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SCALAR EXTENSION OF BICOALGEBROIDS

IMRE BÁLINT

Abstract. After recalling the definition of a bicoalgebroid, we define comod-
ules and modules over a bicoalgebroid. We construct the monoidal category
of comodules, and define Yetter–Drinfel’d modules over a bicoalgebroid. It is
proved that the Yetter–Drinfel’d category is monoidal and pre–braided just as
in the case of bialgebroids, and is embedded into the one–sided center of the
comodule category. We proceed to define Braided Cocommutative Coalgebras
(BCC) over a bicoalgebroid, and dualize the scalar extension construction of
[2] and [1], originally applied to bialgebras and bialgebroids, to bicoalgebroids.
A few classical examples of this construction are given. Identifying the co-
module category over a bicoalgebroid with the category of coalgebras of the
associated comonad, we obtain a comonadic (weakened) version of Schauen-
burg’s theorem. Finally, we take a look at the scalar extension and braided
cocommutative coalgebras from a (co–)monadic point of view.

1. Introduction

Bicoalgebroids were introduced by Brzeziński and Militaru in [2] as the struc-
ture that dualizes bialgebroids (in fact, Takeuchi’s ×R–bialgebras) in the sense of
reversing arrows. This notion is not to be confused with the different kinds of
bialgebroid–duals that were later introduced in [8]. It would seem that the study of
bicoalgebroids hasn’t been taken up vigorously since their inception; in our view,
they merit attention for at least two reasons. First, it is well established that a
bialgebroid may be thought of as a non–commutative analogue of the algebra of
functions on a groupoid. It follows that a bicoalgebroid, in turn, should be re-
garded as a non–commutative analogue of the groupoid itself. This raises the hope
that classical constructions on groupoids may find their non–commutative general-
izations more easily in the context of bicoalgebroids. Secondly, just as bialgebroids
play a fundamental role in depth–two extensions of algebras, it is expected that
bicoalgebroids feature prominently in extensions of coalgebras (from a different
approach, in [9] Kadison constructs bialgebroids from depth 2 extensions of coalge-
bras). To complete the picture, the dual Hopf–Galois theory of [16] for extensions of
coalgebras should generalize (from bialgebras) to bicoalgebroids, giving a dual ver-
sion of bialgebroid–Galois theory. Further work in this latter direction is deferred
to a subsequent publication.

Central to this paper is the introduction of scalar extension for bicoalgebroids.
Incidentally, the construction that was shown in [1] to be a non–commutative ver-
sion of scalar extension was defined (for Hopf–algebras) in [2] – alongside with
bicoalgebroids.
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2 I. BÁLINT

2. Bicoalgebroids; comodules and modules

Throughout, k will be a field and the category M = Mk of k–modules will serve
as our underlying category. The unadorned ⊗ always means ⊗k.

We use the ubiquitous Sweedler notation for coproducts and coactions. For a
coalgebra 〈C,∆, ε〉, the coproduct ∆ : C → C ⊗ C on elements is denoted ∆(c) =
c(1)⊗c(2), with an implicit finite summation understood, i.e. c(1)⊗c(2) =

∑
i c(1)

i⊗

c(2)
i. Quite similarly, a right C–coaction ρM : M → M ⊗ C will be denoted

ρM (m) = m[0] ⊗ m[1] and a left C–coaction λN : N → C ⊗ N will be denoted
λN (n) = n[−1] ⊗ n[0].

The category of bicomodules over a k–coalgebra C is monoidal with monoidal
unit C and monoidal product the cotensor product over C. This category will be
referred to as 〈CMC , �C , C〉.

In fact, if C is a coalgebra over a ring R which is flat as an R–module, then the
category of R–flat C–bicomodules is monoidal with monoidal product the cotensor
product over C, and monoidal unit C.

We shall also use the following standard notations throughout the paper. The co–
opposite coalgebra of a coalgebra 〈C,∆, ε〉 is Ccop = 〈C,∆cop, ε〉, with the coproduct
∆cop(c) = twC,C ◦ ∆(c) = c(2) ⊗ c(1). In analogy to the concept of enveloping
algebra, the co–enveloping coalgebra of C is Ce = 〈C⊗Ccop, tw23 ◦ (∆⊗∆cop), ε⊗ε〉.

Following [2], we recall the following (somewhat lengthy)

Definition 2.1. A left bicoalgebroid 〈H,∆, ε, µ, η, α, β, C〉 consists of

• a k–coalgebra 〈H,∆H , εH〉
• two coalgebra maps α : H → C and β : H → Ccop, such that α and β

’cocommute’, i.e. α(h(1))⊗β(h(2)) = α(h(2))⊗β(h(1)). These maps furnish
H with a (C ⊗ C)–bicomodule structure, such that (H ;λL, λR; ρL, ρR) ∈
C⊗CMC⊗C . The four C–coactions are:

λL(h) = α(h(1))⊗ h(2) , ρL(h) = h(2) ⊗ β(h(1))

λR(h) = β(h(2))⊗ h(1) , ρR(h) = h(1) ⊗ α(h(2))

• C–bicomodule maps µH : H �C H → H and ηH : C → H (multiplication
& unit) making (H,λL, ρL) an algebra in CMC ,

subject to the following axioms:

(1) The multiplication map µ : H �C H → H satisfies:

(2.1)
∑

i

µ(gi ⊗ hi
(1))⊗ α(hi

(2)) = µ(gi(1) ⊗ hi)⊗ β(gi(2))

(2) and it is comultiplicative:

(2.2) ∆ ◦ µ(
∑

i

gi ⊗ hi) =
∑

i

µ(gi(1) ⊗ hi
(1))⊗ µ(gi(2) ⊗ hi

(2))

(3) Furthermore, the product is counital (note that this axiom seems to be
missing in Ref. [2]):

(2.3) ε(g)ε(h) = ε ◦ µ(g ⊗ h)

(4) The unit map η : C → H satisfies the unit axiom:

(2.4) µ ◦ (η�H) ◦ λL = H = µ ◦ (H � η) ◦ ρL
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(5) The unit map is compatible with the coalgebra structure in the following
sense:

(2.5) ∆(η(c)) = η(c)(1) ⊗ η(α(η(c)(2))) = η(c)(1) ⊗ η(β(η(c)(2)))

(2.6) ε(η(c)) = ε(c)

In [2], it is first proved that the condition 2.1 makes sense, i.e. the two sides of the
equation are well defined maps. This, in turn, implies that 2.2 makes sense, which
boils down to (µ�µ) ◦ tw23 ◦ (∆�∆) being a well–defined map. The condition 2.1
on the multiplication map may be rephrased by saying that µ factorizes through
the cocenter of the C–bicomodule CH �HC , where the two coactions are λR and
ρR. We define the cocenter for bicomodules as follows.

Definition 2.2. Let M ∈ CMC a C–bicomodule. Define the map

Φ : M ⊗ C∗ →M

m⊗ ϕ 7→ m[0] ϕ(m[1])−m[0] ϕ(m[−1])

where C∗ denotes the k-dual of the coalgebra C. Then, the cocenter of M is defined
by the cokernel map ζ : M → Z(M), where

M ⊗ C∗ Φ // M
ζ

// Z(M)

Introduce also the epi–mono factorization Φ : M ⊗ C∗ e
→ JM

i
→M

The cocenter satisfies the following universal property. Let

WM = {m[0] ⊗m[1] −m[0] ⊗m[−1] |m ∈M} ⊂M ⊗ C

then for all k–module maps f : M → N which satisfy

(2.7) (f ⊗ C)(WM ) = 0

i.e. f(m[0]) ⊗m[1] = f(m[0]) ⊗m[−1], there is a unique f ′ : Z(M) → N such that
f = f ′ ◦ ζ:

M
f

//

ζ

��

N

Z(M)

f ′

<<y
y

y
y

Indeed, applying (N ⊗ ϕ) to 2.7, we find that (f ⊗ ϕ)(WM ) = 0 for all ϕ ∈ C∗,
i.e. f annihilates JM .

If the coalgebra C is locally projective as a k–module (see [3], 42.9), then
(ζ⊗C)(WM ) = 0. To see this, note that for C locally projective, (ζ⊗C)(WM ) = 0
if and only if (Id ⊗ ϕ) ◦ (ζ ⊗ C)(WM ) = 0 for all ϕ ∈ C∗. This, however, holds by
the definiton of ζ.

Thus, for locally projective C, a k–module map f : M → N factorizes through
ζ : M → Z(M) if and only if (f ⊗ C) (WM ) = 0. Since, throughout this paper,
we are working over a field, it is in fact unnecessary to explicitly assume local
projectivity: modules over a field are always free, hence they are projective. A
projective module is also locally projective.
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We apply the above definition to the bicomodule CH �HC afforded by the
coactions λR and ρR. For reference, the bicomodule structure is

(λR �H) :
∑

i

gi� hi 7→
∑

i

β(gi(2))� gi(1) � hi(2.8)

(H � ρR) :
∑

i

gi� hi 7→
∑

i

gi� hi
(1)�α(hi

(2))(2.9)

We make the following

Definition 2.3. H ⊠H is the cocenter of the bicomodule CH �HC ,

H �C H ⊗ C∗ Φ2 // H �C H
ζ2 // H ⊠H

where Φ2(g
i
� hi ⊗ ϕ) = gi� hi

(1) ϕ(α(h
i
(2)))− gi(1) � hi ϕ(β(gi(2)))

Using 2.8 and 2.9, the multiplication map µ : H �C H → H factorizes through
H ⊠H , i.e.

H �C H
µ

//

ζ

��

H

H ⊠H

f ′

::v
v

v
v

v

precisely if
∑

i µ(g
i⊗hi

(1))⊗α(hi
(2)) = µ(gi(1)⊗hi)⊗β(gi(2)) (condition 2.1) holds.

This construction can be seen as dual to that of the Takeuchi product ×R. For a
left bialgebroid A, the submodule A×RA →֒ A⊗

R

A is the center of the R–bimodule

r · (A⊗A) ·r′ = At(r)⊗As(r). It is well–known that there is no well–defined multi-
plication on A⊗

R

A, but A×R A is a ring with component–wise multiplication. The

dual result is that even though comultiplication is not well-defined on H �C H , the
factorH⊠H becomes a well–defined coalgebra. This ensures that 2.2 is well-defined.

The reader may easily convince herself that these axioms are dual to those of a left
bialgebroid 〈A, µA, ηA,∆A, εA, s, t, R〉 in the sense of reversing arrows and making
the following substitutions: 〈A, µA, ηA〉 ↔ 〈H,∆H , εH〉, {∆A, εA} ↔ {µH , ηH},
{s, t} ↔ {α, β}, R↔ C.

A right bicoalgebroid is a C–bicomodule algebra with the coactions λR and ρR,
i.e. we require (H,λR, ρR) to be a monoid in the category of C–bicomodules. The
axioms dualize those of a right bialgebroid (cf. the Lemma below).

We note here a result in line with the duality between bialgebroids and bicoal-
gebroids. It is well–known that the simplest right bialgebroid over a ring R is the
enveloping algebra Re = R⊗Rop (its opposite is a left bialgebroid). The following,
dual statement provides our first example of a bicoalgebroid:

Lemma 2.4. The co–enveloping coalgebra Ce = C ⊗ Ccop is a right bicoalgebroid
with the following structure maps. The source– and target maps are given by

α : C ⊗ Ccop → C, c⊗ c̄ 7→ c ε(c̄) and β : C ⊗ Ccop → Ccop, c⊗ c̄ 7→ ε(c) c̄

Multiplication is

µe : C ⊗ Ccop �C ⊗ Ccop → C ⊗ Ccop, c⊗ c̄� d⊗ d̄ 7→ dε(c) ε(d̄)⊗ c̄

and the unit map is ∆cop, η
e : C → C ⊗ Ccop, η

e(c) = c(2) ⊗ c(1).
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Proof. Ce has the (right–bicoalgebroid type) C–bicomodule structure coming from
λR = (β ⊗ Ce) ◦∆cop and ρR = (Ce ⊗ α) ◦∆. Explicity, the coactions are

λR(c⊗ c̄) = c̄(1) ⊗ (c⊗ c̄(2))

ρR(c⊗ c̄) = (c(1) ⊗ c̄)⊗ c(2)

Multiplication and unit are then seen to be (left and right) C–bicomodule maps
with respect to the coactions λR and ρR. Associativity and the unit property are
easy calculations. c⊗ c̄� d⊗ d̄ ∈ C ⊗ Ccop �C C ⊗ Ccop means

(2.10) (c(1) ⊗ c̄)⊗ c(2) ⊗ d⊗ d̄ = (c⊗ c̄)⊗ d̄(1) ⊗ (d⊗ d̄(2))

We have to prove that multiplication factorizes through Ce
⊠Ce, i.e. α((c⊗ c̄)(1))⊗

µ((c⊗ c̄)(2) � (d⊗ d̄)) = β((d⊗ d̄)(1))⊗µ((c⊗ c̄)⊗ (d⊗ d̄)(2)). Inserting definitions,
this reads

(2.11) c(1) ⊗ µe((c(2) ⊗ c̄)� (d⊗ d̄)) = d̄(2) ⊗ µe((c⊗ c̄)� (d⊗ d̄(1)))

By the definition of µe, 2.11 simplifies to

(2.12) c⊗ d ε(d̄)⊗ c̄ = d̄⊗ d ε(c)⊗ c̄

which is a consequence of 2.10 (applying the counit map twice). It now makes sense
to demand the compatibility of multiplication and comultiplication,

(µe ⊗ µe) ◦ tw2,3 ◦ (∆
e ⊗∆e)((c⊗ c̄)((d⊗ d̄)) = (c(1) ⊗ c̄(2))(d(1) ⊗ d̄(2))⊗

⊗ (c(2) ⊗ c̄(2))(d(2) ⊗ d̄(1)) = (d(1)ε(c)ε(d̄)⊗ c̄(2))⊗ (d(2) ⊗ c̄(1)) =

= ∆e ◦ µe((c⊗ c̄)⊗ (d⊗ d̄))

We skip the proof of the remaining compatibilities, all of them being trivial calcu-
lations. �

Just as in the dual case (where Re,op = Rop ⊗ R is a left bialgebroid), we also
have that Ce

cop = Ccop ⊗ C is a left bicoalgebroid. The proof is entirely similar.

2.1. Comodules over a bicoalgebroid. Based on experience with bialgebroids
and dualization arguments, it may be expected that a more categorical approach
to bicoalgebroids leads to the study of it’s category of comodules.

It is a well–known fact that a coalgebra map γ : D → C induces a C–bicomodule
structure on D such that D becomes a comonoid in CMC . The category of D–
comodules is then naturally constructed as a subcategory of CMC . We specialize
this remark to the case of a (left–) bicoalgebroid H over C. Consider the coalgebra
map ϕ = (α⊗ β) ◦∆ : H → C ⊗ Ccop. The left and right Ce–coaction induced by
ϕ on H are λ = (ϕ⊗H) ◦∆ and ρ = (H ⊗ϕ) ◦∆. Inserting the definition of ϕ and
comparing with the notation of 2.1,

λ = (C ⊗ ρ
op
L ) ◦ λL : H → (C ⊗ Ccop)⊗H(2.13)

ρ = (ρR ⊗ C) ◦ λop
R : H → H ⊗ (C ⊗ Ccop)(2.14)

(by λ
op
R , for example, we mean the right Ccop–coaction corresponding to λR through

the isomorphism CM ≃ MCcop). The image of ∆H lies in H �Ce H , i.e. we can
introduce the Ce–bicomodule map ∆̄ : H → H �Ce H with

∆H : H
∆̄ // H �Ce H

ῑH,H
// H ⊗H



6 I. BÁLINT

(here, ῑM,N : M �Ce N → M ⊗ N is the equalizer defining the cotensor product
over Ce). On the other hand, the Ce–bicomodule map ϕ is the composite

εH : H
ϕ

// Ce
ε⊗ε

// k

since ϕ is a coalgebra map. It is then straightforward to show that

Lemma 2.5. 〈H, ∆̄, ε̄ = ϕ〉 is a comonoid in Ce

MCe

.

Proof. Coassociativity is trivial, and the counit property reads

H �Ce H

ϕ�Ce H

��

H
∆̄oo ∆̄ //

=

��

H �Ce H

H �Ce ϕ

��
Ce

�Ce H
lH

// H H �Ce Ce
rH

oo

which commutes, because (ε⊗ ε) ◦ (ϕ(h(1)))h(2) = εH(h(1))h(2) = h, etc. �

We can now define the category of comodules over H .

Definition 2.6. A left H–comodule over a left bicoalgebroid H is a pair 〈M, δM 〉,
where M ∈ Ce

MCe

, and δM : M → H �Ce M is a Ce–bicomodule map for which

M
δM //

δM

��

H �Ce M

∆̄�Ce M

��

M
δM //

lM
$$JJJJJ

JJJ
JJ H �Ce M

ϕ�Ce M

��
H �Ce M

H �Ce δM

// H �Ce H �Ce M Ce
�Ce M

making δM a coassociative & counital coaction.

The category of H–comodules HM has objects the left H–comodules, and the
arrows f : 〈M, δM 〉 → 〈N, δN 〉 are the Ce–bicomodule maps f : M → N such that

M
f

//

δM

��

N

δN

��
H �Ce M

H �Ce f

// H �Ce N

Summarizing, a left bicoalgebroid H over C is simultaneously a monoid in the
category CMC (with coactions (H,λL, ρL)) and a comonoid in the category Ce

MCe

(with coactions (H,λ, ρ)). This phenomenon is already familiar from the theory
of bialgebroids, namely that the algebra and coalgebra structures live in different
monoidal categories.

The forgetful functor associated to the map ϕ : H → Ce,

F : HM→ Ce

M ≃ C
M

C(2.15)

〈M, δM 〉 → 〈M, (ϕ ⊗M) ◦ δM 〉(2.16)

is faithful and left adjoint to H �Ce : Ce

M → HM. Let us briefly recall the dual
situation: a left bialgebroid A over R is an Re–ring with s ⊗ t : R ⊗ Rop → A,
i.e. a monoid in ReMRe . The forgetful functor U : AM → ReM is right adjoint to
A ⊗Re :Re M → AM. Furthermore, Schauenburg’s theorem states that bialge-
broid structures on the Re–ring A are in one-to-one correspondance with monoidal
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structures on the category AM such that the forgetful functor U is strict monoidal.
At this point, the question arises whether a dual of this theorem holds for bi-
coalgebroids, namely: is there a one-to-one correspondance between bicoalgebroid
structures on the coalgebra 〈H, ∆̄, ε̄〉 and monoidal structures on the category HM

such that F : HM→ C
M

C is strict monoidal? The next theorem gives the forward
implication. We take up this question again in Section 4, and look at the reverse
implication from a comonadic point of view.

Theorem 2.7. Let H be a left bicoalgebroid over C. Then there is a monoidal struc-
ture on HM making the forgetful functor F : HM → Ce

M ≃ CMC strict monoidal.
Identifying H–comodules with their underlying C–bicomodules, the monoidal prod-
uct is �C , the cotensor product over C and C is the monoidal unit.

Proof. Assume there is a monoidal structure 〈HM,⊙, I〉 on HM such that the for-
getful functor is strict monoidal, meaning that we have a triple 〈F, F 2, F 0〉, where
the maps FM,N : F (M ⊙N)→ F (M)�C F (N) and F 0 : F (I)→ C are identities.
This is tantamount to specifying

• an H–comodule structure on C,

δC : C → H �Ce C, and

• an H–comodule structure on the cotensor product of objects M,N ∈ CMC ,

δM �N : M �C N → H �Ce (M �C N),

natural in M and N

The bicoalgebroid structure on H allows us to construct such maps δC and δM �N .

The unit map η : C → H provides the desired H–comodule structure on C:

δC = (H ⊗ α) ◦∆ ◦ η, δC(c) = η(c)(1) ⊗ α(η(c)(2))

This is indeed a coaction,

(H ⊗ δC) ◦ δC(c) = η(c)(1) ⊗ η(α(η(c(2))))(1) ⊗ α((η(α(η(c(2))))(1))(2)) =

= η(c)(1) ⊗ η(c)(2)(1) ⊗ α(η(c)(2)(2)) = η(c)(1)(1) ⊗ η(c)(1)(2) ⊗ α(η(c)(2)) =

= (∆H ⊗ C) ◦ δC(c),

applying 2.5 in the second equality and coassociativity in the third.

For M,N ∈ HM, define the coaction δM �N : M �C N → H �Ce (M �C N) as
the composite map:

δM �N : M �C N
δM �C δN// (H �Ce M)�C (H �Ce N)

κ // H �Ce (M �C N)

Implicit in this definition is the map

(2.17) κ : (H �Ce M)�C (H �Ce N)→ H �Ce (M �C N)
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which we define as the unique arrow in the following diagram

(H �Ce M)�C (H �Ce N)
κ //______

ιH �M,H � N

��

H �Ce (M �C N)

ῑH,M �N

��
(H �Ce M)⊗ (H �Ce N)

ῑH,M⊗ῑH,N

��

H ⊗ (M �C N)

H⊗ιM,N

��
(H ⊗M)⊗ (H ⊗N)

(µH⊗M⊗N) ◦ tw23

// H ⊗ (M ⊗N)

By the definition of the kernel maps ιM,N : M �C N → M ⊗ N and ῑU,V :
U �Ce V → U ⊗ V , (h ⊗m) ⊗ (h′ ⊗ n) ∈ (H �Ce M)�C (H �Ce N) if and only if
the following identities hold:

(h(1) ⊗ α(h(2))⊗m)⊗ (h′ ⊗ n) = (h⊗m[−1] ⊗m[0])⊗ (h′ ⊗ n)(2.18)

(h(1) ⊗ β(h(2))⊗m)⊗ (h′ ⊗ n) = (h⊗m[1] ⊗m[0])⊗ (h′ ⊗ n)(2.19)

(h⊗m)⊗ (h′
(1) ⊗ α(h′

(2))⊗ n) = (h⊗m)⊗ (h′ ⊗ n[−1] ⊗ n[0])(2.20)

(h⊗m)⊗ (h′
(1) ⊗ β(h′

(2))⊗ n) = (h⊗m)⊗ (h′ ⊗ n[1] ⊗ n[0])(2.21)

and

(2.22) h(2) ⊗m⊗ β(h(1))⊗ h′ ⊗ n = h⊗m⊗ α(h′
(1))⊗ h′

(2) ⊗ n

The arrow κ is defined by the universal property of the composite kernel map
(H ⊗ ιM,N ) ◦ ῑH,M �N , provided

(µH ⊗M ⊗N) ◦ tw23 ◦ (ῑH,M ⊗ ῑH,N ) ◦ ιH �M,H �N ((h⊗m)⊗ (h′ ⊗ n)) =

= (hh′)⊗ (m⊗ n) ∈ H �Ce (M �C N)

This leads to the following equations:

(hh′)⊗m[0] ⊗m[1] ⊗ n = (hh′)⊗m⊗ n[−1] ⊗ n[0](2.23)

(hh′)(1) ⊗ α((hh′)(2))⊗m⊗ n = (hh′)⊗m[−1] ⊗m[0] ⊗ n(2.24)

(hh′)(1) ⊗ β((hh′)(2))⊗m⊗ n = (hh′)⊗ n[1] ⊗m⊗ n[0](2.25)

Observe that by the multiplicativity of the coproduct and because (H,λL, ρL) is
a monoid in C

M
C , we have the following identities:

α(hh′) = α(h)ε(h′)(2.26)

β(hh′) = ε(h)β(h′)(2.27)

To show 2.26, compute

α(hh′) = α((hh′)(1))ε((hh
′)(2)) = α(h(1))ε(h(2))ε(h

′) = α(h)ε(h′),

and analagously for 2.27. Note that 2.26 and 2.27 are dual to the relations ∆A(t(r)) =
1A ⊗ t(r) and ∆A(s(r)) = s(r) ⊗ 1A, which hold for a left bialgebroid A over R.

To prove 2.24, use 2.26 in the first equality and 2.18 in the second:

(hh′)(1) ⊗ α((hh′)(2))⊗m⊗ n = h(1)h
′ ⊗ α(h(2))⊗m⊗ n =

= (hh′)⊗m[−1] ⊗m[0] ⊗ n
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Similarly, 2.25 is by proved by using 2.27 in the first equality and 2.20 in the
second:

(hh′)(1) ⊗ β((hh′)(2))⊗m⊗ n = hh′
(1) ⊗ β(h′

(2))⊗m⊗ n =

= (hh′)⊗ n[1] ⊗m⊗ n[0],

To prove 2.23, applying 2.19 and 2.20 to the left– and right hand sides, respec-
tively, yields

h(1)h
′ ⊗m⊗ β(h(2))⊗ n = hh′

(1) ⊗m⊗ α(h′
(2))⊗ n

which holds precisely because multiplication satisfies the property 2.1.

Let us check that δM,N : M �C N → H �Ce (M �C N) is indeed a coaction.
Expressed on elements, δM,N (m ⊗ n) = m[−1]n[−1] ⊗m[0] ⊗ n[0] (we think of the
domain and range of δM,N as embedded intoM⊗N andH⊗(M⊗N), respectively).

(H � δM,N) ◦ δM,N (m⊗ n) = m[−1]n[−1] ⊗m[0][−1]n[0][−1] ⊗m[0] ⊗ n[0] =

= m[−1](1)n[−1](1) ⊗m[−1](2)n[−1](2) ⊗m[0] ⊗ n[0] =

= (m[−1]n[−1])(1) ⊗ (m[−1]n[−1])(2) ⊗m[0] ⊗ n[0] =

= (∆⊗M) ◦ δM,N(m⊗ n)

where we used the comultiplicativity of the multiplication onH in the third equality.

For 〈HM, � , C〉 to be a monoidal category, we have still to define the natu-
ral isomorphisms αM,N,P : (M �N)�P → M � (N �P ) (the associator), λM :
C �M → M and ρN : N �C → N . Due to the strict monoidality of F , these
maps may be defined as the lifting of the respective coherence morphisms of CMC

to HMH , provided they induce H–comodule maps. This, however, follows from the
associativity and unit property of the multiplication and unit on H . �

2.2. Modules over a bicoalgebroid. We proceed to define modules over a bi-
coalgebroid, especially for the purposes of Section 3.

Definition 2.8. A right module over a left bicoalgebroid H (over C) is a pair
〈X, ⊳〉, where X ∈ MC is a right C–comodule and the action is a right C–comodule
map ⊳ : X �C HC → XC . Similarly, a left module is a pair 〈Y, ⊲〉 with Y ∈ CM

and ⊲ : CH �C Y → Y a left C–comodule map. H is a C–bicomodule through the
coactions λL and ρL.

The module category of a bicoalgebroid is expected to be monoidal as well,
coming with an embedding into CMC . The above definition doesn’t seem to allow
for this, but luckily, a dual of Prop. 1.1. of [1] holds:

Proposition 2.9. Let 〈X, ⊳〉 be a right module over the bicoalgebroid H. Then X

has a unique left C–comodule structure such that

(1) X is a C–bicomodule
(2) the action is a C–bicomodule map
(3) ⊳ : X �C H → X factorizes through X ⊠H

Proof. Note that the action being a right C–comodule map means

(2.28) (x ⊳ h)[0] ⊗ (x ⊳ h)[1] = x ⊳ h(2) ⊗ β(h(1))

The left comodule structure in question will be denoted τ(x) = x[−1] ⊗ x[0]. In
fact, τ is uniquely determined by demanding that the right H action be also a left
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C–comodule map w.r.t τ . Note that X �C H is a left C–comodule through the left
C–coaction λR(h) = β(h(2))⊗ h(1) on H , i.e. we impose:

(2.29) (x ⊳ h)[−1] ⊗ (x ⊳ h)[0] = β(h(2))⊗ x ⊳ h(1)

The identity x = x[0] ⊳η(x[1]) and 2.29 yield an explicit formula for the left coaction
τ :

x[−1] ⊗ x[0] = (x[0] ⊳ η(x[1]))[−1] ⊗ (x[0] ⊳ η(x[1]))[0] =

= β(η(x[1])(2))⊗ x[0] ⊳ η(x[1])(1)

This is indeed a coaction, i.e. (C ⊗ τ) ◦ τ = (∆C ⊗X) ◦ τ . Inserting definitions, the

LHS = β(η(x[1])(2))⊗ β{η[(x〈0〉 ⊳ η(x〈1〉)(1))[1]](2)}⊗

⊗ (x〈0〉 ⊳ η(x〈1〉)(1))[0] ⊳ η[(x〈0〉 ⊳ η(x〈1〉)(1))[1]](1)

Using 2.28, we find:

LHS = β(η(x[1])(2))⊗ β{η[α(η(x[1])(1)(2))](2)}⊗

⊗ (x[0] ⊳ η(x[0])(1)(1)) ⊳ η[α(η(x[1])(1)(2))](1)

which, by the bicoalgebroid axiom 2.5, is further equal:

LHS = β(η(x[1])(2))⊗ β(η(x[1])(1)(2))(2) ⊗ x[0] ⊳ η(x[1])(1)(1)η(x[1])(1)(2)(1) =

= β(η(x[1])(3))⊗ β(η(x[1])(2))⊗ x[0] ⊳ η(x[1])(1) = β(η(x[1])(2))(1)⊗

⊗ β(η(x[1])(2))(2) ⊗ x[0] ⊳ η(x[1])(1) = RHS.

In the first equality, we used comultiplicativity of the unit and coassociativity. In
the second, the fact that β is an anti–coalgebra map.

As for (1), the coaction τ makes X a bicomodule. Using the definition of the
left coaction, and that the H–action is a right C comodule map:

x[−1] ⊗ x[0][0] ⊗ x[0][1] = β(η(x[1])(2))⊗ (x[0] ⊳ η(x[1])(1))[0]⊗

⊗ (x[0] ⊳ η(x[1])(1))[1] = β(η(x[1])(2))⊗ x[0] ⊳ η(x[1])(1)(2) ⊗ β(η(x[1])(1)(1))

Using that η : CC → HC is a C–bicomodule map,

(2.30) η(c(1))⊗ c(2) = η(c)(2) ⊗ β(η(c)(1))

and the coassociativity of the coaction:

x[−1] ⊗ x[0][0] ⊗ x[0][1] = β(η(x[1])(2)(2))⊗ x[0] ⊳ η(x[1])(2)(1) ⊗ β(η(x[1])(1)) =

= β(η(x[1](1))(2))⊗ x[0] ⊳ η(x[1](1))(1) ⊗ x[1](2) = β(η(x[0][1])(2))⊗

⊗ x[0][0] ⊳ η(x[0][1])(1) ⊗ x[1] = x[0][−1] ⊗ x[0][0] ⊗ x[1]

(we apply 2.30 to c = x[1] in the second equality). The action will then (by con-
struction) be a C–bicomodule map, proving (2). It remains to see that the action
factorizes through the cocenter of X �C H , meaning:

(2.31) (x[0] ⊳ η(x[1])(1)) ⊳ h⊗ β(η(x[1])(2)) = x[0] ⊳ h⊗ x[−1]

This is a simple consequence of 2.29:

LHS = (x[0] ⊳ η(x[1]))[0] ⊳ h⊗ (x[0] ⊳ η(x[1]))[−1] = RHS.

�
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3. The scalar extension for bicoalgebroids

In [2], the authors introduced a construction that associates to a bialgebra H

and a braided commutative algebra Q over H a bialgebroid. In [1], it was shown
that the construction generalizes to bialgebroids (in fact, even to Frobenius Hopf–
algebroids) and has an interpretation as the noncommutative scalar extension of H
by Q.

Here we dualize this construction to bicoalgebroids, and give a few simple exam-
ples. We begin by defining the smash coproduct ([14], with a slight variation).

Definition 3.1. Let H be a bicoalgebroid over C and D an H–comodule coalgebra.
Then their smash coproduct D ♯H is a coalgebra, isomorphic to D�C H as C–
bicomodules and with the coalgebra structure:

∆(d ♯ h) = d(1) ♯ d(2)
〈−1〉h(1)�D d(2)

〈0〉 ♯ h(2)(3.1)

ε(d ♯ h) = ε(d)εH(h)(3.2)

That these maps define a coalgebra is easily verified. The category of (D ♯H)–
comodules may also be described as the internalD–comodules in HM, i.e. D(HM) =
D ♯HM.

Indeed, assume X ∈ D(HM). To every coaction δD : X → D�C X in HM, we
can associate a coaction of D ♯H , namely δD ♯H = (D ⊗ δ) ◦ δD : X → D ⊗X →

D ⊗ (H ⊗X), δD ♯H(x) = x[−1] ⊗ x[0]
〈−1〉 ⊗ x[0]

〈0〉. A straightforward calculation
proves that (∆D ♯H ⊗ X) ◦ δD ♯H = ((D ♯H) ⊗ δD ♯H) ◦ δD ♯H , using that δD ♯H

is an H–comodule map. In the reverse direction, an (D ♯H)–comodule is both an
H-comodule and a D–comodule such that the D–coaction is an H–comodule map,
which means precisely that it is an internal D–comodule in HM.

3.1. Cocommutative coalgebras over bicoalgebroids. Keeping with the method
of reversing arrows, we arrive at the following definition for Yetter–Drinfel’d mod-
ules over a bicoalgebroid.

Definition 3.2. Let H be a (left–) bicoalgebroid over C. A Yetter–Drinfel’d
module over H is a triple 〈Z, ⊳, δ〉 such that the C–bicomodule Z is simultane-
ously a right H–module with ⊳ : Z �C H → Z and a left H–comodule with
δ : Z → H �Ce Z so that the action and coaction satisfy the compatibility con-
dition

(3.3) d〈−1〉h[1]�C d〈0〉 ⊳ h[2] = h[2](d ⊳ h[1])
〈−1〉

�C (d ⊳ h[1])
〈0〉

The Yetter–Drinfel’d category, denoted HYDH over H has objects the Yetter–
Drinfel’d modules over H and arrows the C–bicomodule maps that are at the same
time H–module maps and H–comodule maps.

The category HYDH becomes monoidal if we define the monoidal product of two
Yetter–Drinfel’d modules Z, Z ′ as Z �C Z ′ with action and coaction:

(z�C z′) ⊳ h = z ⊳ h(2) �C z′ ⊳ h(1)

(z�C z′)〈−1〉 �C (z�C z′)〈0〉 = z〈−1〉z
′
〈−1〉�C z〈0〉�C z′〈0〉

The monoidal unit is of course C, with c⊳h = c ε(h) and c〈−1〉⊗c〈0〉 = η(c(1))⊗c(2).

Moreover, HYDH is pre–braided with

(3.4) τZ,Z′ : Z �C Z ′ → Z ′
�C Z, z ⊗ z′ 7→ z′〈0〉 �C z ⊳ z′〈−1〉
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From experience with Hopf algebras, weak Hopf algebras and bialgebroids, it
is reasonable to expect that the Yetter–Drinfel’d category over a bicoalgebroid is
related to the (weak) center of the category of comodules. For the center construc-
tion, consult [12], [6] and [10]. The notion of weak center of a monoidal category
seems to appear in [15], Definition 4.3 (see also [4], Section 1.3 and [1]).

For bialgebroids, it is known that the Yetter–Drinfel’d category is equivalent to
the monoidal weak center (see [15]). Unfortunately this doesn’t seem to be true
for bicoalgebroids in general. Nevertheless, the YD category over a bicoalgebroid
still embeds into the monoidal weak center. Although the weak center construction
is applicable to any monoidal category, we shall only recall the definition in the
context of the comodule category over a bicoalgebroid.

For a bicoalgebroid H over C, the (left) weak center
−→
Z (HM) has objects 〈Z, θ〉,

where Z ∈ HM and θ is a natural transformation θY : Z �C Y → Y �C Z (between
endofunctors on HM) that satisfies

θX �C Y = (X �C θY ) ◦ (θX �C Y )(3.5)

θC = Z(3.6)

An arrow 〈Z, θ〉 → 〈Z ′, θ′〉 is an H–comodule map f : Z → Z ′, compatible with θ’s
in the sense:

(3.7) (Y �C f) ◦ θY = θ′Y ◦ (f �C Y )

for all Y ∈ HM. The category
−→
Z (HM) is monoidal and pre–braided with monoidal

product

(3.8) 〈Z, θ〉�C 〈Z
′, θ′〉 = 〈Z �C Z ′, (θ �C Z ′) ◦ (Z �C θ′ )〉

and pre–braiding

(3.9)
−→
β 〈Z,θ〉,〈Z′,θ′〉 = θZ′

It is easily shown that every Yetter–Drinfel’d module 〈Z, δ, ⊳〉 has the structure

of an object in
−→
Z (HM). The map

θX : Z �C X → X �C Z(3.10)

z ⊗ x 7→ x〈0〉 ⊗ z ⊳ x〈−1〉

is natural in X , since the arrows of
−→
Z (HM) are H–comodule maps, θC = Z is

trivially satisfied and

θX � Y (x⊗ y) = x〈0〉 ⊗ y〈0〉 ⊗ z ⊳ (x〈−1〉y〈−1〉)

equals

(X � θY ) ◦ (θX � Y )(x⊗ y) = (X � θY )(x
〈0〉 ⊗ z ⊳ x〈−1〉 ⊗ y) =

= x〈0〉 ⊗ y〈0〉 ⊗ (z ⊳ x〈−1〉) ⊳ y〈−1〉.

As for the reverse direction, we can associate to every object 〈Z, θ〉 of
−→
Z (HM) a

right action of H as follows:

⊳ : Z �C H → Z(3.11)

z ⊗ h 7→ (εH ⊗ Z) ◦ θH(z ⊗ h)
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It is easily checked that this is indeed a right H–action, and is the candidate to
make Z a Yetter–Drinfel’d module. If θ enjoys the property θX(z ⊗ x) = x〈0〉 ⊗
θH(z ⊗ x〈−1〉) for all objects X ∈ H

M, then 〈Z, δ, ⊳〉 becomes a Yetter–Drinfel’d

module and, moreover, HYDH and
−→
Z (HM) are isomorphic categories. This would

mean that the natural map θ can be expressed with it’s component θH . This is
indeed possible for bialgebroids, since any bialgebroid is a generator in the category
of modules over itself, and natural transformations are determined by their value
on the generator.

Remark 3.3. We mention, for the sake of completeness, the right weak center
←−
Z (HM), defined as the category of pairs 〈Z, θ̄〉, where Z ∈ HM and θ̄ is a nat-
ural transformation θY : Y �C Z → Z �C Y , satisfying

θ̄X �C Y = (θ̄X �C Y ) ◦ (X �C θ̄Y )(3.12)

θC = Z(3.13)

The category
←−
Z (HM) has the monoidal structure

(3.14) 〈Z, θ̄〉�C 〈Z
′, θ̄′〉 = 〈Z �C Z ′, (Z �C θ̄′ ) ◦ (θ̄ �C Z ′)〉

and pre–braiding

(3.15)
←−
β 〈Z,θ̄〉,〈Z′,θ̄′〉 = θ̄′Z

It is straightforward to prove that the one–sided Yetter–Drinfel’d category H
HYD

is embedded into
←−
Z (HM). The objects of H

HYD are triples 〈Z, δ, ⊲〉, C–bicomodules
which are simultaneously H–modules and H–comodules, satifying the compatibilty
condition

(3.16) h(1)z
〈−1〉

�C h(2) ⊲ z
〈0〉 = (h(1) ⊲ z)

〈−1〉h(2) �C (h(1) ⊲ z)
〈0〉

H
HYD is a pre–braided monoidal category with the pre–braiding

(3.17) κZ′,Z(z
′ ⊗ z) = z′

〈−1〉
⊲ z ⊗ z′

〈0〉

Now, a braided cocommutative coalgebra (hereinafter abbreviated BCC) over H
is defined as a cocommutative comonoid in HYDH . Spelled out in detail, we have
the

Definition 3.4. A BCC over H is a coalgebra D, equipped with a coalgebra map
ε : D → C and the structure of a Yetter–Drinfel’d module 〈D, ⊳, δ〉 ∈ HYDH so
that the left/right C–comodule structures on D are given by ε(d(1)) ⊗ d(2) and
d(1) ⊗ ε(d(2)), respectively and the relations stating that D is an H–module and
H–comodule coalgebra:

(d ⊳ h)(1) ⊗ (d ⊳ h)(2) = d(1) ⊳ h(1) ⊗ d(2) ⊳ h(2)(3.18)

ε(d ⊳ h) = ε(d)εH(h)(3.19)

d(1)
〈−1〉d(2)

〈−1〉 ⊗ d(1)
〈0〉 ⊗ d(2)

〈0〉 = d〈−1〉 ⊗ d〈0〉(1) ⊗ d〈0〉(2)(3.20)

d〈−1〉 ⊗ ε(d〈0〉) = η(ε(d)(1))⊗ ε(d)(2)(3.21)

and braided cocommutativity:

(3.22) d(1) ⊗ d(2) = d(2)
〈0〉 ⊗ d(1) ⊳ d(2)

〈−1〉
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We have the following functorial characterization of BCC’s, entirely analogous
to Prop 4.7. of [1]:

Lemma 3.5. If D is a BCC in HYDH , then the functor D�C : H
M→ D(HM) =

D ♯HM is strong monoidal

Proof. Denote the opmonoidal structure 〈D�C , D2, D0〉. The natural transfor-
mation

(D2)X,Y :D�C (X �C Y )→ (D�C X)�D (D�C Y )

d⊗ x⊗ y 7→ (d(1) ⊗ x〈0〉)⊗ (d(2) ⊳ x〈−1〉 ⊗ y)

has the inverse (d⊗x)⊗(d′⊗y) 7→ dεC(ε(d
′))⊗x⊗y. Furthermore, D0 : D�C C →

D is obviously an isomorphism. �

It is perhaps not altogether surprising that we have the following dualization of
Theorem 4.6. of [1]

Theorem 3.6. Let 〈H,∆, ε;µ, η;α, β;C〉 be a (left–) bicoalgebroid over C and D a

BCC over H, then 〈D ♯H, ∆̃, ε̃; µ̃, η̃; α̃, β̃;D〉 is a (left–) bicoalgebroid over D, with
the following structure maps:

∆̃(d ♯ h) = d(1) ♯ d(2)
〈−1〉h(1) �D d(2)

〈0〉 ♯ h(2)(3.23)

ε̃(d ♯ h) = εC(ε(d))εH(h)(3.24)

µ̃(d ♯ h�D d′ ♯ h′) = dεC(ε(d
′)) ♯ hh′(3.25)

η̃(d) = d(1) ♯ η(ε(d(2)))(3.26)

α̃(d ♯ h) = dεH(h), β̃(d ♯ h) = d ⊳ h(3.27)

Proof. First, we check that α̃ (β̃) is a coalgebra (anti–coalgebra) map, respectively.
Inserting the definitions, a trivial calculation shows

α((d ♯ h)(1))⊗ α((d ♯ h)(2)) = d(1) ⊗ d(2)ε(h) = (α(d ♯ h))(1) ⊗ (α(d ♯ h))(2)

As required, β is an anti–coalgebra map:

β((d ♯ h)(2))⊗ β((d ♯ h)(1)) = β(d(2)
〈0〉 ♯ h(2))⊗ β(d(1) ♯ d(2)

〈−1〉h(1)) =

= d(2)
〈0〉 ⊳ h(2) ⊗ d(1) ⊳ d(2)

〈−1〉h(1) = d(1) ⊳ h(2) ⊗ d(2) ⊳ h(1) = (d ⊳ h)(1) ⊗ (d ⊳ h)(2) =

= (β(d ♯ h))(1) ⊗ (β(d ♯ h))(2).

where we have used 3.22 in the third equality, and the fact that D is an Hcop–
coalgebra in the fourth.

To prove that µ̃ : (D ♯H)�D (D ♯H) → D ♯H factorizes through (D ♯H) ⊠
(D ♯H), we calculate the D–comodule structure of D ♯H :

λ̃L : d ♯ h 7→ α((d ♯ h)(1))⊗ (d ♯ h)(2) = α(d(1) ♯ d(2)
〈−1〉h(1))⊗ d(2)

〈0〉 ♯ h(2) =

= d(1) ⊗ d(2) ♯ h

ρ̃L : d ♯ h 7→ (d ♯ h)(2) ⊗ β((d ♯ h)(2)) = d(2)
〈0〉 ♯ h(2) ⊗ d(1) ⊳ (d(2)

〈−1〉h(1)) =

= d(1) ♯ h(2) ⊗ d(2) ⊳ h(1),
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using (3.22) in the last step. The definition of the cotensor product over D then
reads: (d⊗ h)⊗ (d′ ⊗ h′) ∈ (D ♯H)�D (D ♯H) iff

(d ♯ h)(2) ⊗ β((d ♯ h)(1))⊗ (d′ ♯ h′) = (d ♯ h)⊗ α((d′ ♯ h′)(1))⊗ (d′ ♯ h′)(2)

or, using (3.22):

(3.28) d(1) ♯ h(2) ⊗ d(2) ⊳ h(1) ⊗ d′ ♯ h′ = d ♯ h⊗ d′(1) ⊗ d′(2) ♯ h
′

We now prove (d ♯ h)(d′ ♯ h′)(1) ⊗ α((d′ ♯ h′)(2)) = (d ♯ h)(1)(d
′ ♯ h′)⊗ β((d ♯ h)(2)).

Inserting definitions, and using the Yetter–Drinfel’d condition (3.3) we find:

RHS = d(1)εC(ε(d
′)) ♯ d(2)

〈−1〉h(1)h
′ ⊗ d(2)

〈0〉 ⊳ h(2) =

= d(1)εC(ε(d
′)) ♯ h(2)(d(2) ⊳ h(1))

〈−1〉h′ ⊗ (d(2) ⊳ h(1))
〈0〉,

using the Yetter–Drinfel’d condition (eq. 3.3). Applying (3.28), we arrive at

RHS = dεC(ε(d
′
(2))) ♯ hd

′
(1)

〈−1〉
h′ ⊗ d′(1)

〈0〉
= d ♯ hd′

〈−1〉
h′ ⊗ d′

〈0〉

A quick calculation shows that the

LHS = dεC(ε(d
′
(1))) ♯ hd

′
(2)

〈−1〉
h′ ⊗ d′(2)

〈0〉
= d ♯ hd′

〈−1〉
h′ ⊗ d′

〈0〉
,

as claimed.
Comultiplicativity of the product (which makes sense due to our above assertion)

means

(∆̃ ◦ µ̃)[(d ♯ h)�D (d′ ♯ h′)] = (µ̃�D µ̃) ◦ τ23 ◦ (∆̃�D ∆̃)[(d ♯ h)�D (d′ ♯ h′)]

inserting our definitions, we have:

LHS = ∆̃(dεCε(d
′) ♯ hh′) = d(1)εCε(d

′) ♯ d(2)
〈−1〉(hh′)(1) �D d(2)

〈0〉 ♯ (hh′)(2),

on the other hand, the

RHS = (d(1) ♯ d(2)
〈−1〉h(1))(d

′
(1) ♯ d

′
(2)

〈−1〉
h′
(1))�D (d(2)

〈0〉 ♯ h(2))(d
′
(2)

〈0〉
♯ h′

(2)) =

= d(1)εCε(d
′
(1)) ♯ d(2)

〈−1〉h(1)d
′
(2)

〈−1〉
h′
(1) �D d(2)

〈0〉εCε(d
′
(2)

〈0〉
) ♯ h(2)h

′
(2) =

= d(1)εC(ε(d
′
(1))) ♯ d(2)

〈−1〉h(1)η(ε(d
′
(2)))h

′
(1) �D d(2)

〈0〉εC(ε(d
′
(3))) ♯ (hh

′)(2),

where we made use of 3.21 and coassociativity in the third equality. Now, d′(1) ⊗

ε(d′(2))⊗ h′ = d′ ⊗ α(h′
(1))⊗ h′

(2), because d ♯ h ∈ D�C H . From this, and the unit

property of η, the statement follows.
The product is counital:

ε̃(d ♯ h)ε̃(d′ ♯ h′) = εC(ε(d))εC(ε(d
′))εH(hh′) = ε̃(dεC(ε(d)) ♯ hh

′)(3.29)

The unit map η̃ is indeed a unit for µ̃. The first unit property reads:

µ̃ ◦ (η̃�D ♯H) ◦ λ̃L(d ♯ h) = (d(1)(1) ♯ η(ε(d(1)(2))))(d(2) ♯ h) =

= d(1)εCε(d(3)) ♯ η(ε(d(2)))h = d ♯ h,(3.30)

using d ♯ h ∈ D�C H and the unit axiom (for H) in the last equality. The second,

µ̃ ◦ (D ♯H � η̃) ◦ ρ̃L(d ♯ h) = (d(1) ♯ h(2))((d(2) ⊳ h(1))(1) ♯ η((d(2) ⊳ h(1))(2))) =

= d(1)εCε(d(2) ⊳ h(1)) ♯ h(2)η(ε(d(2) ⊳ h(1))(2)) = d(1) ♯ η(ε(d(2)))h = d ♯ h

is proved using that D is an Hcop–algebra in the third equality, and d ♯ h ∈ D�C H

in the last. As a coalgebra, D ♯H is the smash coproduct. The algebra structure
of 〈D ♯H, µ̃, η̃〉 and the remaining axioms are easily verified. �
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Example 3.7. The action groupoid

In the category Set, there is a unique comultiplication, namely the diagonal
coproduct: x ∈ X , ∆X(x) = x × x. The counit is just a constant map to a (the)
one–element set 1, hence εX(x) = ∗ for all x ∈ X , where ∗ is the unique element
of 1. The coaction of a group G on X is completely specified by an arbitrary
function ϕ : X → G, via δϕ(x) = x〈−1〉 × x〈0〉 = ϕ(x) × x. Now, consider a G–Set
〈X, ⊳〉, carrying a right action of G. Choosing a G–coaction δϕ, the Yetter–Drinfel’d
compatibility condition takes the form

(3.31) ϕ(x)g × x ⊳ g = gϕ(x ⊳ g)× x ⊳ g

so 〈X, δϕ, ⊳〉 is a YD–module in GYDG if and only if g−1ϕ(x)g = ϕ(x⊳g). Moreover,
X is a BCC if x× x = x× x ⊳ ϕ(x), i.e. iff

(3.32) x ⊳ ϕ(x) = x

3.32 implies that the value of ϕ at a point x must lie in the stabilizer subgroup Gx

of the point x, and from 3.31 we conclude that it suffices to define ϕ for a single
representative, say x0 of each G-orbit. Then, if x0 ∈ Gx0 , ϕ(x) = ϕ(x0 ⊳ g) =
g−1ϕ(x0)g ∈ Gx.

Choosing a trivial coaction ϕ(x) ≡ e, the scalar extension of G by X is nothing

but the action groupoid. Indeed, α̃(x ♯ g) = x and β̃(x ♯ g) = x⊳g, so (X ♯G)�X(X ♯G)
is the set of composable pairs in the action groupoid and the multiplication µ̃ is
the composition of arrows in the action groupoid.

The phenomenon behind this example is that in Set, the fibered product of two
parallel maps α, β : X → Y , defined by the pullback

X ×α,β X
q

//

p

��

X

α

��
X

β
// Y

is equivalent to the equalizer

X ×α,β X → X ×X
X×λ

//
ρ×X

// X × Y ×X

where λ and ρ are the ’coactions’ λ = (α ×X) ◦∆diag and ρ = (X × β) ◦∆diag.
It is in this sense that a groupoid may be regarded as a classical ancestor of a
bicoalgebroid.

Example 3.8. The regular BCC for H a Hopf algebra

k–Hopf algebras (and bialgebras) are examples both of bialgebroids and bicoal-
gebroids. It is not immaterial, however whether we consider the Yetter-Drinfel’d

category HYDH as embedded in
−→
Z (MH) (the ’bialgebroid view’, see [1]), or in

−→
Z (HM) (the ’bicoalgebroid view’). Namely, the braiding is different in the two

cases,
−→
Z (MH) is pre–braided with

−→
β Z,Z′ = z′ ⊳ z〈−1〉 ⊗ z〈0〉 and

−→
Z (HM) is pre–

braided with −→γ Z,Z′ = z′
〈0〉
⊗ z ⊳ z′

〈−1〉
.

A k–Hopf algebra H , with invertible antipode is a Yetter–Drinfel’d module

〈H,AdR,∆〉 in
−→
Z (MH) (the regular module) via the coproduct, considered as
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left H–coaction and the right adjoint action, AdR : H ⊗ H → H, h ⊗ h′ 7→

S−1(h′
(2))hh

′
(1). Furthermore, Hop is a BCA in

−→
Z (MH), that is µop ◦ β(h ⊗ h′) =

µop(h⊗ h′). Indeed, h′h = h′ ⊳ h(1) ⊗ h(2) = S(h(1)(2))h
′h(1)(1) ⊗ h(2).

Dually, a k–Hopf algebra H is a Yetter–Drinfel’d module 〈H,µ, ÃdL〉 in
−→
Z (HM)

(the regular module) via the multiplication considered as a right action, and the
left adjoint coaction,

ÃdL : H → H ⊗H(3.33)

h 7→ S−1(h(3))h(1) ⊗ h(2)

Yetter–Drinfel’d compatibility is easily checked:

h′
(2)(hh

′
(1))

〈−1〉 ⊗ (hh′
(1))

〈0〉 = h′
(2)S

−1((hh′
(1))(3))(hh

′
(1))⊗ (hh′

(2)) =

= h′
(2)S

−1(h′
(1)(3))S

−1(h(3))h
′
(1)(1)h(1) ⊗ h(2)h

′
(1)(2) = S−1(h(3))h(1)h

′
(1) ⊗ h(2)h

′
(2) =

= h〈−1〉h′
(1) ⊗ h〈0〉 ⊳ h′

(2)

As one might expect from the previous example, Hcop is a BCC in
−→
Z (HM),

−→
β ◦∆cop(h) =

−→
β (h(2) ⊗ h(1)) = h(1)(2) ⊗ h(2)S

−1(h(1)(3))h(1)(1) = h(2) ⊗ h(1)

To construct an example which does not require the invertibility of the antipode,

consider H
HYD as being in the right weak center

←−
Z (HM). The Yetter–Drinfel’d

condition takes the form

(3.34) h(1)z
〈−1〉 ⊗ h(2) ⊲ z

〈0〉 = (h(1) ⊲ z)
〈−1〉h(2) ⊗ (h(1) ⊲ z)

〈0〉,

and the pre–braiding is
←−
β Z′,Z : z′

〈−1〉
⊲ z ⊗ z′

〈0〉
. We find that for an arbitrary

Hopf algebra, 〈H,AdL, µH〉 is a BCC in H
HYD, where

AdL : H → H ⊗H

h 7→ h(1)S(h(3))⊗ h(2),

and
←−
β H,H ◦∆(h) = h(1)(1)S(h(1)(3))h(2) ⊗ h(1)(2) = h(1) ⊗ h(2).

4. The scalar extension as a comonad

In this section, we give a (co–)monadic characterization of bicoalgebroids which
can be seen as dual to the results obtained for bialgebroids in [17]. We also give
a categorical description of the bialgebroid and bicoalgebroid scalar extensions in
terms of bimonads, and bicomonads, respectively.

Recall that for a bicoalgebroid H , the forgetful functor F : HM→ Ce

M is strong
monoidal, and is left adjoint to the induction functor I = HH �Ce : C

e

M→ HM.
By the standard Eilenberg–Moore construction (see [11]), the adjunction F ⊣ I

gives rise to a monad T = 〈T, µ, η〉 on the category HM with underlying endofunctor
T = IF : HM → HM ( monad multiplication is µ = IεF : TT → T , monad unit
η : HM → T is the unit of the adjunction) and a comonad G = 〈G,∆, ε〉 on
the category Ce

M with underlying endofunctor G = FI : Ce

M → Ce

M (comonad
comultiplication is ∆ = FηI : G → GG, counit ε : G → Ce

M is the counit of the
adjunction). Denote GM the Eilenberg–Moore category of G–coalgebras, then GM

can be identified with HM, since G = Ce

H �Ce . Also, the canonical forgetful
functor FG : G

M→ Ce

M can be identified with F : H
M→ Ce

M.
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By Prop. 2.1. of [17], the (strong) opmonoidal structure on F implies a monoidal
structure on the right adjoint I, and the adjunction is in the category of monoidal
categories. This implies that the unit and counit are monoidal natural transforma-
tions. The following definition is tailor–made (see [13]):

Definition 4.1. Let 〈M, � , I〉 be a monoidal category. Then a bicomonad on M

is a comonoid in the category of monoidal endofunctors from M to M. Thus, it is
an endofunctor G : M→ M, furnished with:

• a natural transformation κX,Y : (GX)� (GY )→ G (X � Y ), and
• an arrow ξ : C → GC

such that 〈G, κX,Y , ξ〉 is a monoidal functor;

• a natural transformation δX : GX → GGX and
• a natural transformation εX : GX → X

such that 〈G, δ, ε〉 is a comonoid in MM, and four compatibility axioms stating that
δ is monoidal,

δX⊗Y ◦ κX,Y = (GκX,Y ◦ κGX,GY ) ◦ (δX ⊗ δY )(4.1)

δI ◦ ξ = Gξ ◦ ξ(4.2)

and that ε is monoidal

εX⊗Y ◦ κX,Y = εX ⊗ εY(4.3)

ε ◦ ξ = I(4.4)

Proposition 4.2. The endofunctor G = FI = Ce

H �Ce : Ce

M → Ce

M is a
monoidal comonad with the structure maps:

δX : H �Ce X → H �Ce (H �Ce X)(4.5)

h⊗ x 7→ h(1) ⊗ (h(2) ⊗ x)(4.6)

εX : H �Ce X → X(4.7)

h⊗ x 7→ εH(h)x(4.8)

κX,Y : (H �Ce X)�C (H �Ce Y )→ H �Ce (X �C Y )(4.9)

(h⊗ x)⊗ (h′ ⊗ y) 7→ hh′ ⊗ (x⊗ y)(4.10)

ξ : C → H �Ce C(4.11)

c 7→ η(c)(1) ⊗ α(η(c)(2))(4.12)

Proof. The associativity of κ corresponds to the associativity of the multiplication
µ of H , and ξ is a unit for κ precisely because η is a unit for µ. The monoidality of
δX and εX are due to the multiplicativity and unitalness of ∆H and εH . Finally,
G is a comonad because H is a coalgebra. �

We now return to the question of dualizing Schauenburg’s theorem. The original
proof relies heavily on the fact that a left bialgebroidA is a generator in the category

AM. This allows us to express the coproduct of A as the action on 1A ⊗
R

1A,

∆A : a 7→ a(2) ⊗
R

a(2) := a · (1A ⊗
R

1A). An application of this reasoning seems

impossible. Consider, however, the following monadic reformulation of the problem.
A monoidal structure on H

M such that F : H
M→ Ce

M ≃ C
M

C is strict monoidal
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implies that the monoidal product on Ce

M is lifted to the Eilenberg–Moore category
of G-coalgebras in the following sense:

GM× GM
�̂ //

F×F

��

GM

F

��
Ce

M× Ce

M
�C

// Ce

M

This is a special case of the problem of ’liftings of functors’, orginally considered
by Johnstone ([7]). Our reference is [20] (this volume), from which we quote part
(1) of Theorem 3.3.

Theorem 4.3. Let G = 〈G, δ, ε〉 and G′ = 〈G′, δ′, ε′〉 be comonads on the categories
M and M

′, respectively, and let T : M′ → M be a functor. Denote U : GM→ M and
U ′ : G

′

M→ M′ the canonical forgetful functors.
Then, the liftings T̂ : G

′

M→ GM of T , in the sense:

G
′

M
T̂ //

U ′

��

GM

U

��
M′

T
// M

are in bijective correspondance with natural transformations κ : TG′ → GT for
which the following diagrams commute:

TG′ Tδ′ //

κ

��

TG′G′ κG // GTG′

Gκ

��

TG′ Tε′ //

κ

��

T

GT
δT

// GGT GT

εT

=={{{{{{{{

TakingM′ = Ce

M×Ce

M, M = Ce

M and T = �C : C
e

M×Ce

M→ Ce

M, we find
that liftings of the monoidal structure to GM ≃ HM are in bijective correspondance
with natural transformations

κM,N : (H �Ce M)�C (H �Ce N)→ H �Ce (M �C N)

inducing commutative diagrams

G(M)�C G(N)
δM � δN//

κM,N

��

G2(M)�C G2(N)
κG(M),G(N)

// G(G(M)�C G(N))

GκM,N

��
G(M �C N)

δM,N

// G2(M �C N)

(4.13) δM �N ◦ κM,N = GκM,N ◦ κG(M),G(N) ◦ (δM �C δN )

and
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G(M)�C G(N)
ε�C ε

//

κM,N

��

M �C N

G(M �C N)

εM �N

77nnnnnnnnnnnn

(4.14) εM �N ◦ κM,N = εM �C εN

The two diagrams above recover two of the compatibility relations (4.1 and 4.3)
of a bicomonad. If, furthermore, we have an arrow ξ : C → G(C) making C a
G–coalgebra such that the remaining two bicomonad conditions (4.2 and 4.4) are
satisfied, then GM becomes a (unital) monoidal category. Summarizing, we have
the following weakened form of Schauenburg’s theorem:

Theorem 4.4. Let 〈H, ∆̄, ε̄〉 be a comonoid in Ce

M. Then there is a bijective
correspondance between

(1) monoidal structures on HM such that the forgetful functor F : HM→ Ce

M

is strict monoidal
(2) a map κM,N : (H �Ce M)�C (H �Ce N) → H �Ce (M �C N), natural in

both arguments and a map ξ : C → H �Ce C such that 〈H, ∆̄, ε̄;κ, ξ〉 con-
stitutes a bicomonad, i.e. the compatibilty conditions 4.1, 4.2, 4.3 and 4.4
are satisfied.

Notice that in proving Theorem 2.7, we established (1) by constructing the maps
κ and ξ of (2) from bicoalgebroid structure maps. For bialgebroids, a stronger result
can be proved because a bialgebroid structure not only implies, but is equivalent
to, the analogue of (2).

We now turn to the scalar extension of bicoalgebroids to investigate it from a
comonadic point of view. A scalar extension H ′ = D ♯H of the bicoalgebroid H by
the BCC D gives rise to an adjunction between the respective comodule categories.
The forgetful functor F ′ : D ♯HM→ HM is induced by the epi (εD ⊗H) : D ♯H →
H . It has the right adjoint induction functor

I ′ : HM→ D ♯H
M, X 7→ (D ♯H)�H X

with the unit and counit of the adjunction being

υ : X → IF (X) = D ♯H �H X, x 7→ δD ♯H(x)

τ : FI(Y ) = H(D ♯H)�H Y → Y, (d⊗ h)⊗ y 7→ εD(d)ε(h)y

As C–comodules, D ♯H = D�C H , so the induction functor D ♯H �H is iso-
morphic to D�C . By Lemma 3.5, this functor is strong monoidal, hence also
opmonoidal. It will remain opmonoidal upon composition with the opmonoidal for-
getful functor, making the canonical comonad G = 〈F ′I ′, F ′υI ′, τ〉 an opmonoidal
endofunctor. The compatibility of the opmonoidal and comonadic structure make
G an opmonoidal comonad, not to be confused with the monoidal comonad which
we have christened ’bicomonad’ earlier. We state the definition as concisely as
possible.

Definition 4.5. An opmonoidal comonad 〈〈G,GX,Y , G
0〉,∆, ε〉 on a monoidal cat-

egory 〈C, � , ι〉 consists of
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• An opmonoidal endofunctor 〈G,GX,Y , G
0〉 on M and

• a comonad 〈G,∆, ε〉

such that ∆ and ε are opmonoidal

Proposition 4.6. Let D be a BCC over the left bicoalgebroid H. Then the endo-
functor G = D�C is an opmonoidal comonad on HM.

Proof. Recall that GX,Y : D� (X � Y ) → (D�X)� (D� Y ) reads, on elements:

d⊗ x ⊗ y 7→ d(1) ⊗ x〈−1〉 ⊗ d(2) ⊳ x
〈−1〉 ⊗ y and G0 = (εD �C) : D�C → C. The

comonad structure follows from the coalgebra structure of D.
We have only to check the compatibility of the comonad and opmonoidal struc-

ture, meaning four commutative diagrams. Opmonoidality of the comultiplication
means (1):

D� (X � Y )
GX,Y

//

∆X �Y

��

(D�X)� (D� Y )

∆X �∆Y

��
(D�D)� (X � Y )

GD �X,D �Y ◦(D�GX,Y )
// (D�D�X)� (D�D�X)

An easy calculation shows the commutativity of the diagram. The upper and
right hand side map compose to give

d⊗ x⊗ y 7→ d(1) ⊗ (d(2)(1) ⊗ x〈0〉)⊗ (d(2)(2) ⊳ x
〈−1〉 ⊗ y) 7→

7→ d(1)(1) ⊗ (d(2)(1) ⊗ x〈0〉)〈0〉 ⊗ d(1)(2) ⊳ (d(2)(1) ⊗ x〈0〉)〈−1〉 ⊗ d(2)(2) ⊳ x
〈−1〉 ⊗ y

Using the braided cocommutativity of D, we have:

d(1)(1) ⊗ d(2)(1)
〈0〉 ⊗ x〈0〉〈0〉 ⊗ d(1)(2) ⊳ (d(2)(1)

〈−1〉x〈0〉〈−1〉)⊗ d(2)(2) ⊳ x
〈−1〉 ⊗ y =

= d(1)(1) ⊗ d(1)(2) ⊗ x〈0〉〈0〉 ⊗ d(2)(1) ⊳ x
〈0〉〈−1〉 ⊗ d(2)(2) ⊳ x

〈−1〉 ⊗ y,

which is the composition of the lower and left hand side maps. The second diagram
(2) for the opmonoidality of ∆ is

D�C

G0
�C ##FF

FF
FF

FF
F

∆D // D�D�C

G0◦(D�G0)yytttttttttt

C

which commutes by the counit property of εD (G0 = εD �C). The remaining two
diagrams stating the opmonoidality of εX : D�X → X are (3)

(εX � εY ) ◦GX,Y = εX,Y ,

commuting since ε(d(1))x
〈0〉

�C ε(d(2) ⊳ x
〈−1〉)y = ε(d)x�C y, and (4)

εC = G0

which is a triviality. �
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We briefly recall the dual situation, for scalar extensions of bialgebroids (for
details, see [1]). For a scalar extension Q#H of a (left) bialgebroid H over R, the
inclusion ι : H →֒ Q#H induces a monoidal forgetful functor U : Q#HM → HM.
The left adjoint of U is

I : HM→ Q#HM, X 7→ (Q#H)⊗H X

with unit and counit

η : X → UI(X) = H(Q#H)⊗H X, x 7→ (1Q ⊗ 1H)⊗ x

ε : IU(Y ) = Q#H(Q#H)⊗H Y → Y, (q ⊗ h)⊗ y 7→ (q#h) ⊲ y = q · (h ⊲ y)

Note that U = HomH−(H, ). By Prop. 4.7 of [1], I is strong monoidal, so
the underlying endofunctor of the canonical monad T = 〈UI, UεI, η〉 on HM will
be monoidal, being the composition of two monoidal functors. Thus, the scalar
extension of bialgebroids gives rise to a monoidal monad on the module category
of the ’smaller’ bialgebroid.

Having seen that scalar extensions of bialgebroids and bicoalgebroids by BCA’s
and BCC’s give rise to monoidal monads and opmonoidal comonads, respectively,
in the rest of this paper, we make some tentative steps in the reverse direction.

First, note that any monoidal category 〈C, � , I〉 may be embedded (monoidally,
but not fully) into the category of it’s endofunctors ([5]), which is monoidal with the
composition of functors as monoidal product and the identity functor as monoidal
unit. The inclusion is given by C →֒ CC , X 7→ X̂ � , and the image of the
inclusion will be denoted Ĉ. The arrows of Ĉ are natural transformations of the
form αZ = α�Z : X �Z → Y �Z, with α : X → Y an arrow in C. An immediate
consequence is that for any map γ ∈ C:

(4.15) γX �Y = γX � Y,

since γX � Y = (γ�X)� Y = γX � Y .

Proposition 4.7. Let C be a monoidal category, and 〈D� , DX,Y , D
0〉 an op-

monoidal endofunctor in Ĉ. Then there is a natural transformation (between endo-

functors of Ĉ), θ̂Y : D� Y � → Y �D� such that 〈G, θ̂〉 is an object of
−→
Z (Ĉ).

Proof. We shall only prove the latter statement, which amounts to constructing a
natural transformation

(4.16) θ̂Y ( ) : (D� Y )� → (Y �D)�

satisfying eqs. 3.5 and 3.6. It is easily verified that

θ̂Y (X) : (D� Y )�X → (D� Y )� (D�X)→ (Y �D)�X(4.17)

θ̂Y (X) = (G0
� 1) ◦GY,X

is appropriate. Eq. 3.5 means that the following diagram commutes (suppressing
natural isomorphisms):
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D� (X � Y )�Z
DX,Y �Z

//

DX �Y,W

��

(D�X)� (D� Y )�W
D0

� 1 // X �D� (Y �W )

X �DY,W

��
X � (D� Y )� (D�W )

X �D0
� 1

��
(D�X� Y )� (D�W )

D0
� 1

// (X � Y )�D�W

The diagram commutes by the coassociativity of DX,Y and because D0 is a
counit for DX,Y . Note that because DX,Y = DX,ι�Y = DX,ι� Y , the counit
relation for D0 is equivalent to the following property for DX,Y :

D�X � Y
DX,Y

//

D0

��

(D�X)� (D� Y )

(D0
�X)� (D0

�Y )

��
ι�X � Y // (ι�X)� (ι� Y )

�

Remark 4.8. Clearly, by the embedding C →֒ Ĉ, we have in fact proven that D is

an object in
−→
Z (C).

Remark 4.9. Entirely analogously, for a monoidal category 〈M,⊗, ι〉, and amonoidal

endofunctor 〈T, TX,Y , T0〉 in M̂, of the form T = Q⊗ the natural transformation

ˆ̄θY (X) : Y ⊗Q⊗X → Q⊗ Y ⊗Q⊗X → Q⊗ Y ⊗X(4.18)

ˆ̄θY (X) = TX,Y ◦ (T0 ⊗ 1)

makes 〈T, ˆ̄θY 〉 an object in
←−
Z (M)

We saw that for a BCC D ∈ HYDH over a bicoalgebroid, D�C is not only
an opmonoidal endofunctor, but an opmonoidal comonad. Unfortunately, it seems
unlikely that the correspondence between opmonoidal endofunctors of Ĉ and objects

of
−→
Z (C) can be extended to a correspondence between opmonoidal comonads of Ĉ

and BCC’s in
−→
Z (C) without further assumptions.
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[17] K. Szlachányi, The monoidal Eilenberg–Moore construction and bialgebroids, Journal

of Pure and Applied Algebra 182 (2003) 287–315
[18] M. Takeuchi, Morita theorems for categories of comodules, J. Fac. Sci. Univ. Tokyo,

Sec. IA, 24, (1977) 629-644
[19] B. Torrecillas, F. van Oystaeyen, Y. H. Zhang, The Brauer Group of a Cocommuta-

tive Coalgebra, Journal of Algebra, 177 (1995) 536-568
[20] Robert Wisbauer, Algebras versus coalgebras, to appear in Applied Categorical Struc-

tures (this volume)

Research Institute for Particle and Nuclear Physics, Budapest

E-mail address: balint@rmki.kfki.hu


	1. Introduction
	2. Bicoalgebroids; comodules and modules
	2.1. Comodules over a bicoalgebroid
	2.2. Modules over a bicoalgebroid

	3. The scalar extension for bicoalgebroids
	3.1. Cocommutative coalgebras over bicoalgebroids

	4. The scalar extension as a comonad
	Acknowledgments
	References

