple coalgebra, because if D is

any subcoalgebra of C, then D⊥ is an ideal of C∗ and hence 0 or C∗ ,i.e. D = C
or D = 0. Since any non-zero element of C is contained in a non-zero finite
dimensional subcoalgebra of C, C must be finite dimensional.

(c) ⇒ (a) since C is finite dimensional, C∗ is finite dimensional. As C∗ is also
a prime ring, it must be a matrix algebra.

(a) ⇒ (d) is clear.
(d) ⇒ (e) ⇒ (g) and (d) ⇒ (f) ⇒ (g) are trivial since projective modules are

not singular.
(g) ⇒ (c) Suppose M is a non-zero left C-comodule which is not singular as

C∗-module. Then there exists a C∗-submodule N ofM which is not singular. We
might choose N to be a cyclic C∗-submodule of M . Since comodules are locally
finite dimensional, N is finite dimensional. As the annihilator AnnC∗(N) is not
an essential left ideal of C∗, but all non-zero ideals of a prime ring are essential
as left ideals, we conclude that AnnC∗(N) = 0, thus

C∗ = C∗/AnnC∗(N) →֒ ⊕s
i=1C

∗/AnnC∗(ni)

is finite dimensional, where ni is a generating set of N .
(a) ⇔ (h) is clear, since C is cosemisimple.

⊔⊓

4.7. By negating (c), (e) and (g) we get of the last Theorem we deduce the
following

Corollary. The following statements are equivalent for a coprime coalgebra C
over a field k.

(a) C has infinite dimension.
17



(b) Every right or left C-comodule is singular as C∗-module.
(c) There is no non-zero projective object in the category of right or left C-

comodules.

4.8. The last Corollary shows the dichotomie of coprime coalgebras: Either
every comodule is coalgebra and the coalgebra is necessarily a matrix coalgebra
or every comodule is singular as C∗-module and MC has no non-zero projective
object.

This dichotomie shows also that we can not use projective cover to build max-
imal codense covers of infinite dimensional coprime coalgebras.

4.9. From 3.11 have that any C which is epiform is either the dual of a finite
dimensional divison algebra K over k or infinite dimensional such that the cate-
gory of right C-comodules consists of torsion C∗-modules, in particular there are
no non-zero projective objects in MC .

4.10. Note that any coalgebra C can be written as a sum of indecomposable
injective comodules Eλ. If C is cocommutative then each of the Eλ is actually
a subcoalgebra of C. Assume now that C is a cocommutative semiperfect coal-
gebra over a field k, then C =

⊕
λEλ is a direct coproduct of finite dimensional

cocommutative indecomposable coalgebras. If moreover C is non-singular, then
each of the Eλ is also non-singular and E∗

λ is a finite dimensional commutative
semiprime k-algebra. Thus E∗

λ is a finite field extension Kλ of k and Eλ = K∗
λ is

a finite dimensional simple coalgebra. Thus we have proved the following

Theorem. Any cocommutative non-singular and semiperfect coalgebra is cosemisim-
ple.
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(2001)

[2] Brzezinski, T. and Wisbauer, R., Corings and Coalgebras, LMS Lecture Notes Series 309
(2003)

[3] Chin, W, Hereditary and path coalgebras., Commun. Algebra 30(4), 1829-1831 (2002)
[4] Chin, W. and Montgomery, S., Basic coalgebras., in “Modular interfaces. Modular Lie

algebras, quantum groups, and Lie superalgebras.” ed. Chari, V. et al., AMS/IP Stud.
Adv. Math. 4, 41-47 (1997)

[5] Courter, R.C., The maximal co-rational extension by a module, Can. J. Math. 18, 953-962
(1966).
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